You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
File ~\anaconda3\Lib\site-packages\hdbscan\hdbscan_.py:1243, in HDBSCAN.fit_predict(self, X, y)
1228 def fit_predict(self, X, y=None):
1229 """Performs clustering on X and returns cluster labels.
1230
1231 Parameters
(...)
1241 cluster labels
1242 """
-> 1243 self.fit(X)
1244 return self.labels_
File ~\anaconda3\Lib\site-packages\hdbscan\hdbscan_.py:1205, in HDBSCAN.fit(self, X, y)
1195 kwargs.pop("prediction_data", None)
1196 kwargs.update(self.metric_kwargs)
1198 (
1199 self.labels,
1200 self.probabilities_,
1201 self.cluster_persistence_,
1202 self._condensed_tree,
1203 self._single_linkage_tree,
1204 self._min_spanning_tree,
-> 1205 ) = hdbscan(clean_data, **kwargs)
1207 if self.metric != "precomputed" and not self._all_finite:
1208 # remap indices to align with original data in the case of non-finite entries.
1209 self._condensed_tree = remap_condensed_tree(
1210 self._condensed_tree, internal_to_raw, outliers
1211 )
import hdbscan
import numpy as np
import pandas as pd
from sklearn.metrics import adjusted_rand_score
import matplotlib.pyplot as plt
data = pd.read_csv('DBSCAN Data.csv')
X = data[['Feature 1', 'Feature 2']].values
true_labels = data['Cluster'].values
clusterer = hdbscan.HDBSCAN(min_cluster_size=5, gen_min_span_tree=True)
hdbscan_labels = clusterer.fit_predict(X)
Error Msg -
TypeError Traceback (most recent call last)
Cell In[10], line 2
1 clusterer = hdbscan.HDBSCAN(min_cluster_size=5, gen_min_span_tree=True)
----> 2 hdbscan_labels = clusterer.fit_predict(X)
File ~\anaconda3\Lib\site-packages\hdbscan\hdbscan_.py:1243, in HDBSCAN.fit_predict(self, X, y)
1228 def fit_predict(self, X, y=None):
1229 """Performs clustering on X and returns cluster labels.
1230
1231 Parameters
(...)
1241 cluster labels
1242 """
-> 1243 self.fit(X)
1244 return self.labels_
File ~\anaconda3\Lib\site-packages\hdbscan\hdbscan_.py:1205, in HDBSCAN.fit(self, X, y)
1195 kwargs.pop("prediction_data", None)
1196 kwargs.update(self.metric_kwargs)
1198 (
1199 self.labels,
1200 self.probabilities_,
1201 self.cluster_persistence_,
1202 self._condensed_tree,
1203 self._single_linkage_tree,
1204 self._min_spanning_tree,
-> 1205 ) = hdbscan(clean_data, **kwargs)
1207 if self.metric != "precomputed" and not self._all_finite:
1208 # remap indices to align with original data in the case of non-finite entries.
1209 self._condensed_tree = remap_condensed_tree(
1210 self._condensed_tree, internal_to_raw, outliers
1211 )
File ~\anaconda3\Lib\site-packages\hdbscan\hdbscan_.py:884, in hdbscan(X, min_cluster_size, min_samples, alpha, cluster_selection_epsilon, max_cluster_size, metric, p, leaf_size, algorithm, memory, approx_min_span_tree, gen_min_span_tree, core_dist_n_jobs, cluster_selection_method, allow_single_cluster, match_reference_implementation, **kwargs)
867 else:
868 (single_linkage_tree, result_min_span_tree) = memory.cache(
869 _hdbscan_boruvka_balltree
870 )(
(...)
880 **kwargs
881 )
883 return (
--> 884 _tree_to_labels(
885 X,
886 single_linkage_tree,
887 min_cluster_size,
888 cluster_selection_method,
889 allow_single_cluster,
890 match_reference_implementation,
891 cluster_selection_epsilon,
892 max_cluster_size,
893 )
894 + (result_min_span_tree,)
895 )
File ~\anaconda3\Lib\site-packages\hdbscan\hdbscan_.py:80, in _tree_to_labels(X, single_linkage_tree, min_cluster_size, cluster_selection_method, allow_single_cluster, match_reference_implementation, cluster_selection_epsilon, max_cluster_size)
78 condensed_tree = condense_tree(single_linkage_tree, min_cluster_size)
79 stability_dict = compute_stability(condensed_tree)
---> 80 labels, probabilities, stabilities = get_clusters(
81 condensed_tree,
82 stability_dict,
83 cluster_selection_method,
84 allow_single_cluster,
85 match_reference_implementation,
86 cluster_selection_epsilon,
87 max_cluster_size,
88 )
90 return (labels, probabilities, stabilities, condensed_tree, single_linkage_tree)
File hdbscan\_hdbscan_tree.pyx:659, in hdbscan._hdbscan_tree.get_clusters()
File hdbscan\_hdbscan_tree.pyx:733, in hdbscan._hdbscan_tree.get_clusters()
TypeError: 'numpy.float64' object cannot be interpreted as an integer
DBSCAN Data.csv
The text was updated successfully, but these errors were encountered: