-
Notifications
You must be signed in to change notification settings - Fork 1
/
options.py
368 lines (305 loc) · 13.5 KB
/
options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import argparse
from pathlib import Path
from typing import Callable, List, Optional, Union
import torch
from fairseq import utils
from fairseq.data.indexed_dataset import get_available_dataset_impl
from fairseq.dataclass.configs import (
CheckpointConfig,
CommonConfig,
CommonEvalConfig,
DatasetConfig,
DistributedTrainingConfig,
EvalLMConfig,
GenerationConfig,
InteractiveConfig,
OptimizationConfig,
)
from fairseq.dataclass.utils import gen_parser_from_dataclass
# this import is for backward compatibility
from fairseq.utils import csv_str_list, eval_bool, eval_str_dict, eval_str_list # noqa
def get_preprocessing_parser(default_task="translation"):
parser = get_parser("Preprocessing", default_task)
add_preprocess_args(parser)
return parser
def get_training_parser(default_task="translation"):
parser = get_parser("Trainer", default_task)
add_dataset_args(parser, train=True)
add_distributed_training_args(parser)
add_model_args(parser)
add_optimization_args(parser)
add_checkpoint_args(parser)
return parser
def get_generation_parser(interactive=False, default_task="translation"):
parser = get_parser("Generation", default_task)
add_dataset_args(parser, gen=True)
add_distributed_training_args(parser, default_world_size=1)
add_generation_args(parser)
add_checkpoint_args(parser)
if interactive:
add_interactive_args(parser)
return parser
def get_interactive_generation_parser(default_task="translation"):
return get_generation_parser(interactive=True, default_task=default_task)
def get_eval_lm_parser(default_task="language_modeling"):
parser = get_parser("Evaluate Language Model", default_task)
add_dataset_args(parser, gen=True)
add_distributed_training_args(parser, default_world_size=1)
add_eval_lm_args(parser)
return parser
def get_validation_parser(default_task=None):
parser = get_parser("Validation", default_task)
add_dataset_args(parser, train=True)
add_distributed_training_args(parser, default_world_size=1)
group = parser.add_argument_group("Evaluation")
gen_parser_from_dataclass(group, CommonEvalConfig())
return parser
def parse_args_and_arch(
parser: argparse.ArgumentParser,
input_args: List[str] = None,
parse_known: bool = False,
suppress_defaults: bool = False,
modify_parser: Optional[Callable[[argparse.ArgumentParser], None]] = None,
):
"""
Args:
parser (ArgumentParser): the parser
input_args (List[str]): strings to parse, defaults to sys.argv
parse_known (bool): only parse known arguments, similar to
`ArgumentParser.parse_known_args`
suppress_defaults (bool): parse while ignoring all default values
modify_parser (Optional[Callable[[ArgumentParser], None]]):
function to modify the parser, e.g., to set default values
"""
if suppress_defaults:
# Parse args without any default values. This requires us to parse
# twice, once to identify all the necessary task/model args, and a second
# time with all defaults set to None.
args = parse_args_and_arch(
parser,
input_args=input_args,
parse_known=parse_known,
suppress_defaults=False,
)
suppressed_parser = argparse.ArgumentParser(add_help=False, parents=[parser])
suppressed_parser.set_defaults(**{k: None for k, v in vars(args).items()})
args = suppressed_parser.parse_args(input_args)
return argparse.Namespace(
**{k: v for k, v in vars(args).items() if v is not None}
)
from models import ARCH_MODEL_REGISTRY, ARCH_CONFIG_REGISTRY, MODEL_REGISTRY
# Before creating the true parser, we need to import optional user module
# in order to eagerly import custom tasks, optimizers, architectures, etc.
usr_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False)
usr_parser.add_argument("--user-dir", default=None)
usr_args, _ = usr_parser.parse_known_args(input_args)
utils.import_user_module(usr_args)
if modify_parser is not None:
modify_parser(parser)
# The parser doesn't know about model/criterion/optimizer-specific args, so
# we parse twice. First we parse the model/criterion/optimizer, then we
# parse a second time after adding the *-specific arguments.
# If input_args is given, we will parse those args instead of sys.argv.
args, _ = parser.parse_known_args(input_args)
# Add model-specific args to parser.
if hasattr(args, "arch"):
model_specific_group = parser.add_argument_group(
"Model-specific configuration",
# Only include attributes which are explicitly given as command-line
# arguments or which have default values.
argument_default=argparse.SUPPRESS,
)
if args.arch in ARCH_MODEL_REGISTRY:
ARCH_MODEL_REGISTRY[args.arch].add_args(model_specific_group)
elif args.arch in MODEL_REGISTRY:
MODEL_REGISTRY[args.arch].add_args(model_specific_group)
else:
raise RuntimeError()
if hasattr(args, "task"):
from utils import TASK_REGISTRY
TASK_REGISTRY[args.task].add_args(parser)
if getattr(args, "use_bmuf", False):
# hack to support extra args for block distributed data parallelism
from fairseq.optim.bmuf import FairseqBMUF
FairseqBMUF.add_args(parser)
# Add *-specific args to parser.
from fairseq.registry import REGISTRIES
for registry_name, REGISTRY in REGISTRIES.items():
choice = getattr(args, registry_name, None)
if choice is not None:
cls = REGISTRY["registry"][choice]
if hasattr(cls, "add_args"):
cls.add_args(parser)
elif hasattr(cls, "__dataclass"):
gen_parser_from_dataclass(parser, cls.__dataclass())
# Modify the parser a second time, since defaults may have been reset
if modify_parser is not None:
modify_parser(parser)
# Parse a second time.
if parse_known:
args, extra = parser.parse_known_args(input_args)
else:
args = parser.parse_args(input_args)
extra = None
# Post-process args.
if (
hasattr(args, "batch_size_valid") and args.batch_size_valid is None
) or not hasattr(args, "batch_size_valid"):
args.batch_size_valid = args.batch_size
if hasattr(args, "max_tokens_valid") and args.max_tokens_valid is None:
args.max_tokens_valid = args.max_tokens
if getattr(args, "memory_efficient_fp16", False):
args.fp16 = True
if getattr(args, "memory_efficient_bf16", False):
args.bf16 = True
args.tpu = getattr(args, "tpu", False)
args.bf16 = getattr(args, "bf16", False)
if args.bf16:
args.tpu = True
if args.tpu and args.fp16:
raise ValueError("Cannot combine --fp16 and --tpu, use --bf16 on TPUs")
if getattr(args, "seed", None) is None:
args.seed = 1 # default seed for training
args.no_seed_provided = True
else:
args.no_seed_provided = False
# Apply architecture configuration.
if hasattr(args, "arch") and args.arch in ARCH_CONFIG_REGISTRY:
ARCH_CONFIG_REGISTRY[args.arch](args)
if parse_known:
return args, extra
else:
return args
def get_parser(desc, default_task="translation"):
# Before creating the true parser, we need to import optional user module
# in order to eagerly import custom tasks, optimizers, architectures, etc.
usr_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False)
usr_parser.add_argument("--user-dir", default=None)
usr_args, _ = usr_parser.parse_known_args()
utils.import_user_module(usr_args)
parser = argparse.ArgumentParser(allow_abbrev=False)
gen_parser_from_dataclass(parser, CommonConfig())
from fairseq.registry import REGISTRIES
for registry_name, REGISTRY in REGISTRIES.items():
parser.add_argument(
"--" + registry_name.replace("_", "-"),
default=REGISTRY["default"],
choices=REGISTRY["registry"].keys(),
)
# Task definitions can be found under fairseq/tasks/
from utils import TASK_REGISTRY
parser.add_argument(
"--task",
metavar="TASK",
default=default_task,
choices=TASK_REGISTRY.keys(),
help="task",
)
# fmt: on
return parser
def add_preprocess_args(parser):
group = parser.add_argument_group("Preprocessing")
# fmt: off
group.add_argument("-s", "--source-lang", default=None, metavar="SRC",
help="source language")
group.add_argument("-t", "--target-lang", default=None, metavar="TARGET",
help="target language")
group.add_argument("--trainpref", metavar="FP", default=None,
help="train file prefix (also used to build dictionaries)")
group.add_argument("--validpref", metavar="FP", default=None,
help="comma separated, valid file prefixes "
"(words missing from train set are replaced with <unk>)")
group.add_argument("--testpref", metavar="FP", default=None,
help="comma separated, test file prefixes "
"(words missing from train set are replaced with <unk>)")
group.add_argument("--align-suffix", metavar="FP", default=None,
help="alignment file suffix")
group.add_argument("--destdir", metavar="DIR", default="data-bin",
help="destination dir")
group.add_argument("--thresholdtgt", metavar="N", default=0, type=int,
help="map words appearing less than threshold times to unknown")
group.add_argument("--thresholdsrc", metavar="N", default=0, type=int,
help="map words appearing less than threshold times to unknown")
group.add_argument("--tgtdict", metavar="FP",
help="reuse given target dictionary")
group.add_argument("--srcdict", metavar="FP",
help="reuse given source dictionary")
group.add_argument("--nwordstgt", metavar="N", default=-1, type=int,
help="number of target words to retain")
group.add_argument("--nwordssrc", metavar="N", default=-1, type=int,
help="number of source words to retain")
group.add_argument("--alignfile", metavar="ALIGN", default=None,
help="an alignment file (optional)")
parser.add_argument('--dataset-impl', metavar='FORMAT', default='mmap',
choices=get_available_dataset_impl(),
help='output dataset implementation')
group.add_argument("--joined-dictionary", action="store_true",
help="Generate joined dictionary")
group.add_argument("--only-source", action="store_true",
help="Only process the source language")
group.add_argument("--padding-factor", metavar="N", default=8, type=int,
help="Pad dictionary size to be multiple of N")
group.add_argument("--workers", metavar="N", default=1, type=int,
help="number of parallel workers")
group.add_argument("--dict-only", action='store_true',
help="if true, only builds a dictionary and then exits")
# fmt: on
return parser
def add_dataset_args(parser, train=False, gen=False):
group = parser.add_argument_group("dataset_data_loading")
gen_parser_from_dataclass(group, DatasetConfig())
# fmt: on
return group
def add_distributed_training_args(parser, default_world_size=None):
group = parser.add_argument_group("distributed_training")
if default_world_size is None:
default_world_size = max(1, torch.cuda.device_count())
gen_parser_from_dataclass(
group, DistributedTrainingConfig(distributed_world_size=default_world_size)
)
return group
def add_optimization_args(parser):
group = parser.add_argument_group("optimization")
# fmt: off
gen_parser_from_dataclass(group, OptimizationConfig())
# fmt: on
return group
def add_checkpoint_args(parser):
group = parser.add_argument_group("checkpoint")
# fmt: off
gen_parser_from_dataclass(group, CheckpointConfig())
# fmt: on
return group
def add_common_eval_args(group):
gen_parser_from_dataclass(group, CommonEvalConfig())
def add_eval_lm_args(parser):
group = parser.add_argument_group("LM Evaluation")
add_common_eval_args(group)
gen_parser_from_dataclass(group, EvalLMConfig())
def add_generation_args(parser):
group = parser.add_argument_group("Generation")
add_common_eval_args(group)
gen_parser_from_dataclass(group, GenerationConfig())
return group
def add_interactive_args(parser):
group = parser.add_argument_group("Interactive")
gen_parser_from_dataclass(group, InteractiveConfig())
def add_model_args(parser):
group = parser.add_argument_group("Model configuration")
from models import ARCH_MODEL_REGISTRY
group.add_argument('--arch', '-a', metavar='ARCH',
choices=ARCH_MODEL_REGISTRY.keys(),
help='model architecture')
# fmt: on
return group
def get_args(
data: Union[str, Path],
task: str = "translation",
arch: str = "transformer",
**overrides
):
parser = get_training_parser(task)
args = parse_args_and_arch(parser, [str(data), "--task", task, "--arch", arch])
for k, v in overrides.items():
setattr(args, k, v)
return args