forked from udacity/artificial-intelligence
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_players.py
135 lines (109 loc) · 5.12 KB
/
sample_players.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
###############################################################################
# YOU CAN MODIFY THIS FILE, BUT CHANGES WILL NOT APPLY DURING GRADING #
###############################################################################
import logging
import pickle
import random
logger = logging.getLogger(__name__)
class BasePlayer:
def __init__(self, player_id):
self.player_id = player_id
self.timer = None
self.queue = None
self.context = None
self.data = None
def get_action(self, state):
""" Implement a function that calls self.queue.put(ACTION) within the allowed time limit
See RandomPlayer and GreedyPlayer for examples.
"""
raise NotImplementedError
class DataPlayer(BasePlayer):
def __init__(self, player_id):
super().__init__(player_id)
try:
with open("data.pickle", "rb") as f:
self.data = pickle.load(f)
except (IOError, TypeError) as e:
logger.info(str(e))
self.data = None
class RandomPlayer(BasePlayer):
def get_action(self, state):
""" Randomly select a move from the available legal moves.
Parameters
----------
state : `isolation.Isolation`
An instance of `isolation.Isolation` encoding the current state of the
game (e.g., player locations and blocked cells)
"""
self.queue.put(random.choice(state.actions()))
class GreedyPlayer(BasePlayer):
""" Player that chooses next move to maximize heuristic score. This is
equivalent to a minimax search agent with a search depth of one.
"""
def score(self, state):
own_loc = state.locs[self.player_id]
own_liberties = state.liberties(own_loc)
return len(own_liberties)
def get_action(self, state):
"""Select the move from the available legal moves with the highest
heuristic score.
Parameters
----------
state : `isolation.Isolation`
An instance of `isolation.Isolation` encoding the current state of the
game (e.g., player locations and blocked cells)
"""
self.queue.put(max(state.actions(), key=lambda x: self.score(state.result(x))))
class MinimaxPlayer(BasePlayer):
""" Implement an agent using any combination of techniques discussed
in lecture (or that you find online on your own) that can beat
sample_players.GreedyPlayer in >80% of "fair" matches (see tournament.py
or readme for definition of fair matches).
Implementing get_action() is the only required method, but you can add any
other methods you want to perform minimax/alpha-beta/monte-carlo tree search,
etc.
**********************************************************************
NOTE: The test cases will NOT be run on a machine with GPU access, or
be suitable for using any other machine learning techniques.
**********************************************************************
"""
def get_action(self, state):
""" Choose an action available in the current state
See RandomPlayer and GreedyPlayer for examples.
This method must call self.queue.put(ACTION) at least once, and may
call it as many times as you want; the caller is responsible for
cutting off the function after the search time limit has expired.
**********************************************************************
NOTE: since the caller is responsible for cutting off search, calling
get_action() from your own code will create an infinite loop!
See (and use!) the Isolation.play() function to run games.
**********************************************************************
"""
# randomly select a move as player 1 or 2 on an empty board, otherwise
# return the optimal minimax move at a fixed search depth of 3 plies
if state.ply_count < 2:
self.queue.put(random.choice(state.actions()))
else:
self.queue.put(self.minimax(state, depth=3))
def minimax(self, state, depth):
def min_value(state, depth):
if state.terminal_test(): return state.utility(self.player_id)
if depth <= 0: return self.score(state)
value = float("inf")
for action in state.actions():
value = min(value, max_value(state.result(action), depth - 1))
return value
def max_value(state, depth):
if state.terminal_test(): return state.utility(self.player_id)
if depth <= 0: return self.score(state)
value = float("-inf")
for action in state.actions():
value = max(value, min_value(state.result(action), depth - 1))
return value
return max(state.actions(), key=lambda x: min_value(state.result(x), depth - 1))
def score(self, state):
own_loc = state.locs[self.player_id]
opp_loc = state.locs[1 - self.player_id]
own_liberties = state.liberties(own_loc)
opp_liberties = state.liberties(opp_loc)
return len(own_liberties) - len(opp_liberties)