diff --git a/docs/examples/notebooks/learn/Hessians.ipynb b/docs/examples/notebooks/learn/Hessians.ipynb new file mode 100644 index 0000000000..889800e93d --- /dev/null +++ b/docs/examples/notebooks/learn/Hessians.ipynb @@ -0,0 +1,497 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2-final" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3", + "language": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# Hessian/Covariance Calculation in Minuit (with internal transforms)\n", + "\n", + "tldr: At the minimum hessians transform under change of variable covariantly (i.e. we can compute the Hessian in the bounded variables just as a transform of the Hessian in MINUITs internal unbounded variable). But this only holds at the minimum of the function - MINUIT exploits that.\n", + "\n", + "This is a short notebook discussing how Minuit computes covariances and Hessians.\n", + "\n", + "Minuit uses a parameter transformation to map a bounded variable to an unbounded one: $x\\in[a,b]\\to n\\in[-\\infty, \\infty]$\n", + "\n", + "where the transform is from e$x$ternal variabels to i$n$ternal variables is given by \n", + "\n", + "$$n(x) = \\arcsin\\left(2\\frac{(x-a)}{b-a} - 1\\right)$$\n", + "\n", + "with the inverse being\n", + "\n", + "$$x(n) = a+ \\frac{(b-a)}{2}\\sin(n) + 1$$\n", + "\n", + "\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 159, + "metadata": {}, + "outputs": [], + "source": [ + "import jax\n", + "import numpy as np\n", + "import jax.numpy as jnp\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.patches as patches\n", + "\n", + "\n", + "def to_bounded(n, bounds):\n", + " a, b = bounds\n", + " return a + 0.5 * (b - a) * (jnp.sin(n) + 1)\n", + "\n", + "\n", + "def to_inf(x, bounds):\n", + " a, b = bounds\n", + " return jnp.arcsin(2 * (x - a) / (b - a) - 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 160, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n 2020-12-22T12:07:02.309846\n image/svg+xml\n \n \n Matplotlib v3.3.0, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAx40lEQVR4nO3dd3yV5f3/8dcnewdIAiGEEJbsJREHal1UVBT3qri/1qqt2qnfX2tbq63Wfq3aZal71L1wa60bFRLZIJtAWFmQQfY51++Pc4CAiKBJ7js57+fjwSM5h5Nzf7gffPI+93Vf932Zcw4RERG/ifK6ABERkT1RQImIiC8poERExJcUUCIi4ksKKBER8SUFlIiI+JICSkREfEkBJSIivqSAEhERX1JAiXQQM/ujmb3Y6vEdZvaOmcXt5Wdst8ffN7PXzOxvZlZuZhvMbFI7li3iGQWUSMe5HTjazMaZ2ZXAZOB051zTnl5sZkcAr5tZYqunxwCHADOAnsA/gV+0b9ki3lBAiXQQ51wF8GfgYeBG4ETnXNVefuRjYDPwUquQGg3c5px70zkXBBa3Z80iXlJAiXSsOcAo4Ebn3DoAM5tsZm73P0AAuBCYBFwZHu4bBbzc6v1GopCSLsp0N3ORjmFmo4A3gbeAXOfccV/z+ijgQaA3MBXIBhYCqeGjJ8xsBvCic+6B9qxdxAs6ghLpAGbWh9CRz5XAVcAoMzvqa35sItALmOqcqyc0vLdgeziFjQPmtXnBIj6ggBJpZ2aWBrwG3Omcm+GcqwPuAG7d28855z4ETgiHE4QCam6r981k51GVSJejIT4REfElHUGJiIgvKaBERMSXFFAiIuJLCigREfGlGK8L2B+ZmZkuPz/f6zJERKQNFRUVlTvnsnZ/vlMFVH5+PoWFhV6XISIibcjMivf0vIb4RETElxRQIiKy37Zsa+KiB2ZRuKay3bahgBIRkf1WVLyF95eVEQi2380eFFAiIrLfXpm/gbiYKMb07dZu21BAiYjIfnm2qIQX527giiMGkBAb3W7b6VSz+ERExDvOOaZ/sIrb3/iCIwZncs0xg9p1ewooERH5WmvKt/Grlxby4fJyThyVzZ/OGtOuR0+ggBIRkb2oqG3kXx+u5oGPVxMXHcXNU0cw7ZB+hBZ4bl8KKBER+ZL1W+t5eOYaHv2kmIaWAKeO7cONJwylZ1pCh9WggBIREQACQccHy8t4/NNi/vtFKQBTx/bh6qMHMahnSofXo4ASEYlgzjm+2FTDy/M28NLcDazfWk9mSjw/OGog5x6UR98eSZ7VpoASEYkwzjmWl9by+oJNvDx/AytKa4mOMiYOyuTGE4fy3eHZxMV4fxWSpwFlZg8AU4BS59xIL2sREenKGlsCfLaqkneWbOadL0op2VKPGRyU34NbTh3JCSOzyUiJ97rMXXh9BPUQ8FfgEY/rEBHpUpxzrC7fxsyVFXy0vJwPl5exrSlAQmwUhw/K5KqjBnHM0J5kp3fcpIf95WlAOec+MLN8L2sQEekqNlU18PGKcmaurGDmynI2VjUAkJOewKnj+nDssJ4cOiCTxLj2vX6prXh9BPW1zOwK4AqAvLw8j6sREfEH5xxrKuooXFNJUfEWZq2pZFXZNgC6J8Vy2MBMDh2YwcRBmeRnJHXIdUttzfcB5ZybDkwHKCgoaL/b5oqI+FhjS4CF66spKq6kcM0WPl+7hfLaJgDSEmIoyO/B+RPyOHRgBsOy04iK6nyBtDvfB5SISKRxzrG2so55JVUsKNnK3HVbmVdSRVNLEIB+GUkceUAWBf16UJDfnUFZKV0ikHangBIR8ZBzjs3Vjcwr2cr8kq3ML6lifkkVVfXNAMTFRDEiJ40LD+lHQX53DuzXnZ6p/p3Y0Ja8nmb+BHAUkGlmJcCvnXP3e1mTiEh7cc6xsaqBxRuqWbyxmvkloSOjsppGAKKjjCG9UjlxVDaj+nRjdG46Q7JTiY32/pokL3g9i+88L7cvItJemlqCLC+tYcnGGhZvqGbJxlAobT8yMoMBmckcMSiT0bnpjMrtxoictHa/Q3hnoiE+EZFvacu2ph0BtHhjNYs3VLOyrJbmQGheV0JsFEOy0zhxVG+G905leE4aQ7LTSInXr+C90d4REdlHtY0tLN9cw7LNNSzbXBv+WsPm6sYdr+mZGs+w3mkcPbQnw3unMax3Gv0zk4nugpMY2psCSkRkN/VNAVaU7gyg7YG0fmv9jtckxEYxuGcqEwdlMqRX6KhoWO80Mn12u6DOTAElIhGroTnAqrJtLC/d9ahobWUdLnzVZVx0FAOykinI7875vfIY3DOFIdmp5HZP0lFRO1NAiUiX5pyjYlsTK0trWVm2jZVltawsq2VFaeiIaHsQRUcZ/TOTGZmTzmnj+jCkVyqDe6WSn5FETITOovOaAkpEuoSWQJC1lXU7Q6i0NhxG23bMnIPQ0NzArBQOzOvOWeP7MrBnMoN6ptA/M5n4GM2g8xMFlIh0KjUNzawKh9CKViFUXLFtx6w5gKzUeAZmJTNldG8GZqUwsGcKA7OSyUlP7JJ3XeiKFFAi4jtV9c2srahjTUUoeNZU1O34uv2iVoCYKKNfRhIDs1KYNLxXKIiykhmQlUJ6YqyH/wJpCwooEelwzjm21DXvDKDyUAAVV9ZRXFFH5bamXV7fKy2efhnJHD0ki/zMZAaFj4jyeiRF7F0WIoECSkTahXOOstpGiivqWFO+LfS1YufXmoaWHa81g5z0RPIzk5g8Mpv8jCT6ZSSTn5FMXo+kTrN+kbQtBZSIfGPBoGNzTcOOI6DWQ3HFFduoawrseG10lJHbPZF+GcmMy+sWDqBQEPXtkagJCvIlCigR2atA0LFha32rI6CdAVRcUUdjeAkIgNhoo2+PJPIzkjlkQA/yM5LplxF63Kd7oobjZL8ooESE5kCQ9VvqdxmC2/51XWXdLrPj4mOi6Bc+8vnOAVk7huL6ZSSR0y1RF69Km1FAiUSIxpYA6yrr9zgUV7KlnkBwZwglxUXTLyOZIb1S+e7wVueEMpPolZqgadrSIRRQIl1IfVOAtZV7mJ5dXseGqp13TQBITYihf2Yyo/qkc/LonNBQXGboSCgrJR4zhZB4y+sFCycDdwPRwH3Oudu8rEekM6htbNltVtzOIGp9V22AHslx9MtIYkL/HjvOBW3/2i0pViEkvuZZQJlZNPA3YBJQAsw2sxnOucVe1STiF1Xha4R2PydUXLGN8tpdrxHKSo0nPyOJIwZn7To9OyNJF6tKp7ZPAWVm8cAZQH7rn3HO3fwttj0BWOGcWxXexpPAVEABJV2ec47KbU1fOhe0/evWuuZdXt87PYF+GUkcN6zXLtOz+2UkkaxF76SL2tf/2S8BVUAR0Pg1r91XfYB1rR6XAAfv/iIzuwK4AiAvL6+NNi3S/pxzlNU0smZP07PL66hp3HmhapRBTrdE8jOSOWlU751DcZmhC1W1DLhEon0NqFzn3OR2reQrOOemA9MBCgoK3Ne8XKRDBYOOTdUNuw7Fle8ckqtv3nmhakyrC1XH53XfMSuuX0Yyud11oarI7vY1oGaa2Sjn3II23PZ6oG+rx7nh50R8pSUQZGNVQ/icUB3F5a2OhCrraGp1oWpcdBR5GUnkZyQxcVDmLkNxOd10oarI/tjXgDocuNjMVhMa4jPAOedGf4ttzwYGm1l/QsF0LnD+t3g/kW+sJRBk/dZ6Vodnx4W+hr5ft2XXC1UTYqPIz0hmQFYyxwztufOcUGYy2WkJulBVpI3sa0Cd0NYbds61mNk1wJuEppk/4Jxb1NbbEdlu+90SVlds23EUtKZiG2vKQxeqtrS6UDU5fKHq0N6p4ZuX7jwn1DNV1wiJdIR9CijnXHF7bNw59xrwWnu8t0Sm5kCQkvAte9bsdjS0pxDKz0xmRE46J43uTb+MZPrrQlUR39D8VOl0mgNB1oXXDdoePqu/4pY9KfEx5GcmMaJPKITyM5LJzwxdJ5SZEqcQEvExBZT4UjDo2FjdwKqyWlaVbWN1+TZWlYeOitZv3XMIbb9lTyiAQsNxGckKIZHOSgElnqqqa2ZVeesQCn2/pmIbDc07Z8clx0XTPyuZ0bnpTB2bEx6OC82QUwiJdE0KKGl3obto17FyewiV1Ya/bqOi1dLe0VFGXo8k+mcmc/igTAZkpdA/M5mBWclkaWKCSMRRQEmbcM5Rsa2JFaW1rCjdfkRUy6ry0HpCrUbkyEyJZ0BWMpOG92JAVjL9M1MYkJVM3+5JxMXoOiERCVFAyX5xzrGhqmFHEK0ordnx/ZZW949LjI2mf2YyI/ukM3VMDv2zkhmQmUJ+ZrJuYCoi+0QBJXvUEgiybks9yzfXsKKsdkcIrSytZVvTztv3dE+KZXDPVCaP7M2gnikM7pnCoJ4pZKdpUTsR+XYUUBEuEHSsq6zji001LN1Uw7LSGlZsDp0jagrsnKSQnZbA4F4pnFXQd5cgykiJ97B6EenKFFARwjlHWW0jS8NBtHRTDUs317Bsc82O2XJmkNcjiUFZKRw1NItBWSkM7pXKwKxkUhM0LCciHUsB1QXVNraEjoY2h4Loi03VLN1Us8s5osyUeIZmp/K9g/sxpFcqQ7JTGdwrhaQ4/ZcQEX/Qb6NOrry2kUUbqlm0oYpFG6pZvKGaNRXbcOFZc0lx0RzQK5XjR2QzJDsUREN6pWpoTkR8TwHVSTjnKNlSvyOItofS5uqd60fmdk9kRE4ap43rw7DeaQzNTqVPt0RNVhCRTkkB5VObqxuYs3Yr80q2Mm/dVhaur6K6IbQCa3SUMTArmcMGZjIiJ43hOWmM6J1OepLOE4lI16GA8oGahmYWlFQxNxxG89ZVsam6AYDYaGNY7zSmjMlhRE4aI3LSGZqdqiXARaTL8ySgzOws4DfAMGCCc67Qizq84JxjTUUds9dUUrimks/XbmVlWe2Oc0b9M5M5dGAGY3LTGdO3G8N6pymMRCQieXUEtRA4HfinR9vvMC2BIIs3VjN7zRYK11Qye80WymtD5426J8VyYF53po7JYUzfbozOTadbUpzHFYuI+IMnAeWcWwJ0yZt/BoOOxRur+XhFOR+tKKeoeAt14Tsv9O2RyJGDMynI78GE/t0ZkJmiCQwiIl/B9+egzOwK4AqAvLw8j6vZs7UVdXy0opyPV5Qzc2X5juuNBvdM4czxuRyU34OC/O70Tk/0uFIRkc6j3QLKzP4DZO/hr/6fc+6lfX0f59x0YDpAQUGB+5qXd4iWQJDP127lnSWbeXvJZlaVbQNCtwM6ZmgvDh+cwWEDM+mVluBxpSIinVe7BZRz7rj2em8vNDQHeG9pKW8u2sy7S0vZWtdMbLRxyIAMph3SjyMPyGJAZnKXHLYUEfGC74f4vNQSCDJzZQUz5m3gzYWbqGlsoVtSLMcM6cmxw3px5AGZukediEg78Wqa+WnAX4As4FUzm+ucO96LWvZkXWUdT8xay9OFJZTXNpIaH8PxI7M5ZUwOhw3MICZai+qJiLQ3r2bxvQC84MW2v4pzjpkrK7j/o9W8u7QUA44Z2oszx+dy1JAsXYskItLBIn6IzznHB8vLueed5RQVbyErNZ4fHj2IcyfkkdNNs+5ERLwS0QG1pnwbN81YxAfLyujTLZFbTh3JWQW5xMfoaElExGsRGVDOOR75pJhbX1tCXHQUN00ZzgWH9CMuRueWRET8IuICKhh03Pj8Ap4qXMcxQ3ty2+mj6KnrlUREfCfiAur3ry3hqcJ1XH30QH4yaYhuNSQi4lMRFVCfr93CfR+tZtoh/fjpd4fooloRER+LqJMur87fSHxMFDecMFThJCLicxEVUIXFWxiT243k+Ig6cBQR6ZQi6jf1baePor454HUZIiKyDyIqoIb1TvO6BBER2UcRNcQnIiKdhznniyWW9omZlQHF3/JtMoHyNiinq9D+2JX2x660P3al/fFlbbFP+jnnsnZ/slMFVFsws0LnXIHXdfiF9seutD92pf2xK+2PL2vPfaIhPhER8SUFlIiI+FIkBtR0rwvwGe2PXWl/7Er7Y1faH1/Wbvsk4s5BiYhI5xCJR1AiItIJKKBERMSXIiagzGyymS01sxVmdoPX9XjNzB4ws1IzW+h1LX5gZn3N7F0zW2xmi8zsWq9r8pKZJZjZLDObF94fv/W6Jj8ws2gzm2Nmr3hdi9fMbI2ZLTCzuWZW2C7biIRzUGYWDSwDJgElwGzgPOfcYk8L85CZHQnUAo8450Z6XY/XzKw30Ns597mZpQJFwKmR+n/EQrf7T3bO1ZpZLPARcK1z7lOPS/OUmf0YKADSnHNTvK7HS2a2BihwzrXbhcuRcgQ1AVjhnFvlnGsCngSmelyTp5xzHwCVXtfhF865jc65z8Pf1wBLgD7eVuUdF1Ibfhgb/tP1P83uhZnlAicB93ldS6SIlIDqA6xr9biECP7lI3tnZvnAOOAzj0vxVHg4ay5QCrztnIvo/QHcBfwcCHpch1844C0zKzKzK9pjA5ESUCL7xMxSgOeA65xz1V7X4yXnXMA5NxbIBSaYWcQOBZvZFKDUOVfkdS0+crhz7kDgBODq8GmDNhUpAbUe6NvqcW74OZEdwudangMed84973U9fuGc2wq8C0z2uBQvTQROCZ93eRI4xswe87Ykbznn1oe/lgIvEDqV0qYiJaBmA4PNrL+ZxQHnAjM8rkl8JDwp4H5giXPuTq/r8ZqZZZlZt/D3iYQmGH3haVEecs7d6JzLdc7lE/r98V/n3AUel+UZM0sOTybCzJKB7wJtPiM4IgLKOdcCXAO8Sejk99POuUXeVuUtM3sC+AQYYmYlZnaZ1zV5bCIwjdAn47nhPyd6XZSHegPvmtl8Qh/w3nbORfzUatmhF/CRmc0DZgGvOufeaOuNRMQ0cxER6Xwi4ghKREQ6HwWUiIj4kgJKRER8SQElIiK+pIASERFfUkCJiIgvKaBERMSXFFAiPmJmB5nZ/PB6TMnhtZgi9h54Etl0oa6Iz5jZLUACkAiUOOf+4HFJIp5QQIn4TPh+kbOBBuAw51zA45JEPKEhPhH/yQBSgFRCR1IiEUlHUCI+Y2YzCC3p0J/QMvTXeFySiCdivC5ARHYyswuBZufcv80sGphpZsc45/7rdW0iHU1HUCIi4ks6ByUiIr6kgBIREV9SQImIiC8poERExJcUUCIi4ksKKBER8SUFlIiI+JICSkREfEkBJSIivqSAEhERX1JAiYiILymgRETElxRQIiLiSwooERHxJQWUiIj4kgJKpIOY2ffN7DUz+5uZlZvZBjOb9DU/Y7s9/qOZvdjq8R1m9o6ZxbVT2SKeUUCJdJwxwCHADKAn8E/gF1/1YjM7AnjdzBJbPX07cLSZjTOzK4HJwOnOuab2K1vEGwookY4zGrjNOfemcy4ILP6a138MbAZe2h5SzrkK4M/Aw8CNwInOuap2rFnEMwookQ4QHqobBbzc6umRwGIzm2xmbvc/QAC4EJgEXNnq5+aE3+tG59y6DvoniHQ4c855XYNIl2dm/YGFQGr46AkzmwG86Jx74Ct+Jgp4EOgNTHXO1ZvZKOBN4C0g1zl3XIf8A0Q8oCMokY4xGliwPZzCxgHz9vIzE4Fe7AynPoSOwK4ErgJGmdlR7VOuiPcUUCIdYzQwd/sDM8sEsgkdVe2Rc+5D4IRwOKUBrwF3OudmOOfqgDuAW9u1ahEPaYhPRER8SUdQIiLiSwooERHxJQWUiIj4kgJKRER8KcbrAvZHZmamy8/P97oMERFpQ0VFReXOuazdn+9UAZWfn09hYaHXZYiISBsys+I9Pd+pAkp2FQw6GluCNLYEiIuJIjE2mt1ufi0i+ykQdDQHgjS2BImOMpLj1FdeUUB1AqU1DcxfV8X8kq0s2VTD+i31bKiqZ2td8y6vizJITYglt3si/TKSGJiVwri8bozr253uyVqNQaS10poG5q2rYuH6KhZvrGb9lno2VTdQuW3XG8NHRxmpCTHkpCfSPzOZAVnJjO3bjfH9utMtSX3VnhRQPuScY866rby9eDPvLS1jycZqIBRA/TOTyeuRxIH9upGRHE9CbDRxMVE0B4LUNrRQVd/Mui11LNlYw5uLNhMIhi7EHpqdyneH92LS8GxG9knTJ0KJONv76q1Fm3l/2a59NSArhbweSYzL60ZmSqivYqONlqCjpqGZqvpmSrbUs2hDFW8s2rRLX00a3ovjR2QzIkd91dY61Z0kCgoKXFc+B7WpqoFnCtfx/Jz1rC7fRkyUUZDfnaOG9KSgX3eG56SRFLfvnynqmlqYX1JFUfEW3l9WRuGaSoIOBmQlc05BX04/MJes1Ph2/BeJeG9zdQNPzV7HC7v11XcO6MmE/t0Z1nv/+qq+KcC8kq0UFW/hg2VlzA73Vf/MZM45qC9njs8lM0V9tT/MrMg5V/Cl5xVQ3vtiUzXTP1jFjLkbaAk6Du7fgzPG5zJ5ZDZpCbFttp3KbU28vXgTzxSWUFi8hdho49SxfbjyqIEMzEpps+2I+MHiDdXc99EqXp63geaA45ABPTh9XC6TR7VtX1XUNvKfJZt5tqiE2WtCfTV1bB9+oL7aZwooH1q+uYbb31jKf5ZsJjE2mnMO6sslE/Ppl5Hc7tteUVrLo5+s4cnZ62gKBDlhZDY/njSEQT3VUNK5Ld9cwx/fXMrbi0N9dXZBLpce3r+D+qqGxz5dy5Oz19LYEuTEUb25/rjBDOqZ2u7b7swUUD6yqaqBO99eyrNFJSTHxfA/Rw7gwkP7eXLCtby2kQc/Xs3DM4upbw7wvYPzuPbYwWRoiEI6mc3VDfzpzaU893kJSXExXHHkAC46NJ/0pLY7WtpX5bWNPPDRah75ZGdfXXfcAfTQZKU9UkD5QEsgyMOfFHPnW0tpDjimHdqPq48e5Iv/tBW1jdz1n+X8e9ZakmKj+dnkIVxwcD+ionTSV/ytJRDk0U+L+b+3ltHUEvRvX8VF85NJB3Dhofnqq90ooDy2cH0VNzw/n4XrqzlqSBY3nzKSvIwkr8v6khWltfz25UV8uLyc8f26c9vpoxjcS8MT4k+t++o7B2Rx89QRHTKUt7+Wb67h5lcW7+ir288YpWG/VhRQHgkEHf94bwV3/Wc53ZPj+M3JIzhxVLavp6M653hhznpufmUx2xpb+PGkIXz/yAH61Ce+EQg67n1/JX9+exk9kuP4dSfrq7rGANdPOkB9FaaA8sC6yjquf2ouhcVbOHlMDrdMHenJePg3VVHbyC9fXMjrCzdx2MAM7jx7LNnpCV6XJRFubUUd1z89l6LiLUwZ3ZtbTh3ZqS6YLa9t5KaXFvLaAvXVdgqoDvb6go387Nn5GPC7U0dy6rg+Xpf0jTjneLpwHb+ZsZj42CjuOHMMk4b38rosiVBvLNzET5+ZhxnccupIThmT4+ujpq/inOOZwhJ+PWMRCbFR/DHC+0oB1UFaAkHueHMp//xgFWP6duOv542jbw//nWvaXyvLarn2yTksXF/Nj44ZxHXHHaChCekwLYEgf3prGfe+v5Ixuen87XsHktu9a/TVD/89h8Ubq7nm6EH8eFJk9pVvA8rMooFCYL1zbsreXuv3gKqobeSHT8xh5soKvndwHjedPJz4mGivy2ozDc0BfvXiQp4pKuGYoT358zljSU/sPEOW0jmV1zbyw3/P4ZNVXbOvGlsC3PTiIp4qXBexfeXngPoxUACkdeaA+mJTNZc9VEhZbSO3njqSswr6el1Su3DO8dinxfz25cX07ZHEvy4cr9lI0m6Wbqrh0odmU17byK2njeLM8blel9QuWvdVXo8kpkdYX31VQHm6oq6Z5QInAfd5Wce39cGyMs76xyc0B4I8d+VhXTacAMyMaYfm88QVh1DT0MLpf5/Jp6sqvC5LuqAPl5dx5j9m0hwI8uyVh3XZcIKdffXv/zmE6oZmTvv7TD5Zqb7yesn3u4CfA8GveoGZXWFmhWZWWFZW1mGF7asnZ63lkodm06d7Ii9ePZFRuelel9QhDsrvwQtXHUbPtAQuvH8WL81d73VJ0oU8OWstFz8YeX01oX8PXrx6Ir3SErjogVnMmLfB65I85VlAmdkUoNQ5V7S31znnpjvnCpxzBVlZX1oR2DPOOe548wtueH4BEwdl8syVh5LTLdHrsjpU3x5JPHflYYzL68a1T87lH++txOshY+ncWvfV4RHaV7ndQ301Nq8bP3piDve+H7l95eUR1ETgFDNbAzwJHGNmj3lYzz4LBB3/+8IC/vbuSs6b0Jf7LyogtQ3vjtyZpCfF8shlEzh5TA63v/EFv5mxiGAwMptJvp1A0PH/XlwY7qu8iO+rRy+bwJTRvbnt9cjtK88WLHTO3QjcCGBmRwE/dc5d4FU9+6qpJciPn57LK/M3cs3Rg/jJdw/olNdhtKX4mGjuPmcs2Wnx/OvD1dQ2Brj9jFHERHs9giydReu+uuqogfzs+CHqq5ho7jl3HL3TE/jXh6upaWzhj2eMjqi+0oq6+6G+KcBVjxfx7tIybjxhKN//zkCvS/KNqCjjf08cRmpCLHe+vYy6phbuPncccTGR00zyzdQ3BfjB40W8p776ku19lZYQy/+9vYz6pkBE9ZUvAso59x7wnsdl7FVNQzOXPVzI7DWV/P60UZx/cJ7XJfmOmfGjYweTHB/D715ZTN0jhdx7wXgS47rONSvStmoamrnsoUJmF1fyh9NHcd4E9dXuzIwfHjuYxLhobnl1CfWPhvoqIbbr91VkxPC3VNPQzIUPzOLz4i3cfe44hdPXuOzw/tx2+ig+WF7GRQ/OYltji9cliQ/VNDRz0QOz+HztFu45d5zC6WtcfsQA/nD6KN5fVsbFEdJXCqivsb2JFpRU8dfzD+SUMTlel9QpnDshj7vOGUtR8RYueWg2dU1dv5lk323vq/klVfz1/HGcrL7aJ+eF+2r2msjoKwXUXuzaRAcyeWS21yV1KlPH9uHP54ylcE0ll0ZAM8m+qWlo5uIHZ+8Ip8kje3tdUqcydWwf7mrVV/VNAa9LajcKqK9Q29iyWxMpnL6JU8bk8OdzxjJrdSWXPVTYpZtJvt72vpq3bit/OU/h9E2d3LqvHu66IaWA2oPaxhYuemAWc9VEbWLq2D7839lj+HR1BZc/MpuG5q7ZTLJ3u/fVCaPUV9/G9r76ZFUF//NIYZfsKwXUbuqaWrjkwVAT/VVN1GZOG5fLn84cw8yVXbeZ5KvVNwW49MHZ6qs2dtq4XO44cwwfryzvkn2lgGqlsSXA9x8toqh4C3efO1ZN1MbOGJ/L7WeM5sPl5Vzz789pDnzlLRilC2lqCXLlY0XMLq7krnPUV23tzHBffbSi6/WVAiqsJRDkuifn8uHycm47fTRTRmtWUXs4u6AvN08dwX+WlPLTZ+YRiMDbt0SSQNBx/VNzeX9ZGX84bZRm67WTswv6cvMpob76ydNdp698caGu14JBxw3PL+D1hZv41ZThnH1Q110uww8uPDSf2sYW/vjGUpLiYvj9aSMj/rY2XZFzjhufn8+rCzbyy5OGca6uc2pX0w7ND91m7I0vSI7vGn0V8QHlnOPmVxbzbFEJ1x03mMsO7+91SRHhqqMGUdvQwt/fW0lqQgw3njC00zeT7OSc45ZXl/B0YQk/OmYQlx8xwOuSIsIPjhpITUNzl+mriA+oP7+9jIdmruGyw/tz7bGDvS4novzs+CHUNrYw/YNVpMbH8EPt/y7j7neWc/9Hq7n4sHyun3SA1+VElK7UVxEdUP/6YBX3/HcFZxfk8suThnXqTxqdkZnxm5NHUNvQwv+9vYyUhBgumagj2M7u/o9Wc9d/lnPm+FxumjJcfdXBulJfRWxAPTlrLbe+toSTRvXmD6ePVhN5JCrK+OOZo9nW1MJvX15McnwMZxfoHGBn9fTsdfzulcWcMDKb204fRVSU+soLXaWvInIW38vzNnDjCwv4zgFZ/PmcsUSriTwVEx3FPeeN44jBmdzw3HxeW7DR65LkG3h1/kZueH4+RwzO5K5zx0bUukV+1BX6KuL+B737RSnXPzWXg/r14N4LxkfMuip+Fx8TzT+njefAvO5c++Qc3lta6nVJsh/eW1rKdU/N4cC87vxz2njiY7r+UhCdwfa+Ghfuq/eXlXld0n5pk9/OZjZ8D88d1Rbv3ZY+XVXBlY8VMbR3KvddXKB1inwmKS6G+y8+iME9U0MXdq6p9Lok2QezVldy5WNFHNArlQcuOYikuIg9c+BLSXExPBDuq+8/Wtip+qqtDh+eNrNfWEiimf0F+EMbvXebCAYdv5mxiL49knjk0oNJS4j1uiTZg/TEWB65bAI53RK59MHZLFxf5XVJshcL11dx2UOzyemWyMOXTlBf+dSOvkrvXH3VVgF1MNAXmAnMBjYAE9vovdtEVJTx4CUH8dhlB9MjOc7rcmQvMlPieeyyg0lLjOXCB2axorTW65JkD1aU1nDhA7NIS4zl8csPJjMl3uuSZC8yU+J57PLO1VdtFVDNQD2QCCQAq51zvrshVO/0RLLTE7wuQ/ZBTrdEHrv8YKLMuOC+z1hXWed1SdLKuso6LrhvFlFmPH75wfROT/S6JNkHna2v2iqgZhMKqIOAI4DzzOyZNnpviVD9M5N59LIJ1DW1cMH9n1Fa3eB1SQKUVjdwwf2fUd8c4LHLJ5Cfmex1SbIfWvfVtPs/o7TGv33VVgF1mXPuJudcs3Nuo3NuKjCjjd5bItiw3mk8dOkEymoamXb/LLbWNXldUkTbWtfEtPtnUVbTyIOXHMTQ7DSvS5JvYFjvNB68ZAKlNY1Mu8+/fdUmAeWcK9zDc4/u7WfMrK+ZvWtmi81skZld2xa1SNdzYF53/nVhAavLt3HRg7OpbdTS8V7YFl4Nd3X5Nv51YQEH5nX3uiT5Fsb36870aaG+utinfeXlRUAtwE+cc8OBQ4Cr9zRdXQRg4qBM/nr+OBaur+KKLrgwm981NAe44tFCFqyv4i/nj2PioEyvS5I2cPjgTP5y/jgW+LSvPAuo8FDg5+Hva4AlQB+v6hH/++6IbP501mhmrqzgmn/P6VILs/lZcyDID5+Yw8crKrjjzNEcPyLb65KkDR0/Ips7zvRnX/niNgpmlg+MAz7bw99dYWaFZlZYVta5roKWtnfauFx+N3UE/1mymZ89M49gF1mYza+CQcfPn53P24s389tTRnD6gblelyTt4PQDc8MLifqrrzy/5NvMUoDngOucc9W7/71zbjowHaCgoMAfe008Ne3QfKobWrjjzaWkJMTwu6mdf2E2PwoGHb98aSEvzFnPT797ABcdlu91SdKOLjw0nxqf9ZWnAWVmsYTC6XHn3PNe1iKdy9VHD6KmoYV7319JakIsv5g81OuSuhTnHL+esYh/f7aWHxw1kKuPHuR1SdIBrjpqINX1zfzzg1W+6CvPAspC0Xw/sMQ5d6dXdUjn9YvJQ6hpaOYf760kLjpKC+O1ke2rTD/6aTFXHDmAnx8/xPNP0tIxzIwbThhKdUOLL/rKyyOoicA0YIGZzQ0/97/Oude8K0k6EzPjd1NH0tQS5O53lgMopL4l5xy/f20JD368hksn9u/0S4bL/jMzbj11JC0B7/vKs4Byzn0E6H++fCtRUcbtZ4wGQsuMO+D64wbrl+o34Jzj9jeW8q8PV3PRof341RStMh2p/NJXnk+SEPm2tjeTGdyz/ROfQmq/OOf4v7eWce/7K/newXn85pQR2n8RrnVIedVXCijpEqKijNtOb9VMznH9pAP0S3YfOOe49dUl3PfRas6b0NcXs7fEH7z+8KeAki5je0gZxj3/XUFL0PEzneDfq2DQ8auXFvL4Z2u5+LB8bpoynKgo7S/ZafcPfy2BYIf1lQJKupSoKOMPp48iKsr4+3srqapv5uapI4nWL90vaQkE+fmz83l+znp+cNRAzdaTr7Q9pKKjovj7eyupaWjht6eMaPcPMwoo6XKioozfnzaS9MRY7n0/FFJ3nj2WuBhf3DjFF5paglz31BxeW7CJn0w6gGuOGaRwkr3a3ldpCTH884NV1DQ0c8dZY4iNbr++UkBJl7T9eo5uSbHc9voXoYt6LxhPYly016V5rqahmSsfK+LjFRX88qRhXH7EAK9Lkk5ie1+lJcZyx5tLqW1s4a/nH0hCbPv0lT5SSpd25XcGctvpo/hweRkX3P8ZW7b5c92bjrK5uoGz7v2Ez1ZV8qezxiicZL+ZGVcfPYjfnTqSd74o5dX5G9tvW851ntvbFRQUuMLCLy09JfK1XluwkeuemktOegIPXHwQA7JSvC6pwy3fXMPFD85ma10T/7hgPEcekOV1SdLJLVxfxYictG89PGxmRc65gt2f1xGURIQTR/Xmif85mOqGFk77+0w+XVXhdUkdaubKcs74x0yaAkGe+v6hCidpEyP7pLfruUsFlESM8f168OJVE8lMiWPa/Z/xbFGJ1yW1O+ccD328mmn3z6JnWgLP/+AwRvZJ97oskX2igJKIkpeRxPNXTWRC/x789Jl5/PblRTS1+GeBtrbU2BLgF8/N5zcvL+boIVm8cNVh9O2R5HVZIvtMASURJz0xlocumcClE/vz4MdrOHf6J2ysqve6rDa1YWs9503/lKcLS/jRMYOYPq2A1IRYr8sS2S8KKIlIsdFR3HTycP56/jiWbqphyj0f8dHycq/LahNvLtrECXd/yLLNtfz9ewfy4+8O0d0hpFNSQElEmzI6h5euOZweyXFMe+AzbnllMQ3NAa/L+kYamgPc9NJCvv9oEXk9knjlh4dz4qjeXpcl8o0poCTiDeqZwkvXTOR7B+dx30erOfkvH7FwfZXXZe2XouJKTrrnQx75pJjLD+/Pcz84jPzMZK/LEvlWFFAiQFJcDLecOoqHL51AdUMzp/7tY25/4wvqmlq8Lm2v6ppauPnlxZx57yc0NAd55NIJ/HLKcN3WSboEXagrsputdU387pUlPPd5CX26JfKrKcM5fkQvX92rzjnHS3M3cNvrX7CpuoELD+3HzycPJSVedy+TzuerLtRVQIl8hVmrK/nViwtZurmGQwb04GfHD2V8v+5el0VRcSW3vrqEz9duZVSfdH598nAK8nt4XZbIN6aAEvkGmgNBHv+0mL++u4Ly2iaOHdqTa44ZxLi8jg+qz1ZVcM9/l/PxigoyU+L5+eQhnHlgrmboSaengBL5FuqaWnjw4zX88/2VVDe0MC6vG5dO7M/kkdntutxAQ3OA1xZs5LFPi/l87VYyU+L5/pED+N4heSTFaThPugZfBpSZTQbuBqKB+5xzt+3t9Qoo8VptYwvPFq7jwZlrKK6oo3tSLCeO6s3UsX04MK8bMW0QVs2BIJ+uquD1hZt4bcFGttY1MyAzmQsP7ce5E/LabWkDEa/4LqDMLBpYBkwCSoDZwHnOucVf9TMKKPGLYNDx3rJSXpizgbcXb6KhOUhqQgyHDczgsIGZjMhJY2jvtH2atFBV38yK0hrmrN3KZ6srmbW6kqr6ZpLiojlmaE/On5DHoQMzfDVJQ6QtfVVAeTlGMAFY4ZxbBWBmTwJTga8MKBG/iIoyjhnai2OG9mJbYwvvLi3lw2XlfLSinDcXbd7xup6p8fRKSyArNZ7E2GiiogznHFX1zVTVN7NhawPltY07Xp+fkcTxI3px7LBefOeALB0tSUTzMqD6AOtaPS4BDt79RWZ2BXAFQF5eXsdUJrIfkuNjmDI6hymjc3DOsbGqgSUbq1m8oZp1W+oorWlkU1UDjS0BguEBi7TEWHokxzGkVyqDeqYwMCuFkX3SyU5P8PYfI+Ijvj/L6pybDkyH0BCfx+WI7JWZkdMtkZxuiRw7rJfX5Yh0al5ebr4e6NvqcW74OREREU8DajYw2Mz6m1kccC4ww8N6RETER7yeZn4icBehaeYPOOdu/ZrXlwHF33KzmUDXWFehbWh/7Er7Y1faH7vS/viyttgn/ZxzWbs/2aku1G0LZla4p+mMkUr7Y1faH7vS/tiV9seXtec+0S2PRUTElxRQIiLiS5EYUNO9LsBntD92pf2xK+2PXWl/fFm77ZOIOwclIiKdQyQeQYmISCeggBIREV+KmIAys8lmttTMVpjZDV7X4zUz62tm75rZYjNbZGbXel2TH5hZtJnNMbNXvK7Fa2bWzcyeNbMvzGyJmR3qdU1eMrPrw72y0MyeMLOIunGimT1gZqVmtrDVcz3M7G0zWx7+2qYreUZEQIWX9vgbcAIwHDjPzIZ7W5XnWoCfOOeGA4cAV2ufAHAtsMTrInzibuAN59xQYAwRvF/MrA/wI6DAOTeS0M0FzvW2qg73EDB5t+duAN5xzg0G3gk/bjMREVC0WtrDOdcEbF/aI2I55zY65z4Pf19D6JdPH2+r8paZ5QInAfd5XYvXzCwdOBK4H8A51+Sc2+ppUd6LARLNLAZIAjZ4XE+Hcs59AFTu9vRU4OHw9w8Dp7blNiMloPa0tEdE/zJuzczygXHAZx6X4rW7gJ8DQY/r8IP+QBnwYHjI8z4zS/a6KK8459YDfwLWAhuBKufcW95W5Qu9nHMbw99vAtr0Fv6RElDyFcwsBXgOuM45V+11PV4xsylAqXOuyOtafCIGOBD4h3NuHLCNNh6+6UzC51amEgruHCDZzC7wtip/caFrltr0uqVICSgt7bEHZhZLKJwed84973U9HpsInGJmawgNAR9jZo95W5KnSoAS59z2o+pnCQVWpDoOWO2cK3PONQPPA4d5XJMfbDaz3gDhr6Vt+eaRElBa2mM3ZmaEzi8scc7d6XU9XnPO3eicy3XO5RP6//Ff51zEfkJ2zm0C1pnZkPBTxwKLPSzJa2uBQ8wsKdw7xxLBk0ZamQFcFP7+IuCltnxz36+o2xaccy1mdg3wJjuX9ljkcVlemwhMAxaY2dzwc//rnHvNu5LEZ34IPB7+ULcKuMTjejzjnPvMzJ4FPic0A3YOEXbbIzN7AjgKyDSzEuDXwG3A02Z2GaGlkM5u023qVkciIuJHkTLEJyIinYwCSkREfEkBJSIivqSAEhERX1JAiYiILymgRETElxRQIiLiSwooER8xs/zw2kv/Cq899JaZJXpdl4gXFFAi/jMY+JtzbgSwFTjD23JEvKGAEvGf1c65ueHvi4B870oR8Y4CSsR/Glt9HyBC7pkpsjsFlIiI+JICSkREfEl3MxcREV/SEZSIiPiSAkpERHxJASUiIr6kgBIREV9SQImIiC8poERExJcUUCIi4kv/H6+deb0C0I6SAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "def plot_trfs():\n", + " bounds = [0, 5]\n", + "\n", + " f, axarr = plt.subplots(2, 1)\n", + "\n", + " x = jnp.linspace(bounds[0], bounds[1], 1001)\n", + " n = jax.vmap(to_inf, in_axes=(0, None))(x, bounds)\n", + " ax = axarr[0]\n", + " ax.plot(x, n)\n", + " ax.set_xlabel('x')\n", + " ax.set_ylabel('n')\n", + " ax.set_title(r'$x \\to n$')\n", + "\n", + " n = jnp.linspace(0, 10, 1001)\n", + " x = jax.vmap(to_bounded, in_axes=(0, None))(n, bounds)\n", + "\n", + " ax = axarr[1]\n", + " ax.plot(n, x)\n", + " ax.set_xlabel('n')\n", + " ax.set_ylabel('x')\n", + " ax.set_title(r'$n \\to x$')\n", + " f.set_tight_layout(True)\n", + "\n", + "\n", + "plot_trfs()" + ] + }, + { + "cell_type": "code", + "execution_count": 161, + "metadata": {}, + "outputs": [], + "source": [ + "def func(external_pars):\n", + " x, y = external_pars\n", + " # a,b = 2*x+y,x-y\n", + " a, b = x, y\n", + " ca, cb = 1, 1\n", + " z = (a - ca) ** 2 + (b - cb) ** 2\n", + " return z\n", + "\n", + "\n", + "def internal_func(internal_pars, bounds):\n", + " external_pars = jax.vmap(to_bounded)(internal_pars, bounds)\n", + " return func(external_pars)\n", + "\n", + "\n", + "bounds = jnp.array([[-5, 5], [-5, 5]])\n", + "\n", + "\n", + "def plot_func(ax, func, slices, bounds=None):\n", + " grid = x, y = np.mgrid[slices[0], slices[1]]\n", + " X = jnp.swapaxes(grid, 0, -1).reshape(-1, 2)\n", + "\n", + " if bounds is not None:\n", + " Z = jax.vmap(func, in_axes=(0, None))(X, bounds)\n", + " else:\n", + " Z = jax.vmap(func)(X)\n", + " z = jnp.swapaxes(Z.reshape(101, 101), 0, -1)\n", + " ax.contourf(x, y, z, levels=100)\n", + " ax.contour(x, y, z, levels=10, colors='w')\n", + " ax.set_xlabel(r'$n_1$')\n", + " ax.set_xlabel(r'$n_2$')\n", + " if bounds is not None:\n", + " rect = patches.Rectangle(\n", + " [-np.pi / 2, -np.pi / 2], np.pi, np.pi, alpha=0.2, facecolor='k'\n", + " )\n", + " ax.add_patch(rect)\n", + "\n", + "\n", + "def angle_and_lam(M):\n", + " lam, bases = jnp.linalg.eig(M)\n", + " first = bases[:, 0]\n", + " sign = jnp.sign(first[2])\n", + " angle = jnp.arccos(first[0]) * 180 / np.pi\n", + " return lam, sign * angle\n", + "\n", + "\n", + "def draw_covariances(ax, func, slices, bounds=None, scale=1):\n", + " grid = x, y = np.mgrid[slices[0], slices[1]]\n", + " X = np.swapaxes(grid, 0, -1).reshape(-1, 2)\n", + "\n", + " if bounds is not None:\n", + " covariance = lambda X, bounds: jnp.linalg.inv(jax.hessian(func)(X, bounds))\n", + " args = (X, bounds)\n", + " axes = (0, None)\n", + " else:\n", + " covariance = lambda X: jnp.linalg.inv(jax.hessian(func)(X))\n", + " args = (X,)\n", + " axes = (0,)\n", + " lams, angles = jax.vmap(angle_and_lam)(jax.vmap(covariance, in_axes=axes)(*args))\n", + " for i, (lam, angle) in enumerate(zip(lams, angles)):\n", + " e = patches.Ellipse(\n", + " X[i],\n", + " np.sqrt(lam[0]) * scale,\n", + " np.sqrt(lam[1]) * scale,\n", + " angle,\n", + " alpha=0.5,\n", + " facecolor='none',\n", + " edgecolor='k',\n", + " )\n", + " ax.add_patch(e)\n", + " ax.set_xlim(slices[0].start, slices[0].stop)\n", + " ax.set_ylim(slices[0].start, slices[0].stop)" + ] + }, + { + "cell_type": "code", + "execution_count": 162, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n 2020-12-22T12:07:03.840843\n image/svg+xml\n \n \n Matplotlib v3.3.0, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddbgd1dX/PyNnjst1TXLjSoIEC+4UpxQp8lKlLRXaUqMt7Vuq1KECpRTa0tICxYq7awLE3XNz3Y7L2O+Pc+XIHLs3IXmfH9/nuU9OZtbee505e76zZu211xJM0+QDfIAP8AE+wPsPcV8r8AE+wAf4AP+/4gMC/gAf4AN8gH2EDwj4A3yAD/AB9hE+IOAP8AE+wAfYR/iAgD/AB/gAH2AfQd4XgyoBp+lq9AJgmgIABsLw/9MyDkmhQfGzc6AbwyGlz+XIZGK0n1gSRAHBrmScFYaFxo54bAqNLi/bQ0Nohp53PreNaegYsTiSx2Mhm9Eq47ihqpiahuR0IgkiU6ur6I/FGIzFMxTPG9HyXO54WiSE7PFZnrPqxzR09GQc2ekZPexUbLTU+hmMxOkPRov3YTHOqC6JCJLiRBClsfaFgmuGj6fiQRSnv4BQ+WNnQjBNNDWBIEpIkq3srtVkFNnmRBDz7RFRFLDJEjabjE2WkG0iNklCkkVkSUQa/isFwzARRcurmgdNN9CH/zTNQNN0VE1H03RSqo6q6lQavWQYOrqWxKa4LM+bQr5uhpbENE0kmyN9oDz1rZHR1jRN1EQExenFLLNPQ9cwtBSyY0x/qyvQVO3Fabexuy9EUtNK6gKgxsLp+0IQSn9HIa2/Hosge7xZp6zoYwTJjvY+0zTrcrvbJwTsavRyzJ8vJmWkb9iUnv5XHf6/U7Jzx2HXYDMEzvrj1xAWNo2e0/Wxya4Nf9aN9L+mIRBbvRUAx9wZABj62JUwhz+3uat56Kwr6IpF+PAj/ySqphAy5DAyPg8f1/sGiG/YhPfIw7NkBZ2MzxnHDUh1d5Hs7GDK4Ufxt0svoK26is/d8zCvb9uZ1za/L+vPAGZKpX/Zi9QdcYrledHI71dLRBlcv4y6A49DNgU+9aHD+dTph9M7FOH6O5/k3U27s9vk9CHq+dN9ZNyutS9TO30xst01LJsnOiw/1sfuNc/SNOc4RMmGWOA+GdOlNNmM9N3b/h5uXzMuX4OlnJVunTvfonXKAcyfO5NpbfW0Ta5hSms1k1trqK3xZMkmUxq9fWH6BiIMDkQZGooRDMUJRxJEo0kisSSJhEoyqdLbsx1N0/F4W9CNtPkgigKiKGKzSSiKjMMu43DYcLvteNwOZDFMTU019fX1VFW7qavxUFvtxWaTsvTo6gmys32AHbv62bGrn83betm2o49EUs37foYEsVA30VAHda0HFb2OpjQ2h8MDu0glQtQ0z8+WKfIgMYowykjfWjJG77ZlNM05dlS/fNns/6cigwR3r6dm3pIcXbLlTjxoBt+5/GScio1fP/AS9728Mq+vzP+bpkn3O89Re/BxiLLNcuzMMUwJTF2j/80XqFlyEshi1rlC42z83ld35H/LfUTAwCj5WuGaWefS7Krm8ju+T8wBioVsLvmOQA54SGztBqzJ1yvZuf2kCzBMk089/QBRNZXdsQX5AmjBMJLXWzb5AkgeL1WCyF2XfYRJVX4+8++HeHP7rry2+X1Zfx7pW42Gkd3evPNWxDsCye7ETKk0uh389FPncNCMFh59ay0/v/sFIomxa5BLvFCcfA1NxdBVJMVRFvGOwObwokXCONzV1m0qIN1MpJJhAo5syyRXL7tdZs7MRubObGLOrEZmTL2SSS31o+cj0SQ7dvWz9J1ttHcM0tE5REfXEF3dQYLBOOWiu2M1Hl8zbo+j7DahYJr0ahvGSE8QoCrgprHBT3NTgOamAJNaqpg8uYazTluI05F+2zMMk10dA2zY1MX6TV2s29jJxi3daJqBGg9jt3kRdWvCGx0r45oqDi/R4O58mYzfJpeMMx+muWQ80ncqHsLmGHuwjfw+mXqNzK8REpOdXtREFEHVMTMeRiPzdYQkn39vMyu3dPL9j53Cty85iSVz2/jBP55mKJoY7Suzbz0RRZJsyKKNkakv6NnkKRhj/Qs6CMiIih09HkN2ebL6NXO+Qy4p52KfEfAIcq3fY2oXclbLYv6y+XleW/omVcfMHZUdsX41Pf+VzxwmTtEfQOvfiGkYwLDrYpgcRUHgpmPPYYovwGVP3MuuSBDIIM8C5CsYoA8OYqsdu0lLkS9AbaCav/7kB0wK+PnMvx7irR3teW3z+7L+nNm3GhzA5vKXTb7p8yJnnXYSv/jGx5AkkW/f/jhPLt1g2f9omyLEO4JkdAC7w4dk5P8mVgQJ6ZvUbveTjA7kEXAp4i3UJ4CWimEaBorozNLT6bCxcH4rBx0wmYXzW5k1vWHUouzsHmLNmu3c/8ALdPVKbNnWQ29fpKgO5cA0dJKJIDX1c0sLZ8Bu9xMa3IlpmgjCmMttYDDKwGCUtes7suQFARrq/cyYVsf0qfXMnNnAwQuncOoJaQJPJlXWbuzk9dffZtX6frbsiJJSs3/EQoSs2DxoiShGKoWoKJYyI7+XlVU8Qsa5RJwK92O357ufrB4OI7+jKMnIipNULIjdUzWsd/Z9N0KSfaEoX/rdQ3z0xIP40vlH8+9vX851dzzBe1t25xFkKjSIzRNIj2GAkUG0MEagmf0D2DwB1KEBZJcni2grJeF9QsAj/tpc8q1RvHxz3vmsDe7i9y//B0GWwJ/2c1qRb6brYQSiy4EU8JLc0YMyuWmUfAG+vPAYTpw0ne+89jRvdY1YohavUzmEasTjaP0DuOcfMNxmTLQQ+fpkO3dcegHTaqu58te/Z3kKi7bZw5ZDvqZhkOhqxz/n4LHvXIJ8babINRcczeUnHcKK9Vv47l0vsbsvaKn3aJ9lkC9ArGcXrqqWHLnCxDsCd6CZvp3v4aubhiCIRYm3GOmO6QuRgXY83mZEUWDmtAYOP2Qqhx08lXmzm5BliZSqsX5TF/c+sJRVa9pZt7GTYDCOYWi0b3+V5slHIMvlW6vFdIuGu7HbPNgEO5Sh/wjssgcRkUR8AKerpqS8aUJXd5Cu7iCvvrF59HhtjYe5s5tYuGASC+Y38dlPnY8kSSSTKqvW7ubt97bz5rKt7NjVn/WGkEmAoijh9NQTHdqNr6ZtbEwp/54pl4gNXSMW7KJh+pGj1y6zPytrGNJzz1XdTKxv1ygBi7qZR8JpHdLX5e7n3uOdje3ceNWZ3Pblj/D7/77G355ZNkqIpmkS79qFZ8rMsfEzSHhkXCsSdtS3ENm2HkfTJARBKEnChbDPLeBMfHPuhTglhevfu4/BlTtwzE5/Od3C4rUiX2NYTpk2mfjqTdha6hn5iqe0zORLi5Zwz8aV/GP9ciCHfEf6sSDUxOatKE0tCLJcFvm6RRt/vuQ8ZtXX8rm77uP5557Hf+gSZJsjo2329yloBeeQY6KzHcnhxuZOP5gyydeqz/qAhxs/eSYHTm/m7uff5dvf/zGeyfNRhifxeKzetBwko4NoyQguf8OwXGniHYHi8CErLqL97XirJ1m2K0W8mcQhonL4Qa2ce+45LDl8FjVVbgA2bE4T7jvv7WDV2t2kUvnKiKKMx9tEcGBbnsVaDvnnwjB0gkPbqaqeUXFbQRDw+ScR7NuCszmAIFgv8FmRYCb6+iO88vomXn5tI71dK6mqrufYY4/mkAOncMjBbVz9ieO5+hPH09kd5I2lW3jljU2sWNMO+tiEMCTwVk2id/dy3IGW0YVNK+Ic1b8EEYd7tuNw1yArzrE2upnXlxURuwOtdHe9ghoPY3N6h+XMYTlra3jDrl4u+/HdfO/KU/jy+cdw4LRmvvf3pwilkiSHesDQsXtqs8cug4Rt/vSbm9rTjdLQmC9XhvsB9qUPOMf6PbPpcJbUzeEXax9hzbL3EEQBx9TshZRCfl8YI19DF5Aba5B2dBBftRXnAbOY4q7iV8ecxYq+Tq5//RmgfPJVe3rRevrxHpXt/C9EvnYkbrnwHBY2N/Ll+x/j1V2dOFonE127Gt/CQ0afltl9FficQ456NEp012aq5h8GlCbfg6a38MurzsJuk/nWnx/j6WUbcTXPZGjbKurmLEGUsn/+XPItRLyQtmQGd60i0DwXQZQsiarQ4trITVrdMIfuHUtxeGpGV+crIV2bLHH44qmceMwcjjikDbfbSTiS4O13t/HW21tZ+s42BodiRfsbQcA/lY72N4k7a3G5aks3KIKhwS3YbC6c4+zH420iEu4kFNyJP9BmKVPoOuUSWTTciarGkG31vPHWFt54awsA9XVeDl88jcMPm8YZpxzAh886mGAozqtvbuL5V9bz3sqdoJs4FT8eVz2D3eupaVow6hbJ1SF3XCsiTsWDRAZ30TDtSEQt2zVRiNQz3RKibMPXlJ6/tXOOyIpasbKGR0g4mkjxzT89xnsn7OYrFx7LP755KV/+w394650X8M86MP2dclwOpUgYUcA7fR7B9cup9lUhOO35cmWQsLAvkvF4Zzeai2+5bJR8G+wB/n7kV1kX2s3H772RoWVbCJxyMJLHUZbrwcg4N7LwpsdUIi+8TWDeLB67+ls0uryc+fDf2B0JlYx4GCE+LRgk+vZ7uA9chK262tL6zSRJyRD47flncvrcmXzjoSd5eNW69AnVILRiKZLHi2fq3JxJjPXnHPI14gmG1izF2TQFT/3krHNW5PuRYxbyjYuOZ3dfkGv/+AjbugZGz4e2r0FLxqiefjCCKFVk9ULawuvf/h6y4qK6Kd/HWYp4MxEe2EV4cAcNLYdkvSEUGlsQYOH8Vk47YT7HLpmF1+NgYDDM08++ybLlAyxfuQtNs/Cp5H2/fF3i8QF6u1fR0HgQdoevZB95OmoGoVA7weAOmpsPRZKs/aaFYGSsqKtqnM7dS6mpnY3bYx3RUQrx+AA9PatobDkExe4tKGe3yxx6yFSOPXoWRx0+A7fLzsBglBdeXc+Tz61h/aYOuna+jctTj7d+Wtb8zUUhyzylxujdsYxAw2xc/sbR44WiJqz6MaS022Bg+3IEQaRq8gFgE3Nk8ttl+m4XTmviF589C5ci87Xf/o03d8WKRi/k2nq5spH2zaQGevDPX4zgUArKrf/RV98xTXNxrm77BQH/8sBPsTAwhbPvuI6NS1fgO24htipPyZCzEWRavzC26KZHYvxk7tFcccKp/M8T9/BSRzoSpNiim2AMxyl2dhFfswHX/HkoDQ0lXQ+CDj/40El89OCF/OTpF/nbW++NHod0tEBo5TtINgeemfMQbUrZ5KsODhDavApnw2S8TVOzzuX5exH55kUn8JFjFvLK6q185/YnicSTWX2bpkFwx2q0RIzqSQuQHe6ifWZanWoyyuCuVdhsLqpa5ue9IldCvumxTIL924gMtVPTtACHq8py3IY6Hx86eQGnnzSfpoYA0ViSl15bz4MPPMFrb7xLbf0ixCKxv+W6EqLRHvp711FdkyY+QRAQyyB0w9AZGtpKNNpDY+NB2GzW8baVIJkM0929HJ+vFb9/CoIgZpF0IZimSTi0m6HBLdQ1HIDTObbQWcp1odgkDj90GiedMI8jD5uOXZHZuqOXJ55Zwd/v+ifRmElV3WxESS4aTZE5TjzSy0DnWvy103HXWLubKiFiXdAZ2L4C0zQITJqP5HTmyeQS8QgJq7EQjvBubv/5dSyaNZVbHn2DPz/xZkmizTyfG8YW2bmR1GAv3lkLkf0+S7n9joAX/eF/ADi94VC+e8CFXH/vH/jn20/iP3wmpitNCLnWb6brIdf6tQo5O7dtPjcdeza/fuIhfnTXndjnTEepb0i/uliQr2maGP1DJLZsw4wncS2Yj+z3lyRfgC8ceTjXHLeEP732Nr9+/rVh2ZwvntKJbt9EsqcTd+s07PUtiLl+5Yw+tViEePt2UkN9eKfOxRnItoRy+/cpdn551VkcNnsydz65lD889BpGxu+b2Xd6AWIH4e4tuGsn465tRRbzLdAREtTVBJH+dqL9O/HVTsNTMznLEhoP8WYiFu5hoHsdTnctgUAbNsWNKAocdvBUzj3jQI44ZBoA76zYwZNPreCJJ1+iu2sDbk8jgZoZiKJUtP9yIWoGyWSI3r61yJKDQKANu91f0OozTYNorJfBwS0oioea6tnIsn1cY1tBVeP09a/H0FMEqqbhctZY+oUNWcQ0TRLxAYYGt2GaBrX181AUj0WvGfoXIWSP284Jx87htFMWsGBuC6qq88zzS/n7Px9i0/YELm8joigVJOJUIkRwaAepeJDqpnk43GOLioViia2I2JKERYNw9zaifTvw1LXhqmlFtGe/cWSSsJaME+3bQXygA2/LbPwNk/ju/5zC2UfM48ml6/n+XU+TNLNvqHJJGCDet5vItg046ppwtE5Bcrqy5PYrAna11Zozrz0df0rhkc/exPqu7Xzq6d9hn1KDZqZ/gUpcD4U2Wzx6zpWs6e/ho4//m0RnD6nNO9FDEWx1NUg+H6LTCYaIkUqhh0LofYNgmiiTJ+FonYwgimWR74fnzePGc07jgRVruO6/T2fIY/lZGxoaJtZ+FG81sseP7HQhmAKmrqFFw6iRIYxYHEd9C67mqchitnWX23dLjZ+bP38uk2oD3HDXMzz25jpLXSHb16sl40S6t5IY7Mbm9KG4/MgODxISpqGjJiKkYkHUeAiXtx5v3bSsBZSJEm8WUirBwe2gDXLRR87gysvOZFJrPX39IR5+5C3+8+CL7NixnUR8AIezGn/V1CxXQaWkW8yyNc20OyEUbkdAwOGoQrF7kYZ/B01LkEyFiMcHUGwe/P7Jlr7jcn21xWCaJtFoN6HQLjQtidNZjaJ4R4le11OkUmHiiUEEQcTnm4TX04Rpq2yJp5hOkydVc84ZB3LayQvwehys37iDO/76AE+/sApEJ7LNiSkJGLpKKhkmGR/C0FN4/K14qycj2KzfTqyIuFxr2JBATUSI9GwjEexBcVche3zpGGNBwDR0UqkoanQINR7BWd2Ep3Eaon3sAXnlaYu55sPHsHxLB1+59WEGE4mcMXN0K0LCupYktnsbiZ4OJI8HmzeA5PYgSBJbb7tx/yFgR1PAnPb5k/jtJd/iuKkHcumrN7Mz1l/2bjew9vuOkK8iStx/+hW0evx86KG/0hkNj5KnHo2h9w2hB0MY8SQYINhsSB4vcsCPFPAjDo9VDvkumTSJ2y85n7d3tHPVvx5CMwyLttafzXiSVLAfLRLGiMfANBEkCcnlTZOhrxpBFIuGmQk6LGhr5KbPnYskilx7y3+zdrWVinIYdZHoGslwP2oijB6LYho6gigh290oTi8OZ3X+op0F+Y6HeEes7LpaLxeecwhnnbYQt8vO8pVb+Ps/HufZ595G0w1kmxPF7sXprEaS7SX7zRunDFdCLkzTJJkMkkyGSKUiGFoKEJBlO3bFi8Me2CPuhpJ6DJNPKhUhkRgilYqg60lMQJIU7IoHu92PongLWuvluC9yx8uF3S5z0nFzueC8xUyfWsfAYJh/3fc8//j34wwNhRFFGdnpRXH6sDvzozgK9VsuERfyDRuaSjLSjxoPoaoxTNNAECVsDg82pw9boCZrq3ymX/jkg2fyw0+cTvdghC/+4UF29g5luxkqIGFTTMeAp4bSuuixKKau0/Hff+w/BOyZ1Wh+7p4b+cVBV/KHDU/x160vAeQR8Hj8vgDfPvhErlpwGJ985gGe3ZmOjSzl9x2B1U63QuQ7o6qae668mM5QhEv/eg+RZCqrXdmfixBsKfI9en4bP//0WfQF08HnO7oHC/ZbSZTDmEzl0Q2l2ueO1dIU4LKPHM6pJ8xHEAVefHU99z2wjA0buwq2LSs2eByEW27f+xMqsaZHUC4ZF+v7oEWTufDDi1ly2AziiRSPPLmSex5cSt9AeiNLuT7i0WMTcEuUs525kF8Y0otzv7n6HAC+8MeHWLuje0IknHtu3U/3IxeEb3aTuXH5OqJ6gste/T26aRQkX6jM9XBk/RT+dfpHuWv9u3z3tWeB4uQLmQtpxbcZZxJateLgPx+/FIdN5sK//IvOUNiiXRmfyyRfq0iHMw+by/9ecSqbdvfyxZsfYiA8FnJVKflabSMul3wrtXoziffKS5Zw8nFz0TSdx55ayb33L6WrJ1RRf9n6VUa6/9fIthzsLUIu1G/b5Bo+evERnHTcXHTd4NGnVvDP/7xF/0A6wVMhIt5b1nC2TO75wiQ8qT7AH6/5MFUeJ1+97RHeWr9zj5HwfkXA0w6YbW5dtYFPvnErK4d27jHXg0928OS5nyCuqZzx4N9I6FrZ8b6VkK9iitx56QUsbG7k8r/fy6qObot2ZXyeAPleesJBfP3C43lr/U6+dssjRIvkc9gT5Lsnibex3sfHLj2KU4+fh6rpPPzoe/z7P28XjNktGRtcAenuScLd2+Q9HiKdaD8TIeKmRj+XffRITj9pAbpu8N8nlvOP+95iKJj+XSsh4nKt4T1NwrV+N7//0vlMbazm23c+wbPvbdojJLz25/sRAR+yeLH5vYf+yI9WPQTsOdfDTUefwxltszn/kX+yqi/9+lqp66GScLNrH3ycR1dvsGhXxucJkO+nP3Q4V5+9hGff3cR3/vIEqqZb9rk3XQ6VuBtGxvB5HVxx0ZGcd+aBmIbJQ48u59//eWuvE+9EiHJ/tZAnQs7lti1FxsWI+PJhIk4mNf71wNvc+9Cy0UxtEyXi8bgkrDZEZBJxJll6nHZ++4VzWTStiRv+8Qz/fXPtuEh4vyXgAw85yKy98cME1fgecz18aNIcbjnhPH71zqvcvPx1YO/4fS9ZeAA/PONkbnttKb96/tWsNmV/ngD5fvHco/jEaYfxyJtrueFvT6MPE+H75XKoxOodGUOWRT585sH8zyVH4nIqPPncav5616uWSW/2Fenur0RbCcZDynuCjAv1Mamlmk9+/BiOP2o2ff0R/nzXyzz1/JrRfN7Wftu9R8JpmZx+CljDDpvML68+myXz2vjJv57jvldWToiE9ysC9sxqNufe9LFR8oXS1m8x10ON4ubp8z7J7kiQ8//7TzTTmJDroRD5HtTYxD+uuJA3t+/kM/96eDTGdqzdmGw5iXVyz5Ui32svOJbLTzqE/7yykp/+87nRibwvXQ6lrN4jD53G1Z84gcmt1bz1zlZuue0Ftu/sL7ufMX3Gt7ttT8hWCkGvzA9tlpHQfbyoKNytDNnxWMXz5zZz9VUnMn9OM+s3dfK7P7/A6nXpSJ09bQ3vSZeETZb4+WfO5LiF0/nFfS9y9wvvjdsdseaX+xEBu2c2mfNu/nhJ1wMUtn4zXQ+/P+Y8Tpk8gzMf+hubhvr3it+31uHioU9eRlLTuOD2uwklkhbtyvg8QfK9+7n3+OW9L1r2B5WT7552OWT6ea/5zEksOWwGO9r7+cOfnuftZdvK6iNbl+Jk9n6SbqXEuqcxUaLek2RcqUUsCHDy8fP49CeOo77WyxPPreaWO14kGErnV36/reFySViWRH7yqTM4+eCZEyLhQgS8z5LxWC285aKY62EEp7XO4qypc/jFspfZNJRjWRkWE8HiHirk9x2BZAj8+twP4Xc4uOjOf+1V8rXS7UvnpVNJ3v3C+0++lVq9kiRy0XmL+dhHl2AYJn/88wvc//A76BbkVTREbQ8Q73gJd18TbSEU0qtcYi6WPKeQbCG5kd/Hioit2pomPPPCWl55fROXX3IEF19wGEsOnc6tf32JJ55dVSAXcH4/Vkl+chP7jLTNTXOZm/A9kyALJfPRdINv//lxhKvO4OsXHo+mG9z78oqCCXdycwqXSsaz9959KkSxhbdcZEY9/PCIU1k70M2tK98GrAm0lN/X6ljWNuNjjuDIqZO54Ynn2dDdNyyb2a6Mz2WSb277q886ko+feij3vryCX/77Rcv+YOLkK2rjJ19RT//NntHAbb+5gs9+7DiWvrudj33mL9z7wNI88hV0szCJa0ZB8h1pV4xYy5HJb2Nk/f1fw3j0L/c6lZIr5/fKRCKpcvvfXuFTX/gr23f28c0vnc5vfnwxLU2B0Xlk1U/eMaOM+Zs7xy3eLLPP59xDI0m5DIPr/vw4L63cwnWXnMj5Ry0o6mIs9jabi31CwCPFNYtVuBhBMdfDdYtPoNrh4usvP1mW33cElfh9j5o8mauPPpz7V6zh/hVrstqU/Xmc5HvlKYv59BlH8OBrq7jx7uct+4M9Q765yJ3ghW5CUU/7yj79P8dwyy8vJ+Bz8d0bHuD6Gx6kpzdcVh9pHSq7kccjMya75whX0Iy98jchnSr8fpWSsRUq/f127Oznmq//i1/89klmTK3nzt99jIvOXZyumTdOEk7rUbzduElYN/jGnx7j1dXb+O5HT+b0xbOLknCxMTKxXyVkL7bwlovFta18dNYi/rTybVb3d2efHIfrwUquxu7kF+eczpa+AW54/Pl82QmQb6m+zlsyny+ffwxPLdvAj+/acwtupci3Ul/v9LY6vnvtmUxrq+Oxp1dyy20vEIkmS7YfG78wQZRDCOVgT5Ds+41iY5oVbCmG7O9fyl1RjpuimHuiUtfEY0+t5M2lW/nql07l8586gaOPmMFPfvP46GacbLeBtUvCqi5dbq7hPeGOUDWdr9/6CL/70vnccOVphGIJXl+7w9IdkZtPuBD2ySKcrdZn1l1wFHKVF7E6gH1KPWZGBqlSC2+yIPLYWR/HbVM4+f47iGtqUet3tFSJpqHu7kYbGEQfCmEmE5gmiJINyetD9vtxNDQjOtIFJm+7+DyOaJvER/5yNxt70v7lUqRbbriZoBkkh3pJDfWhRULoiRimaSIKMmeecjy3fO8a3li7la/e8hja8A1UCflWEulgmibJ2CCJYDepRBg1FQXTAEFEkV0oDh9Ob/3w3v60hSKKAhedu5hPXnE04XCCn//2Sd5aurXkmGNjFyYYNR4mEu0mmQqTUiOYhg6CgE12Yle8uJQqXM7agtUi0uOOcxtyjl6qliAS7yahhkipEXRDQwAkyY7d5sVpD+Bx1CGKe9+W0Q2VSLyHRCpIUg2j6+nNN6JoQ3H4cCg+vK7GsvMQl+s7towsMHVisV7i8QGSWgRNS2BiIooyiuLBrvjweBqRnNbZ2Kz6PPWk+XzpcycjCHDTn57jqefTb5ylFuhM0yQR7Sce7SOVCKVrA5oGyBI2uxub04/L14Dsyc5qN96FOY9D4U/XfoS2xmo+d/P9rNjaOdrWNE3URIhEfxdaLIQaT8/f7tce33+iIFwzmszJ11+KNhghvnsQtWsAubUR1wHTEGzDFV6LxPx+Zt7hXLf4BD7x9P08t2sLkOFCsHI9pDQSm7aQ2tWBXFWFra4O2eNDdDgQDAEzlUILh9H7B0j1dCEHqvn85Zdz/Zmn8oPHn+Pud1YOjzHW5XitX9M0SHTsJNa5HcnuwhFowOb2ITlciIbIgdOauO2rl7B26y4u/Ny3UA0Rb+ts7K5A1jWshHwLLbaZpkk83E2wZzOCCS5/E3anH1lxI4oSpqqhpaIkEyGiwU4EwyRQO4NJk6dx/bVncvCiKbz0+kZ+fdNTo6vZxcZMj1uYGJOxIQYGN6FqCbzuxuHkMp40uZkmWjJKMhUmEutB0+L4vZPxe1uziLgS4i1mZapanL7QZhLJIB5nHQ57ALvsSZObaaLpSZJqmGiyn0QyiNfVSLW3ba8QsW6oDIS2Eon34LRX43JUY7d5kKV0+lBdT5FUw8STg0QTfbgcNVRXz0SWyk+LWQ4Zm5KAYeoEgzsJhXehKF7crjoUxYtNdmJKIoahjiYMikS7hlN0zkR2+Qv2mYmGeh/Xff1MDlwwiRdeXc8vfvcU0VjKkoQNEaLBDkJ9WxFFGZe/EZsrgM3uTudONnSSWphULEhsqBNRkvA1z8bhHctaN14SrvI6uePrFxPwOPn4r+5hW9cAiUg/kV0bMHQNR10TNk8gXTXZJrP2d9/cfwjYOaPZnPHrT4/6ftWYRnztdpK7+nAvnoPSVFPQ+m10+Hju/E/xeucOPvXMg+kvUWTDhd43QHTFauTqKlwzZqVJt0jImalptGkaj377Wl5Zv5EvPDxSwiizTRmfLchXS0QJb1yJIMr42uZgy6hSIOjQ1lDFX792CQPhGJ/4+T0MRWIkBroI79qAs7oJb8ssBEGcEPmOFkjUVQY61qAmI1Q3zMXuqhq1Diz9bZpJIj7I3GkKv/rZV3G7ndz0x2d58pnV+bKVkq+mMzC4hUi0i+qqmXjc9aOkWqivVCpC3+BGTFOnoWouNrm8jGSl3AmmaRKK7mYgvJ2AZzJ+d7M1qWb0o+lJ+sPbSKSGqA/MwakEytKlHES1QXqHNuB21FLlbUMuYd3qhspQZBehaAe1/hl4XenqE5W4LQqRcTIVoad/NbLioqZqZsEscCOkahg6kUgng4Nb8fla8dVOt8zUlleGSBS4+IJD+eSVx9LdE+L7Nz7Mpi096T6HCVLXkvR1rMYwVKqa5mYZKLkuCUMetpLDvQx1rsfursY/ad5oDunxknBzjY+/fvMSkqrG+V/8X3a3b8M7ZQ72QD2CIGT1s/Km/SgOOJeAR3y/qe4gkTdW41gwE/uUpgIxv+dy8qQZnHz/HeyKBIu6HtTuXuIrV+M6YAFKTbqkfKmtxoop8p9PfJQ6t4vjPvslgrId17SZiIbVVuUCn63INxYmuPYd3M1TcTZMHu1vBNVOJ3//xkdxKjJX/uzfdPSHRvsytBSD21YiiCI1kxdl1cIaD/nqWpLeHe9gd1VRVTczK01fwSgHUeBjH13CFRcdydbtHXzxyz8jkmjIet2tlHgF3cQ0Dbp7V4FpUlc7b7S/svy7mk4o0s5geCfNdYtQbNavu+X6cE3TZCC8lWiin6bqBWlSr8D/G0300xPaQL1vNm5H6YrGpRCOd9Ef3kpDYF4+qZcg1KQapmtgNX53CwHP5Kxz5ZJxJhEnkkN09a6ipmoGHlfjMMEUiVTKTIauJenpSVdRqa2di2mzjs3K7W/BvBa+962zCQRc/OH2F3jo8eUApIw43Tvfwe1rxF+brqqd29aKhCGddnWoYx2aGqdm2iGjKVYrIeHMLcZzWmu4/WsXsWlnB1f97mGSGcOWQ8D7LAzNKuzMVhfAc8whxFdtRu0dzGtzRP1kzpo6lz+seItdkWD2yRzy1UNh4itW4z7k4FHyzUTBkLNjj2BuQz3XP/YcqamzUft7Se7aVfS7lCJfQ00RXPsOnsmzcDVOybMCHKLEbz93LjU+F1/+w8Oj5DsCUVaonn4wogHB9oxE6+MgX9M06Nu1HIenlqr62WWRr9fj4Gffu4ArL1nCUy+s4fNfuYeOzgQ9ncvTvrYCbdPjFiZfgL6BDYBAQ/3Cssg3a4VfEPB7J1ETmEFn34pRnygwroiCULidWKyflsAibDgqIl8At6OGpsACeoLrSar526wrQTw5RH94K83Vi6wtas3I/8uA3ealpfYggtEOIvGerHPlXpuR66xpCbp6V1FfMw+vuynrTanQb5V5TpbtNDYehKrFGRzaWnJOjGD12t18+gt/490VO/nK507h2185A1kW6Nv5Ht6qSQTqZhR8UyoUpiZKMlWtC5DtbgZ3rGTEAK0kOmL0bdk0eeOlZ7nmZ7exYGYbP/3U2RWFoMEeJGBBECRBEN4TBOHRifQj+dy4DplL5O11mKo2av2KgsD3DjuJ9kiQP63KifnNsSZNXSf23iocc2YhB8Z8T6WiHg6ob+DTRx7K/SvW8PzGrYiKgm/ugcS2b0aLRcoOO8nSxTQJb1uLo7oBZ21zXltBh+9ddgoLpzbx3b88wZrtYxEdWQU/TYHAlANIhvtJBHvHRb4Aob5tiIgEamcUrHA70qeow9TJtdz6q8s5eOFkfnnzU9z4y8dJpjQCNTMQBIlQ//YCPmbrsKTMGzMW6yOeGKS+dh6CIJa4oQuHVHldDbid9fT1b6iMdDPIK5WIMBDeTkNg3mjVi/HAofio8U6jJ7gewzQQdN3yrxgMQ6MnuJ4632wU2V1UttD3QTOQJQcNVfPoDW5C05OWTUqRsWma9PatIeBuwa1UWfdRBhGLokR93QIi4Q4SiaGi8yMTwVCc6773H+6461VOO3E+N/34AiZNmkzAP6Vk20JhaoIgUNU0F11NEO9rHztXIQnH+3ejJWMs60jxy3tf4sQDZ3D12Uvy7u9iXLEnLeBrgHUlpTJQKOxMaapFrvGT3LxzVPbCaQuZV93AT95+kaReICP4MCGn2ncjOuwoLc2U2nAxAgWJn511Kn2RKD996qXR45LLjWvyVOJbNme0x/qzxdNPjQyhh0N4Js2ybPuxUxZzxmFz+f1Dr/LC8i2WfY388KIk4580j9Cu9UWe3IXJV9dSRPq2U908vyT5Aiw5dDp//MVlOOw2rvnGv3j0iRVjbQSBupp5BId2ZFme6TGLEy+kb+z+wU3UVc9BMq3L2qfblY5lFTSDGlcbSTVMIhUsKlvIYhwIb6PKMxmlDF9yIVId+fMpdcjIRCK7x9VHMLwTp+zFYwuUJOtS39UhevDZ6xkMby/9vSyIOJbowzA0At7Jw3oX/j1KEbEs26munsnAwNi9VN5cgb/f/TrfvP5fTJncwH/++RPmz2623LhRNgmLIlWtCwh2b8JUx26ScknYNHQi7ZsItB2AIErc88Jy7n91FZ86/fC8GOFi2CMELAhCK3AmcHu5bfQiQXKGLuCYNYXklg5Mw8Aj2fnawceytLudx7aNpH8sYP2aJqltu7BPmzpaWigtT3Y7sknu6qMPY1Z9Ldc/9izhZPZWY3vTJNShfvREvCLyBUh07MTZOBlBkvLaHr1gKl8892ieWraBO55YatlX7oKbw1WDIMkkw/3kolSMb2ygHae3HtnmLNxmWMeLzl3Mj797Pjt39/OZL/2dtes78saSbQ5c7jrCoY7h8cqzagDiiX5ERJy2QN65dJvyiHeEMERRwu9uIRi1IL0CpDsCVU8QTw3hczbn6FC59Qrph1PAPYlgvINK11hM0yAU7yTgnjRhPUbgd7USifagp1JluVUyr2swshu/d3JeyF+x36YQEQu6icdRh6YnSCbH3GzlzpsnnniWyz/+U2LxFL/5ycWcdOycdPsySNjKJaE4vChOP/FgV1abckg4PtiVLr2UUZPwxruf593Nu/n+5acyZ1L9++qC+C3wDaDgryIIwlWCICwTBGGZFhrL/1oo5lfyexGcdvT+IJ9ZcDh1Tjc3vJneDFFsu7EZioBhIFePvS6Vcj3Mqq7hqiMP5cGVa3l58/a8NpIgo9Q2kOrL2fBh0VderO9gD866ljwdJtX5+cnHTmdDew8/+GtGIc8i94egp29uV3UL8aGurIlSzgaLWKgLd6ClcBsdJFHgy589mc9/6gRefn0j13z9X/QPZPszM9t5vc3Eot1lWTKZiIZ78LqbLVfFi97cRV6Zva5GovG+tF+6BOlm6ZLow+2oRTIZF8FZwWnzY5gGKd0613EhJNRQOsa4DNdDuYQsS3Ycip9YcvihXea1MZIJkol0GJ71+MUfkpYkLIh4XU1Eo/n3UikSjkV76BsQufrLd7FuYyff+/rZXH7REem2ZYReWpGwq6qZWDC/9FUpEk4MduGqaRnuN31M0w2+fusjDEZi/Pqqswm486uM541TUqIEBEE4C+gxTfOdYnKmad5mmuZi0zQXS97Sk8vUBeQqP7WawKfmH8rDW9eysi/nQlnseNOGQlmFNbN0tSBuUYcfnnEy4USSG59+yaJN+l+bN4AWCuUdLwYtHkGyOxHlbJ+iU5T55afPRjdMvnbroySGX4GKbbTIHE9x+dGiwYxzpcnXNHTUVGz0iW1Fvooi84PrzuX8Mw/i7vve4gc/eZhkcqwzK0JV7D60RATDyL4gpXyCyVQIh+LLOVfk9bYM365kSMiCnVQiXFRubLw0cSWTQZxS8fLtlUIQBBw2L0m1PF1GkFDDOGze0oJWYxYhZIfNZ61LESJOqmHsNg+iTtFrX6lbwmH3kYqHLOdIIRLWkwkMQ0e2uQiFE3z92/fyzItr+fQVx/DVz51iuYW5HBJ2KgHUeAjTzNezEAmbpokWCaJ4Ahn9pv8dDMf52q2PUuNz8eOPfwjJEIpyxZ6wgI8CzhEEYTvwb+BEQRD+UU7DUtnORJ+Ha485HUkQ+cXSV4Di1q9ggBGLInnGCL6U9XvJwQs5uLWZnz3zMoPxRME2ssODHovmnS+W50GLR5BdnjzXw3WXnMiM5lq+85cn6MwIN8v67gXIF8Bu86Amo/lKUnhrsabGkWx2JFO0nGget51f/fBCjjpsBjf98Rluu+MlMt+eC90ssiEgyXY0LV5UNvO4aZqoahSb4h4+PjHizSQRxeYmpcULiloRlKrFyvL9WulV7M8uOFFT0YpyQKipKHaceygnxNh3VWQ3apHrYmUVp7RY1iJgKZ1KEfEIFJuHlBbLOz4CK5eEqkZRZNfoG5Oq6vz4xke5+943OfeMA/nBN89BsUkVk7Bkc2BiYuiqpbwVCZu6hmnoyKL1Rpd1O7q58d8vsGReG1edcYSlzGj/Rc+WAdM0rzNNs9U0zTbgEuB50zQvn1Cfw4Q6vaaBjx5+DP9Y/17JsLOx4yYC+XGGVsRd63Bx7QlH8fq2nTy8at2wXGabjM+iCKZRNvmmv4iJaGb7oc8+Yh7nHDmfPz/2Jm+s3ZGnExQnX1EHBBFMM++pXSyvg2kaWbpk9lcVcHHTTy9hzsxGfvDT//LgI+9l91PCUhEEcVSXQr6/3OMmZtqyKuFuKAoL601AHA2NGxu/+Gu6iYFQ4FaYSLKctC6V+oDN7J19Exg/E6JpYhpaea6V4euaq0uuToVQyhoWhPS9lHs8T+fMMYZ1yZW77c6X+d2tz3Hskln89HsX4HTYyiLhrHHM7DlTioRN0wBRHN6Wnx+eBvDgq6t5+I01fPpDh3P47Ow47Ezss2Q85eT6vfbY00lqKn9Y/iZQwPodxuiXlyRMbfiVvsjCm6DDN048BofNxg1PPJ/fXw4RG5qGIJW+XJlxgCIyRkbExrSmGq675ETeWr+TPz/2Vr7u5C+6ZfU98gqkawiiVDyPcG42M1HGMNS8/upqPPz6RxdTV+vhuu/fzzvvZT8UynlNNAwNqUDiU2s/oICEiGFqSEJ+yFdZxFsAhqkiilJFPlxRkDFMbdwWp9vrIFDtJlDjwV/lxuWx43TbMeQoiqLgcVYhyxImJrpmoGsGakojFk2SiKWIRhIM9UcIDkaJbHejJQtE+WQgV9dSmysMQ0MU0r9R5rUxpcIJa0VTRNXUgudHdLAae4SErXbVGaqKYLG7MDdpDqTnmiGLw/NXs5S7/+F3CIXjfPOrZ/DLGy7kG//7n7zty7ltRpL4mKaJqevIOQmFiyXwEU0JU9cxTWN0Z+rIRo2RxD2QXpRbMKWRH33sdP705byvC+xhAjZN80XgxQn1MUyWc/31nL9wMTe99BR9iZyFjCKpJmWPj1R7e0nXwyGtzZy/cB63vvo22/rTmz4s24zsZIuEkJ1jvrlyspzJLi9aNO1icIgSN37yDGKJFN/9yxNj5YyKkG+hWN9UPISSsY0Z8q3fXNhEB4auoWspJFlB1KGhzsdvf3Ixfp+Tr3/nPlavzY4gKId8dT2FqWnIcvaCQ7GwMgDF5iWViuB0ZCyWToB4R5BKhnC4p5aUyxzTLrhIJkK4XL6Ccr6Ai7ZZjUyaWkfrtDpa2mqobwpQ1xTA5S6ec0HXDYzh7y1KIlKJvAvhYJTezhA9HUPs3tHHrq29tG/rZfumbqLhRMHvkYlcUkxqEexyvp97hIytiNguewjFOsauewGSL0XEuSScSoWxSx5Lwi1EworiRk1FR0kvV+6Z59eSTGpc/82z+fWPLuZr37uPcCRRkoRVNYooK+kdcWVmURMlGVl2oCWi2JzZ92G63zQJJ1Ia37ztMZrrC8+rfZqOsliu32sOPIpgNMJtq5eBw0ahsDPItGoFZL+f2Oo1mLo+HPqVLy8ZAt897Xg6Q2FuffWt4bYZ/VkQqhrsx1HdlDVermzuLhjJ7sQ0DfRolC9dcSYzmmv5ws0P0D8cBVIq4mG03xx9UuF+FOfYBpNSKSUF3QRBQHH4ScYG8bgbaKjzcdNPL8bjdvDV6+5hw8au/DYZKLR7KREdwG73FY0rHjs+1odD8RFPDo4ScFHyLSd0StdJaTFMTGSx+Opz7lgOm5dIso8qWgFwuhRmL5zE3AMnM3NBCzPmNlPXFBiVj0WTdOzoo31rL++9toneziCDfWGCA1GCA1Gi4QTRSJx1u1+jybUAScjO3yAIAopdxuFScHkcuL0O/NVuAtUevDUKnlqY3jaLhtYqDloyA7tj7C2hc2c/m9d1sHFVO+uW72Tj6t2oqfynb+Z3NGWReGqIKnf+5oXM6wfZRKzYPKh6Ak1PpXNQlEHE5VjD8eQgDvvYYnA5JCwbIrLNRSIxhNNZbSn38msbuf6HD3LD9efx6x9dxFe/e29JEk6GB7Dn3EvFSHj02rgDpIIDowScm8JyBFs7+9namR8yOvq9Cp7Zh5gfaOD0KbP52QP/JmyXsXQ8FHBHiA4HstdPqqsLe0tGyFXGPffhhfOY39jAVx54jLiaPXmtiFiPx9CCQewzFxXU2WoLoiAIuGpaOaTVw6UnHMTdz73H62sq9/tmQdWIDu6mri29rbws8h2GJ9BMZGAXUydP57c/SZPv1759Lxs2VU6+IzKh8G583sKhbWPHs/vwuhvp6F1OtSs/xnQUJYg3180QjHficzZah7YV6avG38ScWTWcesrJHHTELKbPbUaSRAzDoH1bH6uXbWfL2t1s29DFzi099HWV2OwBhBLdiLo9j3xhOP1nQiWZUAkORPPOtQdXUO2ajFupRhQF6poDTJ5ez7Q5TUyf18yMeS0cc9oBAKiqxsZVu1nx5hbee2Mz61fuQlOzr0syHkRXk7hFP6WQScSiIOJx1BGOd1LlySDvIkRcyhrWBJ1orJvWxiMyjluTcFqPseM+VxPRwV2jBGzV9s2lW/nuDQ/yo++dzy9v+Ahf/e69Bd0RpmkSGdxFVePsrLGLkfCIFeyqbmGofS3u2skgj5yzdkUUwz4j4GK+3y8tOoqhaIQ7N65AqKsq2/odgWPKFGLr12Gva4KcVyuPpPDV44/inV27eXzNxuG2xXWN7diCo6EFQZLLTrA+gqa2Wfzsi1ewaXcvv3vwlTy9oTy/b3o8k/DALmwOLzaHpyLyBfC4GpC1Xn71w4/g9znTlu8EyDceH0DT4rhddWUT7wjsggu75CYY3U3AMyn7ZIXEC+nNFJFED63VB43JFSPdeh9HnDCXw0+cw6LDpqHYbagplfUr2rnn1hdY8+52NqzYVfCVvxgMU2cw3k6de1rFbQVBIOBsZiC2E5etCsOA7vZButsHWfrShlE5f5WbuQdPYd7BUzjgsGlc/JnjufTqE4nHkrz72mbefGEdb7+4nuBglIHYDvzO4ZjrHMu4oB7D19jvaqFzcCVeZ1N+JjbNqNgaDg5tx2WvQZaz3TaFLM3M415vE0ND21CjQ9jcgYJt3162je//6GF+eP153Pj9j/C1791HIqnmkXA00g0C2F3VeYndrerMjZ7TQXFXIYgS8aHO0RQD6XOVkfB+YwGPuB9m++o4bcosfv7f/xCvDRS1fgtVubDV1iL5/MQ2bcA9Z16W3GeWHEqtx81n/v2wZdvcz8n+btTQINUHLqm4orGgw7c//iGqA34+/rnvkhDr0v6rcfh9AdREhHDvNuqnHV4x+Yo6eDxObv/tjdTVePn6d/7Nho3dxdsUIV/dUOntX0dtzZy8zG5jsoVDywDq/DNp730Xl70axTYc7jQO8jVNk57gBgKuVmySoyDxBmo8HHPaAo770ELmH9IGwO4dfTx695sse2U9Tz7/MG6hCY8ysUxm/dHt2GUPrgK5E0rBo9QRSvYwGN9Ftct6BT04GOXN59by5nNrgfRC4AGHTWPxMbM47Pg5HHXKfHRNZ9nr6/jvA0+z/vUQsUj2lvFi1uoIHKITr1JHX2gTDYF5+W8XFVjDiWSQcLST1oZDLX3DVlbvyHFTEhBFmZqamfT2raXZdigotjyZEbzx9hZu+NkjfP+6c/jRd87juhseQNX0URLW1ARDneuonXLwWHKhIiSc279kCARa59O/9R3s7mpEp7XbqxQJ7xMCHonMsbJ+PzN9EZFEnLu6tyKIQlHrdwRWfl73rLmE3n6TxI7tOCe1AdDk8vCxww7m4VXrWN3ZPdzWqr/0v2pwkMiGNfjnHpSOgLC4r4uR7wmLpvOhQ+fwx4dfY+2WnUhKL/4p8wqHPBUhXz0eo2/Hu/gbZ6FI2TGr5ZCvosj89PoPM3VKA1/8yk28+NIb1DcfNJrrthLyNQyN7p4VuF31uJXqPLm0bHHyBbDJLmr80+kcWEWzfyE2ubDvtmAImWnSG94IgkCV0pxHvjabxOEnzOXUDx/CwUfNRJJEtm3o5G+/eYrXnl7Nrq29o7I+cTJd4XVIXhtOW+GFk2IYjO4kmhxgkm8hVLKbLuNNTRAEGtwz2RVcgSw58Nnzs/nlIhpOZBHyjPktHHbSdI4780B+/NuvoqY03nh+HU8/sIz3Xt+MkTFnShFxtaeN3YPLGQhupto/w9LFU4qIk2aMrv7V1FXNGU0Ub0XC6eOF/cJudyOxeD89vauorzugKAm//NpGfvHbJ/nWtWfw3WvP5Ae/eAR0E9VM0dv+Ht7qKTgUH5kz36rEUaH+FZcPT30b/VvfoWb6YkRH+ntZlTQqhP3CAjZ1AVPXaeiOcu7lB/Hnd98gVOipUcL6HYFoU/AefCiRd5ZhRGO4p87iyx9agiDAb194rWhb0zRJdLUT27YJ36yF2HxVFbsefC47377kJNbv6uGvTy6javpBDG55j6FN7+GfPB9JcZTt900O9TK4ew3euqm4q1ogw/oth3xFUeB7XzuLBXNbuOFn/2XdZhWb4qGrfRm1DfPzVseLkW8yFaG3bw0Ou58a33QLudLEmwmfqwlT1dg98B71/tm47NmEXiycTNOT9IQ2ga7T7M+2zhpaqjj70iM4+byD8Ve56esKct9tL/LCo8vZubnHsj+nzUe9Zxad4XXUuKbgszfkk00BfQxTpy+2nbgWpMU7H6nSyhg5/crItHjm0hFei5qKUOVpQyxSgikTpmmydNlbPPPKA9zxq7ksPHgeJ5xzECecfSDHnn4AvZ1DPHn/Mh6/522G+se2mRciYlEQaQ4cQMfQanoG11DnnYFoK/CwzHFLmKZJNNFLb3ATtb4ZuJ21WeKVkjCSQF3tPHp719DV9R51dfOyyh7ltnvy2dV4vQ4+f9WJDAxGufGm++nvWo3T34ivus2yTSYJl/IHe+raMA2d3s1vUTXpABR/1fA560W5vO+5LxKy26e1mM0//AKQTh2Z2tVHYv1WfvmpL3LZ0Sdw9D1/oicetbZ+cwi4WIVjwUjn4o1t3MB0j5uX/3ATd77xDj9//tUs+ZHPpmmi9fcT27UV09DxTVuA7PbmjDfWppj1+79XnMoZh83hip/8i43tw1aWZhDp2kKsbxee2jZcNS1IspLf7/DnVCxIpGc7qdgQVc3zcHhri7oeCgWQX3PVSXz47IO56ZZnefC/7wLp7xoJdTDUtwmPpwmvvxWbzVWQfFU1TijcTiTaRVVgGj5nUx45VUq+me6GWHKA3uBGHIofv7sVp1h4Z5pmpAjHuxmK7MLvaKLaNWl0IW/+IW2c/z9HccSJczENkzeeX8uT977N8hyrrxiSWpSeyCYEU6Da2YpT9ltbfaSJN5LqYyDejtPmo9bZNqF0llbftTe2lZQeo9oxCbdSM0bEOesbpmkSVQcYjO1CFCTqPDNQpLHESzabxOEnzuXUCw/l0GNmo6Y0Xnp8JQ/+/TW2ru/MGzuXiA1Dpz+6nUiilyr3JDzu5oIPGtM0SRhhhiK7UPU49YHZOBS/Zb+jbSyI2MovPLKAFgrtYmhoOz5fC+6qSVmhkLntrvr4UVx60VH8+MbbefCJdbi9jRZJ2MfaFErobiVrSBAf6iK4ez32QB3uusmj0REjJPzu7ftRRQyltcGs+fi56ENh1N4gks9D84J5vH31d3hgyxquezWdnKZQnbdsa3T4mG5xLIM0bzr7VI6eMY1DrvgEYcmGzeVFdDhBECCRQouEUIODiKINR/NknLXNY8meK/D9CjocNnsSf7rmI9zxxNv8/qExa3ukHzUeJta5jUSwB8XlR3H4kO1uEERQVdR4uo6VYWh4/C14aiYjSnJFft8R8v3IOYfwxU+fyD33v80tt7+YJ69pSUJDO4hEOlFEJ3a7D0VxIwgSpqmjJiIkkyFULYbH3YTfNxmbxcr+RMh3BIahE4y1E4p2IAoSDpsXu5yuCWeaBqoeJ6mm9XHbawg4W0aT1hx23Gwu+vTxzD94CqGhGI//+y0eu/sN+rpDeeMUROYGBdMklOohmOjEMHWcsg9FdiMLNkxMNCNJUosS14I4ZB8BRxOuApnd9gSiqQGGkp2ktCgOmw+75ME2vBVWM1IkzThxNYhNsuN3NONRags+NABa2mo55/IlnHLBIThddpa+vIF7/vwSa97ZniebS5gJNcRQbDex5CAOxYdd8WGTnYCAbqiktOhoWlCftwWfu3l0E0ihPkePV0DCAKoaJxjcQTTajez0Yrf7sNnS89cQdFKpCMlEEENP8cc//C8nH38w37/xv7z8+saiBAzFSThX1pDA0FQivduJDu1GstmxuQJIbi+iJLHugV/uPwRsa6gxaz52DlLAixSoQnQ7+crCY/jioiWcdP9f2Boc2CPW7wgOqG/ggU9cys0vvs7Nz7yEFhxED4YwUknQTUSbDdntw+b2I7k8CMJYAo1KF97sgsR9370CgItvuIvkcEiQ1cKboamkQoOo8RB6Ko5pGkjI2BwebE4fdvuY5TWeRbcjD53GT777YV55cxP/+6OHiud2SKkkkkOkkhFUNYpp6oimiM3mRlE8OBwBRME6b68V+Y4nrnc0BMo0SajhdEFFLYph6ggI2LBjlz04bf5Ry+uIE+dy+RdOYvqcZro7Brn/9pd5+v5lJBOFd3BloYSf1jRNUnqMhB4hpUXRzfQPIYsKdsmN0+YrmBNgb0DVEyS0MAk9gj68s1ESZOyyB4fsGVsfKLLDLRNur4OzLzuS8648Gn+1m9XvbOfvNz3DqmXb8mRzSVMzUiRSoXRVZD2BIQrpzIE2N3abD7ucvpcKRUrsKRKG9LpEIjFEQo8Oz18TURCRHV7sdi92ZwC7XeHXP7uYGdPq+dK3/sWGzd0VkXApK3j0uGmQjA+hxtNVkQ3BYNtzf9t/CNg+rdVs/uHnRyMf7ILM6xdezbs9uwsX2rTcTlye9fvni89jYXMjJ/3uDqKplGW0Q+bnUvkeirkervrQ4Xzu7CV89jf/4e31u/L6KDfqoViGs3LId0prNbf86nJ27R7kmq/fnZfVLLvvwj7f0scqIN+i+QMKE6FVfwsOaePjXz2NeQdNoX17H//+4/O8+Nhy9HK2E08w1WQetNJbhyuCvIeXZsogY7vDxmkfOZQLrzqO2gY/S1/ewF9/+3RZromsc8XGqoCIx0PCIzBy+suUCfhd3HLTFUiSyFVf+TuDQ7G9Q8I5fS6789r9qyZcJs6ZOo8ah4u/rH4HsI5qGIGV9Tt6zsL6XdjcwHEzpvKXN94hmsoJwymx+63ShbfmGh8fP+0wnlq2YZR8i6FY1EMmim0zLpTZ7MffPT+9NfOGB/dr8i2Vyza3v6bJ1Vx/82X84q6rqG8K8Nvv3M9nzvg1zz38bmny1fWJka+mWf/taezpccr43smEyn//8TqfPOUX3P7zx5mzaBK/+8/n+fIPP0xVbfYibfFEPEXGKTQHLOfg+Odl7pzOlBkKxrj+hgfxeR3ccN25yLJYUfKeYveiWIJPLNuUJ7bnkbnt+BPzFrNuoIc3OndmCxXJ+TCCYl9U0OHzRx/BYCzO3cuWl5Qv53wx6/frHzkewzD4zX0vjx0vYP2WW9Ot0kU3QYDvXHsmTQ1+vv/jh+ntCxeW3w/ItxByM245XQqf/Nrp/OmRL3PQkhn89ddP8slTf8FT/1k6mmfBEiPkMx7i3dtE+37rU8a1SCU17v/Ly3z8pJ/zwJ2vcOI5B3L7E9dy0aePQ86oZlwsI1rRh+r7RMLFZDZv7eHGXz/BwnmtfOnTJwHFDSCrRO7ljP1+VsQYNw6rm8Tc6nr+uia9Oj9R6zcTcxvqOGHmNP761rtEU2qOvPXn3LEKnc/t68i5Uzh+0XRuf/xteoYieX0U2+2W3VeRH7TIKv7IBLrswiNYcuh0fnfrc6xaM1ZwsNJJWvzY3iffTBx23GxufeTLfPhjR/PCI8v55Km/5J4/vUiqWNaw8ZDu/ka4pTARfUtcn2g4wV9+/gSfPfM3rHhrCx//ymn8/v4vMPfA7I0h47KG3wcSLpS7ZAQvvLyeu+97i3PPOJBTjp9Xsr9i957V4ne52OcEfMWcgwkmEzy0ZW32iXFav5m+388sOZRIMsk/l64oLF+KiMtYeJNEgWsvOI6dPUP887l3C+pr2ece8vsCLFrQyicuPYpnXlzLw48tL6pDsde04sfKJF+LXL1jfVjP0lyrKlDj4Vu/uoQf3HIlsUiSaz96K7+57j8M9hapMlEp8f5fItxSGM93KXG9Onb0c8Pn/s73rroTp9vOL/9xFVd/9xycrrFImFLWsLWu7z8J557/y19fZsXqXXz16lOY3Fq9T1wR+4aAh79Xnd3D6VNmcd+mVSQKVToeRvHMYfkkPaUqwGlzZvLPZStGi2yOyRdXr9hYue0FHc4/6gCmN9dw8wOvoGqFox7KGXu0TYV+X7/PyfVfO4vdnUP8+uani8u/H+RrqXfhV9Pcfo4+dQG3/vcalpw0j7/99mm+eP7NrF++07ItUBnx7mnS1fQ9+7dHdNqzRLz0pQ189sxf899/vMGZlxzGLQ9fwwGHTs2SqdglUeAh/X6RsG6Y/PBnj5BKafzgm+dgt8tFSXhvuCL2qQV80cyF2ESJu9YtBzKItIxtx6XcBp844hA0w+Bvb71XWH6c1m8mnHYbnz3zCN7d1M7z7222FiqAYtZvlh5luB6u+/KH8Hmd/OAnDxOPjy027k/kWwi5vt6v/vgCvvPbS+luH+QL593Mv295Pi/D1yjGQ7zjxd4kzFLjjLuvCh82Ra5nPJriTz9+hK9deiuqqvOzOz/JJ649Pc83XAiVWMMTIeFcFJvzff0RfvzzR5nWVsfVnzg+LV+BP7hQv+W6IvYZAQuGwCUzF/Jax3a2hwathYpsOx7tx8L6rbE7Of+AeTy4Yi390ViOfCm9SpzPIe0rTjyYGp+bm+4vnelsPFEP5bgezjvjII48dDq33v4CW7b1FpQt5Rcr1P/eIt/cV9fpc5v43f1f4MRzDuLuPzzHVy/5Izu3WG8bBvY+8e5top2ILuPRp1IiLoB17+3kC+fdxBP3LeXCTx7Lr/7xGRpbxxIP7SmXxHhJuNLIiKXvbuee+9/mvDMOYsmhVtvrJ+6KKChTWmTvYEnTFCZ5A/xrw0rAmkhzUVZJIuCyQxbhsMn89a3S/th0v8WPFbJ+qzxO/ueUxTy3fBOrtuWXti4XxaIeCslB+gee3FrN5z5xHG8u25pXy62Sca3+nz6298g3E2dcfBi/vvuz2O02vnnFbdx18zOFw8rKtXrHQ7z7C+GWg/HqWu51KXKdk3GV33/vQX74+btonlLD7/7zBZacPD9LZn8j4WK4/W+vsGlrD1//4mkE/K694oqwwj4j4ItnLmQoGefpHZuyT1Sw+GZFyAoSHz14IS9s2lpWqaGsYxVavx8/9VAciswfH3zdso9yrN+JuB4kUeC6L3+IRFLl579+IkfXylwP+4p8bYrMV398AV/8/nmseHsrXzjvZsvtsMDeI97/S6RbCOP5DpUQcQG8/uwavnD+zeze3sf1N1/Gx79yGmLGxoX3k4TzZcq/B1RV5yc/fxSPx85Xrz4lLT9OV0TWmPvjIpwkCJw2ZRYPb1lHssQNVSz0LFcG4Iy5s6j1uLnr7XxrsGwiLsP6rfW5ufDYRTz21jq2dQ3k6THRhbdyXA8XnXco82Y3c9MfnmVgMFpQthy/by7eD/KtqvXwszs/ySnnH8JdNz/D9z/9V4KDUct2e5x496oPt8BGivdtI0eF360cPYo8/LrbB/n6pbfy2D1vcdGnj+P6my/Pi5Kwwp4m4Ykuym3b0cedd73KcUtmccLR2VUyCvU/1m+RMYv8DPskHaVXF7BLMnc9eD/J8CBKczOCw1508W0EpTZeXL54EVv7Bnh96848eUNNkezpRBsYQIuE0FNJBMNEkNPJeWRvAEddMzbFXXRcQYePnboYWRK5/dG38mSLYeTHMAydxGAXyXA/qUQILRVH0A0EUcZm92C3e3H5GlGc/ryHwIjr4eOXHcVLr2/khZfXZ+hWud8XTSeWGCAa6yWphrOKHyqyC8XmxaPU4LJXZZcPmgD5TpvTxPf/cAU+v4sfffEfvPb0amC4XI8WJpzqI6lFSOkxDF1FEARk0YFdcuO2VaXL9YwkeKnU2q0AKT1OWOtL54LQ42O5IEwpnQtC8uKVa5CECdxKxfTP2JasGSnCah9xPULKiKJl5oKQXDgkL15b7WiSnnSj4e8rl5EbYkSPYluhdR0kCcPQCKf6iKtDJLUoqpHgy59/mWXvXsB3fvxFbrzr43zv6jsZ6k4vCBeuF6dbb1+2qLZRqA/TNIjG+4jF+0ilwqSMdF4VUZDSuUwcPtzuehyOqqIJigDuvX8pxx49my9/9mTeW7WLoWCsYE05q9zBpmmSjA4SD3WRSoZRE1FMo/Dvu09yQcxbtNB88PlnOeGPN6J296F19GJrqMMxe1Y6qXEZWc+sSs2PJN354ZMv8I+ly0flDU0lvnkjyZ4ulJo6lEAdstuHbHMAAoaaQg+HUEODJLp3I7t8eNvmoDgy84yO6VLrdvHoDZ/kyWXrueFvz+TpWsz6FVSDcO82In07UBw+XP5GbA4viuRGEAQMXUOLh0nGh4gOdSCIEtW1s3C4q4f7BkGAm3/6UaZMquFjn/kLg0OxjPHKf+Kbpkk01MlAcCuypOBxN2JXfNhFJ4IgYpoGKTVKMh4kEu9G11NU+6bicTYUtAbKId8Dj5jO9b+7nGgozg8+93e2rOsAIKYO0RfdhmHq+OwNOMR02SJRSJd0V/UEST1CJNVPQosQcDRRJTcUrimXiXEQb29yByk9hleswil5sYsuJEHGBDQzRdKIEtWCxPQhPHINNUrLxIi4kOqGSn9qF1F9CLdSi1sOoEiu0ax0mqmS1KPE9RBhtR+n5KXWMSWbiEdQDhFDQRI2TJ2BeDuhZBdOJYDbXotdcmOTnAiAbmosPGIy3//9p0kmk3z20u8xsEPAYfMCxRLwFNDLinCHj5mmQSjawWBkJzbZidvVgEPxYbO5QJYwzOFsaMkQ4XgXpmlQXTUDt7u+aL6Itsk13Pb7K3nptY386FePpb+3ZC0LY7ki4uEeBnvTxQHcgWZsngA2hxdBknj77q/vP8l4Fi9ebH7kll9xy8q3EHQBU1VJbN5OakcHzgPmotQ3ppWzcD8Uy3r2k9NP5sx5czjmt7cRSaaT7qQG+oisX429uh5X2wwkUcnvK5OjVJ14TzvRXVvwNE3F1dSWVXJH0OFL5x3N/5x8CB/+/t/Y1TOU10chAtajEQZ2rkCyOalqmI1sT2euKrTd2DRNEsEeBnvW43DXUl0/G8mU+NBJC/jWlz/Ejb95gieeXpUxVgUxkHqK3p7V6IZKbdVsHHb/sExOm4w+EqkgvcFNSKZMvX9OXo2wcsj36FMX8I2fX0T79j6++8m/MNATxjAN+qJbiamD1Lqn4bZVIxjFLfdUMkJfYjuakaTRNTOvSsgoKiRe0zQZSnUymNhNtdKMX64rSfC6qdKf6iCqDdFgb8Ml+ysasxgi2gC9yR145TqqlMZ8gs8hSsPUGUp1MZTqosY+Cb9SoJrGOIg4oYXpimzCIXuodU1JZ4ErQJyTptXx4zs+icOt8NnLv83G5d3UuNsQBKEyEi5AwKqWoGdgDSBQG5iF4vRZ9JeR39c0iatD9PWvR1E81NXOA0UpKP/xK47mykuX8JXv3MO7K3cWTdijozPQsQY1EaaqcQ42f82opT0i99Y/97NkPA9n7HwTbDacs2fhPuwgEqs2kNzZbtmm2OKbV1Y4c94cHluznkgy/dqT7O0isn4V3tkL8cych2jLJ9+8MUQJV+MUahccSaK/k/D2dWQ+pLxOOxcdu4hn3tlYEflqkRB9W5fiqZ1CTdtBo+SbN35mrgdBwOWtp6ltCYaeom/Xcrwehc9+4jhWrmnnyWfGR76alqSj6x0UxUtLw+KC5JsLh+KntfZg7DYPHQPL0fSxDS7lkO+HLjqM6359CRtXtfONy/40TL46neG16KbKZP9BeJSakuSLpqFIDppcswnYm9gdWUdCy/Edj8O/a6oqfbGtRJJ9THLOI2Arz7qWBBv19ik0OKbSndxKRBuoaNxCCKo99CZ30eSYRa291dq6zvEli4JEtb2FVtc8hlKdDCR3W3de7vUZ7jemDtEZXketawqNnlljKTgL/O67tvby1UtuYbA3wh33/oIjT5xHd3g9pmlW5hO2kNUSETp638XtrKW57iDsiqfk3BUEAaezmpbmw5FEG51d72LmbNDKxD/veZP2jkG+8rlTsMlSQT+uoav0bluGKEo0TDsSh6d4HuZc7BMC7o1H6YjmbyeVA37cRxxKctNmtO6+kv1kEt/Z8+fgUmzc806alNTQENGNa/EtPAQlkH59ryQRj2R3UjX3UNRIkFjXjtHzFx23CLdD4c4nl5bUbwS6mqR/2zsEWubhrm7N8umWE3YmSjL1DQsRRRtXXrgIj8vOb373NON5eTFNg+7eFXidDdQEZowlnS9z0U3QocY7DY+znq7B1WlfcRnke87lR/Kl/z2PpS9v5Duf+AuRUByA3sgWJEGm0TMH0RSKL7blLBYJgoBPqafONZXO6Pq0T3S8kQCaxpDaTUKP0uycZf36XgIuyUezYza9yR0k9AKLiWUipgUZSHXQ4pyNQ8pfk7BExvVRJCctrrmE1T5Cam+RNqWvVyoZoSu0ngbPbOuCpQV+s76uIF+/7Fa2beziN7d/m+NPP5T+6DagwoW5DFnD0OjoX0mVaxIB75Qssiu1KCfoJqIoUVMzB4fdT0/v6izjKlM+ldK46Q/PMLm1movPzzNc075g06Rv9yoUh4+qpvmIYtpMriQsbZ8QcNcw+VpZspLbhXPRAcRWrcFIqXm+XysIOnxk0XzWd/eyqrMbU9eJrlmFe+ZcZE/+q0lWW4t5MEKQomwjMG0R0c6tqLEwiixxyXEH8tqabWxq78trb2X9mqZJcOcaXFUtOP0NJXQpnOlMEESOPOoELjjvWO65/1W27egrKFvM+h0c2oaEjYCvrbguJSIeqtxTkESFwdC2ku3P+ugRfO7bZ/PaM2v44ef/PposPZLsI6GFqffMLMvqLQSPrRqvUkdPZDNlu9RyyDxpxBhUO2l0TJ+QH1cxFWqkFrpim9HVFKamlfWXCd3U6E5up8E+DUUsXKi01HeTDZFG5wz6EjtRjcLWXrqN9Q1mmiY98S1UOZpxCUUeBAWiJEKDMb79sT+zfmU7v7jlmxx24ixiqSFgfCTcH9qCU/Hjd7cUT/o/2lc+CQuCQHX1TExDIzq4s6D80ne38/LrG7n8oiOoq/HkWcGRwXYMPUVV42zEItOuaPREyW/wfiAn9tdWW4Otrpbk9h15olakPbOuhgOaG7l/+RoAEh3tSE439vqmcYWeZUJ2uHA3Tye6cxNnHDaHWr+bu54ub4MHQCo6iJaM4muYMTyO9aaLcrYbX/OZUxkKxvjFL2/BNK0nX1HXg54kFG6nrnpuccuhjHAzQRCo90wnGOtAM6zLnUPa7fD568/hjefX8rOv3D26ucI0Tfpi26n3zCgY6pcet4wQKU2nWm5CNeIk9CKJeor0159M+3zLtXyLEalXrkYR7YS00m9xVv0NJjpwCR6cFK6LVy7sph2/VMtgIVdEJiys4ag6gGkaBJSmYZkywtVyEI+m+N6n7mDz2t389rbvsWBJ/eiDshISTiUiRBJ91PhnjMnlzffySFkQRGpr5zE4uA2jSJTCH297AVEU+czHjgOyo5hCPZupblpg6aYq9mabJVee2PsLwQB72xTUne2YhV5vM67z+QfMQ9V1HlmV9tcmd+3EOTknUcgENl4461pIRYb46HGL2Njey9vr85PCFPL9xnp24qmdgiCWf6mtnpjHLpnFwvmt/OXvrxKPq8Sj/QVlCyEc7sDjrEeWx0imnAlrGZep68iSHY+jllBsrGpC5g1xwlmL+NL/nsdbL67np1/6Z1Y+h6g6gCTacIrZyb6zxy1jFg8ThiiI+JUGhlLdhfsq0J9qJEkYEXxyreV5yCfcUgjIjQS1nvIt8mEYpkFI6yMgN4xrXCv4bfVEUn3oary8BhkkPJTqImBvzvZrlnooWtyzsWiS73ziL2xd38lv/vxt5i5uGj1XjiULEIztxmdvLFn0tJz4YABFceNw+IkNdRSU7+oOcu8DSznl+HnMmdk49n1CnShOP3bb2FtBuZszMrHvckGU2HoseT2ITifa0FBR94NkCJy9YA4vbdnOYDyBHo0AJrIvsMc2XoiSzDHHHM2sSQ3867mxDR6lCNw0DBLhPlyB5uFxxmf9SpLIVf9zDFt39PLE06tw+5qJRXsq3nARi/TgdTdmnC9zs0UReB2NRJN9eW0PPHI6X/nxBax4ays//uI/UHOS6UST/UUJrxyrN9da89nqiOlD2W8HZVjQEW0Qj1yVVThyosTnENM3Zsosk/SGkTAi2ASloOthPDrJgg2n5COmhcrf/KHp6KkEKT2Gx1ZVQKZCEo4k+e4n72DX9m5++IdP0TYrYy4WeMhnIprow+dszJcbpysCwONpIhrrLRov/6/73mJwKMpnM6zgWLgHj6+56JjlWMH73gIusvVY8gfQg8HR/1uR9uFTWmnwenhk5ToAtFAwTb5CfuhaJcjbeHH+6QyGIjy5dH3hRjnt1EQYWXEhSuX7FK2e1meecgCTWqr5850vYxgmdrufZCJo0bpwP4aho2oxFMVbuE2ZO90ybwy7zUNKj2OqYwnvp81p4vqbLqN9ay8//PzfUVP5MzGhhnDIBXQph3wtIAoSNsFO0oiV188wkkYUx7AlPhFLMxOCIOAQ3WO6lImkERsl71KohIwdopuEERk7UEabhBHFjrN4JEiFJBwJxfnmx/9ANBLjh3+6krqmsZC9YiSs6UlM00CWHGXtlCvrzQ6w2/2kkqG8N5XM+ycWS/H3f73BQQsnc/ghU9OFWhMhFKc/T7ZSK3jfE3AOMmN/JY8bPZo/gTMtz7PmzyGSTPLCpq0AGJEokqvIa61FHyMo5Ius87s55bAF3PPY80WrHOfCiMWQHe7h7zM+69dul/nYR5ewck07b7y1BUi/OmnJ7FX2Ujve9GQMWXaMWnkTcT1kjSuI2FBGQ9JqG3zccOuVRMIJrv/UnUTDibw+TE1D1eMoktNizPGR7wgUyYmaila0Oy6lxbAZtj1CvFm6iI7Si185UM0EimhxXUqgFBkrojNflxLWsGok0r9RqaiSCkk42JPk05d8E6fLzg//9DFcngyXWIE5p2pxFNk9ZliVZfWWjooYcccZhlr0DfKRx5fT3jHIVVcei2lqYBjDG7mKo5QVvE8TspeEKBUlCsUUOXX2DJ7ZsIXkyCQxTQRRGJf7wQqCDuccOR9Zkvjnw08XF87ByHbecmFl/Z77oQOpqfbw5ztfzhAUMTFHn9rlJNoxMREokk8jd0KXQb6jxwUREwPFLnP979J5AL5/1Z3094TyhUdKz2NCrj7FbuRywss0bfS7loNR0sKsKHazfKSvSyVI/6YT08WKiIViuhS47mlXzgjh7UESFgQ2rNvKD79wF61ttXzjxotKX39dKykz/qgIseCi9gg0zeBv/3iNGVPrOW7JLIQc6iw3W1ou9q0FXCLzmamqCHLa4W7lfjhq2hT8TgePr9kwekyQZYyM1+GJZj0TBYEPH7WAN1ZvYWdneaFn6eNp37GhqQWt32IQdXDYbVx6wWEsfW97Vn03U1URRbmygG9RRh9e7S0r6qFMCJqBbmiIgsQX//c8Zi1o5edfv4ftGy0Ww4ZvREEQEAUJw8y4GKXItxSG2+umluXLtUIuQYlIozkexgVVs/wztGR61bzAeas/USf7ukwAmd9TR0MsFl5nYQ2LgpzzG5V4CJZJwsbwb7TizS386SePcvgJc7n88yeNnreaj6Iojc7fsfEm7oowTQPD0BDF9LUpZsw899I6tu/s4xOXHYdJ4ZzHlWC/ckHkbj3WQ0Ekr7eATDrz2VA8wRsZiXckjxctYmF5lYCV+0HQ4fA5k2mu8XPPEy8ju4rHFOfC5vShJgrrUizuF+Cc0xdRFXDz17tezTqeSoZGfbnlppmUJQemqWGk8l0CeSjT+hU0A81IYZo6H77iBE4+92DuuvkZ3np+XX6fOe3tkpvkyGaFPUS+pmmSNGLYRevwrUKv6HbRSdIoc7HMijgLIGnEsQuVhZLZRSdJNVL2GOXA1DQSqVDB65KFjOtjl1wkdQsf9gRJOKlFsMtp19wj/3yDp+5fxqVXn8jhJ8wZFc0lN0V2o6oRjFxLdYKuCFWNIYv2UQIuBsMw+fvdbzCtrY4zTjseNccNOB5f8H5FwJkwDQOtbxA5ELA8L4siJ8ycxvMbt6BmBPHbfOmFu9zwtfG6JM4+Yh7BaILHn30RxZO9x79Uvl/J5gDDRE2kFz8qsX5tssRF5y/mvZU7WbNuLExG0E3i8QHsjsryDQiCgF3xE08OZh8fp+thpF08NcTiQw/m0988g7deWMe//vh8/uAW7R2yj5ganBj55lhtqpl+uMiCkidazL/rED3EjSLxw+MgQsPUSZjR8kgvUxfBQ9yI5IevTZCM40YYu1nmpo7h66qILlQzmRfnnZYZJwkDMTWYtQD7h+8/yMbV7Vz7kwtpaMmurDECUZBQZBfJROlt3pVYpvHEIHZ7tmFVzKh58ZX1tHcM8rmrLiQRH6i4CnIu9h0Bl0g9qfb2IjocSB6Ppfvh0Mkt+J0Onl2/Oeu4qNix+apI9nSU7X4otPjmdiicsGgGT7yxmujQAI5AQ0n3RdZYgoC7qoXIwC4LPYpbv6ccP5e6Gi//vOfNrOOGoRMJd+D1NlecZN3nbCQYGQvI3xOvULotyC9uvY6BnjC//Oa9Zce9+ux1hOOd+RbNCMbhcxxSe/DZ6rJcM+VECbilAEkjSsrIeDuYIOGFjUGcogdZKB6zmgtFdCALNqJGkSiXCnVL6BEMU8cpeiuK8hB1A69cQ1AtUBZqHCSsqwmiqX689rEkQaqq85Nr/gnAt351CVKBZD0+RyPBjJjzsbHGZwWbpkko3I7X01wypHMEhmHy7/+8zYJ501gwu6rofC/HCt73FrBFVjPTMEhs3oJjypQs0UyZk2dNJ66qvGaR99fR2kZs1zYMTcs7Vy4EHU4+aCYOReae/z6Bq24SglhmBqkMuKsnEQ925b2uFMJIuslLLjiMjVu6Wfbu9gydTELBXdjtfsucxSV1cdai60mi8X5rgQqt32hqgOt+/Bkamqr42VfuJhK0eI0vsHCnmAp22UMwaXVDVU6+KSNBRBvAL9eNHiubaAQRn1zLgNq5R175DVNnSOsmINWVFrZAQKpjUO8quTAElNTXNE36tY7hrG7ZD6bydKkllOqxtoKhYhIeSLTjlquQxey3lO72QW6+/n7mLJzE5V84efR4ppHgdTSQUIMkE9lvcemxKl/XiES7EEUJhz1QUjaToJ9+djX9AxE+86mPEA11lF3hxgr7noBzIOgCic2bkewObA3WuRMEHY6fOY3Xtu0kkbvaq4MSqMbmrya6rXDMbjnuh9MXz2ZHVx/L3nkPT9O0cZUbkm0OvHXTGNq5evSGKvVkPPyQaUxpreGe/7yddTyZDBMK7qC6dnbF1q+gpyMy6qrm0Du4HiNZ2hdcjHx1Q+Wg45o45yMnc/cfn2f9inwrv2BineHfrM7ZxmCyc8wXDOMiX9M06E5spVppRhaVccXyVpl16UTwusXNXSH6tN04RQ9OsXDMdTG4xQCyoDCgV1BnsAARB7VeTNPAL+enpSznOimiE59UTU9iW2Frr0wSjqlDRFJ91DqnWM6NV59azVP3L+PCTx7LnEWTRo+PzDlRlKjzzqA7uAFTLfBAyECxBTlVizPQv4namrFt+eVawSlV54H/vsvRRy6iLpBCTRWO9S51r+93BJzcuZNUZxeuefMRBMHS/TC9tppJAT8vbbROBAPgaZuTzoi2cyxBSyXuh2qvi0NnT+KhJ54jMHXhuKzfUV1qJiNKNvp3r8qzaqxKWV947mJ6+8O8+MpYdIcWj9DTtZzq2tnYbMXjRK3IdwRORxVedyOdA6vQjbFokXJe40agGypJpYMf/OKrbFi5i3/f+oKFUHHyBbCJDuqcbXREN5DS4+Mn3+Q2JMGGX66vPJZ3JPpAEGmQ2+jT2okV8wcXgWmaDGhdJMwotXLruPqAtOuqTp5EWB8kqBfJZGaFDCKOaIMMal3UK21FI2ZKXbNqWzOGnqI3uX3cJJzQInRHNtLgnjm2ldhijtz240fo6w5y7U8vxO7Md994HHU4FT+dwTUYRk77MuewpiXp6l1Blb8Ne5GNSbnIjQtOJFU+8+nL6dn9HpqasJQrhX1EwPnhZ6amEVu7jsS27XgWL0a0ZydFySTP42ek8zy8tHk4tZ3Fby/KMv4Fi0n1dRPevBqjjCfmKDSDY6dXI4kiz6/tweYuvOBVTrFNSReoaV2Eaej07ngHrcgTc8qkGhYfOIUH//su+jBxRiPddHa8Q6BqGh5P47hqvGWixtWGQ/Gzu+9dEilrX2Mh6zehhmgfWsH//vwaXG4Hv/rmvRhl7jqygleppcbRyu7QaiJqkQUWC5JQjSS7ExsxTJ1Gx/Tyy9SDpcXoEF002qbSrW5nqMI8Drqp0ZPaTkQboEmcimCAqesV/WVCFmw0KzMY0nroVdsxzPK/m2kaDMR30ZfYQbN9RlkZ1YqRsCCINDlmklKjdMY3VeSOME2TUKqHzvBa6tzTcdkCRfWIRZP8+lv30dpWy8euOXVMh4w5X+ediSza6eh7l6Ra3LWXawXHo3109LyD192I3zup5JtjIYTCCZ5+dg1nnHooLZNm0bP97dH8LHk6FNtsVdZoexGmppHa0U7oldchqeM98ggkd+GVY0GHY6e1sb67l+5wJO9cJiS7g8D8wxFEicH3XifWuWM4Lte6X9MwSAx0M7DuLU4+dB5bOnrZFRr2I5ex860YRFGidtKBOF01dG1/i6HezeiJfJ/pOacvIqVqPPrkChKxAXo6ljPUu5n6hoV4fS0Vj2uZ70EQqPXPoMrTRtfAanr612VNZOtMVGF6wpvoDK3j7LPP4YTTD+Oum59h11YLC60M6zcTPrGGRudM+pO76IhtJKblbA3NaacaSfpTu9kVX4tb8tMoTy1762kpn6lT9NBim0nUCNKubiSSm1tiGCOkqWkpBlNd7EyuRUCkRZ5R8cJbbp8jf4pgp1WZjYHGztR6QnpfUSI2TIOwPsAudQMJM0arMgu7rpTt0y7mkpAEmWbHLOwo7IquZjCZnwUPGCVh0zSJqkN0RNcxlOyiyVl+LuGVb23l0X+9ydmXHcn0uWP5FkbIVBAE6n2z8Dkb6RhYTl9oM6o2fC9ZWMGmaZJIhegeWEvv4HpqqmaVTMc6gmI7TB989F3sdhsXXnA6NfVzGehaS1/HKpLxYNnW+D4pSWRrajCrLz4ffSiMPjSEHKjC3jYZJZBOzpKdhyF7kc4lyiz96ue46+3l/Py5V7Lkc/M3ZP6rBYeIdewgNdSHzeXH5vYhK+lXeUNLoYVDqOEhJIeL1qlzePW273HHE29zy3/fyBofKi83n7v1WE3FCPfvIB7sRFY8KA4viuTCYbfz1IM38OobK/jSl3+KIIh4/S143S2jyZ7T/RmW41j/v/jihJ5KMhRtJxzvQhJt2G3e7JpwWpSkGkbXUvgcDTRWt/Hnx75OPJriC+fdNJpecqzDysg3fS7dxjANQmoPwVQPJgYOyYPdtCMKMiYGqpEgacRIGQk8cjUBWwM2o4LcvRUsrpmmScQYJKj3oZpJHKIbxXQgI2NiopEiacRJmjGcoo+AWFt2DofxIGaECTFA3IjgEN3YBedouJ1uqiTNeDp3g+DEL9XhEn35bgdbBTlJihTmTBoxhvQ+otoAiujGLrmGrWwBw9RIkiChhxEFGb/SgE+pH9OlUL855YjcXge3PXktPR1DXHvprRgjZbpyIiQ0PclgopNwohub5MAue7DZPYiCmK4Jp0ZIqGFMwcTrbsLvaUUUZUypcE243P8Xqx/3h99cjsdt53+uvgPD0AiGdhEZ2o0gCCjuQFoXUWbFCzdZliTaJ1WR0XUEAeyTWpEWzkeyjZQ3yRaz8v8eNrkVRZZ5detYlYpcWB2zeQP4Zwcw1BRacAgtGkKLhjAxEWUFR1UD3kmzsNncnL5kPpIo8ty7m/M7KjBOueQLYFNcVDfNxaydQSoeIpUMoSYinH7iAfh8Lh56ZBn1TYuwKZ5hP3hmfxMPHcuEJNqo8U6l2tNGUg2RTAZRtXh6pw8iiuzGZ6vHIXsRBIHLrj6VhuYqvnbprfnkWwhlxvqKgkhAacRvayBlxEimQiTNOKaRAEHAJjhwK1U4xOFCneX6e8cR1SAIAl6pGg9+VDNJwoyRIk7CTCEgIAkyfqkOh+DaK4U4c+ESvbjwogkqSSFB0oyPJvqRBBmvWEWt3DpaqNMSI9ehDCI2Na0gCdtFFw3iZAzHFBJ6hKQeHd6wYSIKMi7JS7WjxbpOn6YVr7o8jGg4we0/e4xv/PISTvvIoTxxb3pBOrcysizZqfVNp9o7NT1/1QhqMoIpgSBI2BUfPncLitM/7u3mombkkfAIHnlsOd+69gwWzm9l5Zp2/DVT8VW3kUqESA3roub6qjOwTwhYdDpxzJgJWC+M5SJT5si2ySQ1jXd2lU4wbUXEkqggVdVjr6ofXYDLktPh+IXT6egPsrG9N2/88bgfrHUzEUQZh7sal6Ma/HDhBafR3jHIxi1xFLt3VK5YH8X/XyI0J9OSFgQcih+n5MkfZ1iusbWKD195NM8+/C5r3tmer1AlPlgouHAjCAJ2047dVjiMa2+SL5Dlk7UJdmyCHSiQlvF9hCzYkLHhFrwggFComnAxqNqESRjS94JL9lsXIa30Nhkud5+JFx5ZzukXHcaVXzqFl59YaZnYCdIuM1GScCoBnEogfTCXMHUTU84uQpBpBWeWm7f6f/Z4Y+deeGU9X/zcSXzopAWsHE4XIAgCdqcfu9NfsI8R7HMf8AhK5QdOy8ARbZN4t71jLPlOxrk9AUWWOGz2ZF5ZWTjCYm+goc7HwYum8NSzqwvK7GnrNxfFws4APnnth9A1g7/+8sn8xpW6Hiawk2pvkq/Vgtj+jHHrW4FfuCjGs5OxUBurqIifPIo34OSjnzth9Fg5uYMrieopB4XuvWRS48VXNnD8UbNx2G0V74zbbwh4BMWI1O+wM6ehjre3W1dNLtS+3PAzQYfFs1px2m28smpr2XpW4n7IlRnBqSfMA+Dp59YUlSusz/it34J9ZsjMPXAyR5+2gPtuf8k6y5kV/g+R7/814s3FuPR/P0h4gm22rOvgmQff5ZzLjqS+OVD5OBkolain0miiETz5zGpcLoVjl8ysuO1+R8AjsLKID2ptRhQElu4YNvUrnG/lyB85t41ESuOdjfkkv6fcD9l9pv895fh5LF+9i+4yyW28k6Vwf8UvzhVfPJmBvjD33/Fy/sn3ibjKIt9x7GT7v0y8udhnJFwIlVSoBsu5dNdvn8Y0TC793Imjx94PK7hc99+qNe10dg9x8nFzgcIGmRX273zAZFuviye1kNJ1VnaU3iFULjnnyh05dwrvbm63TLy+tzCtrY4pk2p4/kWLLGLDKOZ+qNj6LQOZbQ5YPJWDjpzBfbe9SDKuFmmVgT1s/ZZNvhXg/7rVWwgVf68Jbr0G9qwrIgf9PSEe//dbnHzuQTRNrh6HcmMYb+UMKH4PPv/ieg45sA2/r7Jk+vvUAq4osY0Oh0xqZnVnd0X+30orX0xvruHNNfnVmAthT7gfTjh6Nrpu8NKrG4rKlXOuLORNwuI36+VfOGn0JsiDZQnxPe96KIn9weodyc423r89jD1NwnvFFWEFC73vve1FVFXn0s8Wt4LzdarM+Biv2++FV9YjSyJHHzGjqFwu9gsXxGisb5H5Iosi8xsbWL7LInnLaD8T0QEOnZ3ef/72+vy8BoVifyeCEfI+5siZrFi9i6BVMhv2/uJbMcw9cDILD5vGfX9+iVQy5wbbUyQ2Ub9vJfG9e9Lq3dMEuhcI+X0n4UKYoBU82BfhiXve5oSzFhX1BZcyJipFuYS8eUsPuzuHOOaItB+43MW4/YKAc2Hl/51dX4vDJo+6H/aG//fQWZMIRhNs2p0ffra30NIUYOrkWl59fdO42u/txbcLP3UswcEoT973dpEWmf2Pw/otgj1Zp22PEO9etFj31lgVPXQmSsITTa4/Agt9H7jzFUwTPvyxo0ePjccKnshiXDFj6LU3NnHIgVNwWuSwKNhf2ZL7AJkEuKglXY56xe7CFvBou3H6fw+Z2co7m9oZz+bA8RTdBDh6+In52ptjmz72qvshr7/CF2vStDqOPHEej/zjjXzf7/tg/e5Jv++Eyff9It29OP5+QcITkO/rCvL8o8s57YLFeP2Ffa3vpxWcee7VNzah2GQOO2hq2X1PmIAFQZgkCMILgiCsFQRhjSAI10y0z7wxdFjQ1EB/NEZHMJx3bk+gzu9mUl2A9yyiHwqNV2nMn1XmsyMOmcqWbb0Fox8qcT/saev3rI8eQSqp8ug/3yhPgUqt3/fJ7zsh8t3XxJuLCeqzJ0l4XKhkLljo+uAdL+NwKpz64UNGj010kXlPYc3a3YTCcY5YPK3sNnvCAtaAa03TnAccAXxeEIR5xZuYMExG5WzAAJjfWM+aLotCj0VQbAHONE1Mw8A0dNBMFk1LJ/1YvqUjv81eCD8DcDptHDCvlbeWbR0uDqhXlIFrotZwIUvBNE0Up8RJ5x7EK0+tJjhYXjL5PYkRC8s0TQzTsC7RU04/4yVfC6Ib08VCn/cZpqpiqinra1Oq7R4i4Uwr2DSNbF320kNr+8ZuVr+znTMuPrzg1mLTNDG1VE5Cp+KEuyfcELphsmz5Dg47OG0Bi/rwnNmbW5FN0+wEOoc/hwVBWAe0AGsLtdFDYULPvoDk8yIHqlFaWkYT41hBkSRm1Nbw4qbCu9PKsYT1VIJ4dwep8ABqNISZUtO5FkyR2SfOJp5IsXrDFgS7Z6/7fw1dY+70ADabxOOPPsyOLUvTZeNNsNnc2O0+3J4GXLZAwYTRewqmaRBN9hON9ZLUIqh6gkv+5xzcHge333onXeFduJVqPEoNgiDumciHAvKmaRJLDRLRB7PKBJmYyIKCXXThMt14xarS1Y8nQr7DSJpxwuYgCTNOykyMlnYXkbALTpyCG69QNe4MaJVANVOEzUHiZpSUmcBABx0EUcYuOHGILrxiNYpQRvpJXS9vG3OBbcu6qRHW+oklw6RIoJsqICAgoIhO7JIbr16DQ7HIwaDpIFuMbZUnwmKL8qP/fINv/fqjHHTkdN59fTOGqROO9xJL9pPUoqh6AkEQMAWwyS7sshePoxaXuzY9f/ci3np7CyceM4cab5BVq9aQ0qJAYSNzj+aCEAShDTgIyItXEgThKuAqAKmqCu+xR6EHQ2g9/YRffwNboArX7DlISn4Cjxl1NdgkifVdw4tjFd5XZiJJeMcGkgO9OKsbcTZMxu/wIdrs6R8qqXLIogNYvWUnvRveQVLs+FvnYSuzCnIl4WeGoRPq20pksJ3P/s+XiceT7OpyMmX6yWldVI1UKkIyMcRA/yYGdI2a6lm4XLUldKjc/WCaJqF4JwPRHSiyC6+tjirXJBTJyWVXXsy2jV10bzBx2vwEE130RbdS7ZqML6e8zZ5CVBuiL7ULDBOfVIPPVosiOhEFEdM0Uc0kSSNGNNWfLrMj1VIlNSJa3FTjIt8c4u01OtBNFa9YRY3YgIITSZAwTRMdjaQZJ2qG2GVsxCX4qBGbkPdCYh7VTNFvdBI3o3iEAAGhFrvoHCV9fTgDWZwYHdoWFBzUyi0libhsEs6AYer0q7sJ6wO4RT8+qQaH4kMWFARBwDB1kkaMhB6hJ7kNQZWpdUzBJZd3L5WD159Ov5WdesEhPPfsCwzGd+OQPbhdDVR7pmCTXAiCgC4KqFqUhBpiMLqT3shmanzT8Dgb0oZXTmKfYiiVG8IQIRrp4tH/ruG6a8/k6CWH0NErIDvdCKLEzvVPW7bdY7NFEAQPcD/wZdM08xyapmneBtwGYJ88yRTtdsT6OpSaepyzZpHcsp3Qm2/gmjEHe3NLlgU6uz5NPht6+krrkXPfJfu7CW9eg7OuhZqDj0MeLj+dKWdTFOa2NfOfl1dQd8AxxPs7Gdi8DFftJDxN+XF9ULn/FyCVCNG3eyV2xUfzlCM58siDWLm2A0EcSz4vihIOhx+Hw0/A3Uo8MUB//wYikS7qquaMpqWcqDWsp2J0BdMbP5oDB2C3eUZJu3VqHXMWTuLPP3sMu+zGLrvxOxpJalF6w5sI002jZ/ZYXa8JWr+GqdOT3E7CiFInteK0efMIXhAEFMGBost4bT40M0WftptdqfU02tqyqg9PhHxN02TQ7CFo9FMjNuEVA5a6yNiQBRtufBhmEwNmD7v0jdSLLbjFyipWF0PYGKTP6MQv1lAvTrJ82EiCjAsPLtNDtdxI0Ohnt7qZKqkBv1hbvBpGOSQ8bAXH9TDdqW24JD9THAvGssAZIAwnuhEFCafkxSl5CdgaiepDdMe34LYFqLNPGbNAC1nBVsixglVV5/lH3uGMi45Acqm02hehSM48MpUME9HmxW7z4ne1kEiF6I1sIhLvob5q7lhljmHkJugphswMabqu0tu9Bk1LUFM3lx3t/Rx5+EIefmozmFDsZXqP2OOCINhIk+8/TdN8oOL2koRz+nS8iw8lvmUziR3bs87PrqsloWrsGBjKblfiPkv07Ca8dR2B2QfjmTJ7lHxzMa2pBocis3Z7N4Ig4qptoXbuUSTD/QR3rhkraTSBtZxkfIieXe/ir5tBXfNC6uqqmTaljuUrCm/6EAQBl7OGlubDQYCunvcwjIn71lQtwe7BFbjs1bRULcoiX4CTzj0IXdN54ZH3strZZTct3gW4bAHaQ6tQ9eSEdTFMnY7ERkBgsnM+Lskij+2Y4qMfZUGh0TaVarmJDnULcSOdnH+i5Ntr7CZmRpgkzcQnVpVl6YuCRK3YRJPURq/RQdiYeF05gCGjlwGjm2ZpGtVigyX55kLQDQJSHa22WYSNAQaMzj3ir44m+ulKbaVOmUK9MqWsFJyCIOCRq5jsOQDNSNEZ31S60GgZvuOUFuOff78bu0Ph4gsvRpHS7stSC2sOxUdr3SHYZCe7+95D14tXySnHyNH1FF0d7yDbnDRPOhyHM8DyFTtZNH8SUhlkvieiIATgL8A60zR/PZG+JK8X7+LDSOzcQao3XQpb0GFmXQ2b+/oxKphI2tAgkR0bCcxfjM0bKKy/DnNa0wUL1+8cK78t2exUz1iMHosQ6Z5YZjRNTdDbvpyapgW4felwugPmtQKwYtXYpo9CP7goStRXzcMmu+jtX1fyhirmfjBMg66h1fidzVS7J1sSzPFnLOTdNzYz2JddcSSdx1mg2jkJv6ORzsi6ysvKZy3cmPQkt2MTHDTYp47LqvdKVdTbptClbkMzy9wmnalLhj6DZi8pkjSLbePy6ToEF83SVPqMThLmxBYuo0aIoNFPszQNexk+3SxoGjZBoVmeTtQIETaKlHqi9EMrZSTo0XbSpEzHLVlb98XC0iQdmpwzAYG+5M4MPSt/WBqGRkd4DZ2bU+zc0sPxZy6qqL0giNT4ZuB21NA1uKa8ytMjbXPmp2ma9HavwumqpqZq1qh1v3zlLlwuhRlTS1fF3hMW8FHAFcCJgiAsH/47o5yGVhEQktOJe8EBRNevxUilLaxptdVs7Ss8iXItU1PXCG1ehXfaPGSXp6Qes1prSaQ0dvYMpfsb/k1ESaaqbSHR3h2kYqWT5Fj5f03TZKBzDZ6qSTg9Y37cBXOaSaY0Nm4uL7JDEARqamaTUqNEY9ltKtnPPhjZhk2w43dZlzeataCFxtZqXnl8ZdF+AvZmbKKDgcj4H04RbYCkEafObl0lNwtFVuTdog+/VEt3qkjRyFzkEEbSjBM0+mgUJ5dc3CsGRXBQazTSpe5ASyUxVK3kX55qpkavsZt6aVLxBOvFoGlIgkyj3Ea/3olqFn9bKUTCpmnSre2gWm7EYVT4IMiAIIg0OKcR1QaJadZ1CEdRJCStN7YVl60Kn72eV55YyYLFbVTVFr7HrRL0CIJAtTcdqRAK7syRL/9eCgV3YZoGVdUzsgyZ1WvTucrnz0lHVhVzV06YgE3TfNU0TcE0zYWmaR44/Pd4JX3kEqitqhqlrp7Ezh04bTItfl9RAs5FvGsXssuHvaahrIoZM1vq2NLZZ2lhy4oTb9MMwp3WO9VKWW3J2AB6MoG/Ziw0BdI/zobNXWgFXpusQl1EQaKuZi4D/ZsrenKPQNOThGKd1PmyJ0ymxbzklPloqs4bzxUMYkm3EQTq3NMIpXrya4OVaf32p9ppsLeVfrUuI+QsQC2amSJuRkrKWqHf6KJabBh3NEMmoboFH3achCjPFZFLxkGzD7fgwylMsMSRpqEIDvxSHQN66Qe9FQlHjEEEBHxi8UVgKL1xRhJkau1t9CV3jsstktSixFKD1LrT99IrT65CFEWOPGks6rXc+F5BEKkPzGEwvLOoW6/Q/W0YGqH+LdTWzcuLrOjtC9PTFx4l4GLYr3bCZVrEjslTSHa0M8WfXj3d1j84LFOsfTqkKt65C1dLW9njzmiuYXN74QU+V3UzaiyElki/VlayABce2ImvenLWjyRJIjOnN7BuXeldfZA9CRx2P7LsIBovvSCZi1CsA4+zYWzxzAKHHz+X1e9sJ5Kbl8Li5pRFBY+tlmCqsvhsgKg+iCwqOCwqcIwHgiASEOsIGmVclxyiSJlJkmYcr1BZxYtiVqyfGkIMVEw0WipFUOvDpwcqale4Qw2/WEPMCFbuogGCeh8BKaOm23g3aAxfc7ccwDQNEvrwhqoK3BDBRCc+R9PoG8qOTd107OznsOPmjEslm+zEaQ8QjpZ3H2YiEunC4ajCplg/JNdt7GTurP9jBJwJyeVGcrlptqctkp2DJV5bhqFFIwiiUNTvmwmfy06Nz83WziIuDlHC6WsgHuopKGMF09BJRAdwDft9RzBlUg12RWbj5rG0mpX4P73uRmJxi2rEFPf/RpJ9+JTClkxto5+2mQ0sfXF9eYpoGj6llmixcvIFENGG8MppXYpaTuVsix1+OHjEAHEjXNgvDZavt1EzhEfwl7XIBRQk3Uw4BBcgkMK6jE4hJIhhQ8Em2MsapxxIOjhFLzEjXFI20wrWTJWUmagoqqOUFSwIAl5bLRGtxNuBxSaYaLIPn70+6/iylzaw6LBp2JQKAroy7gmvq5FY1PpessLIfRqN9eLxNBaU27ixi5amAB63vaAM7KcEPOKDlXx+JnnS4UU7B4eyZQq95UaCyJ78CVMoBeXUxnSp7G0WBJy5A05xBVDL8ANnIpUIIysuxJzoi1nT05No46bKLUcAu+IjmUrfTOX6rAxDR9MS2OXCFuchR6XzUix7eUNBmVwokhvVSI6VSy8z9CxpRPdIFeFMwhAFCZtgJ2UWIL0C5JA048OEWRqVEKIDJ0msM9wVQpI4DrJ12RMk7DDsJM1YZboYMeyCK3+hdoJWsEPykNQzFinLsII1IwWmiSxmE9qylzfgcCnMP2RKwbbFckPYbT6SajjrTaXUPWWaJqlkCLs9m2cyjaiNm9LG1cxp2Q+MXOyXBDwC2emhNeBnMBYnkiweMjICPRFDdpT3Wivo0NaQfu3c0V3cipMdbrRUeRN4ZAFOU+PY7PkkM2NqPfFEivYO6zFLJV9XbG5UtbKbSdUTyJI9z1+VaTEftGQGfV1Bdm7JsfSLTGBREJEFBdUoPyTNNE1UI4EiOiZs/ebCJjhQsdClyDgqyeGim4UxHmvUhh2V8ubtmC4pbOTrMlFr2IYdVS/vYTDyUFPNJEqJ62LZvoQVrIhOVKOyNwPViGOTnHkPg5Vvb0VVNQ4+cixev5I8D7KkAAKGUb57xjC09M5MufC12TR8D834v0zAgiDQWlvD7mBhyzPPEjbNinZptdb5UXWdjv70GIW2IAuCQG6atEI74MZUMRCMMV1GfMdTJ9eyfWf/uLKuDY+MiVmhf9EsuQ3zgMVtrHy7eC28UWTcZOnrXUQXixtyOLK6vLEKwGrRSEAY1wKPUESX8RJfsT4Lw9w7uggiZgWlaExdxyw2ZyZklQvl6ZIzb6y2wScTKhtXtnPAoeVnIMvTRhCLLmrnuwdNhGHqLGQsDQVjDA5FaZtcfPFyvyZgQ1Vpra2lM1jadzUCQZIxtPKfZpPqAnT2h9FLpI3UNRVBkitagBMlG4ZFsPfUKbVs317eIpqVb9gwVERRzt+hVcT/KwoyhlbYSm2ZUkN1nY/VSysPK9NNLb0wUuaCiiAIiIKEXkSf8cJAQ8oNIythkYmI6FjrPhGrU0dHrPAWE5HQKT7meHTSTQ0JqaIkOZIgoZt7OKmOpmGYGmLuRo4Sc0cUJPQCVuqqpduYOb8Fh6vykL10Eiwtz01YDIIgYZhayUikbTv6mLq/EnA5WdC0cJDmmmo6Q+UTsOz2oUWGrdkyQtBaavzs7i+9wKfGgijOyvazKw4vqUQoyyLzuO3UVHvYvrO/or4ykUyFsdu8FcUsypIdAwOtwO6feQenfWirl1VGwJqRwjQN5ApfVe2ii4RRZLNCqUxcFtavaZokjBiKkJHYqQzCUXCSNPNfzyfqe00SR6GyGmEKDpJlLNxVqluS+Nh1KZOEbaX8xkV0KOaGSBgRHFJ5PvcRKJIL1UhYLrCuXrYNSZaYfUBrwfaFCnamtBiybEcyyqdCyRSxyU5SqeIhj9t39DFlUk1RmX1uARdaTDMNA3s8jtfpoCdcfmynzetHjQQx9PImWVO1l86+4otrgg7JyACKO1C2HgCS7EAQRNTkmP6tzWmfc/vuMf9vpTvA4okBHPbyV6YhbXU6bD5iqbHV50yLedaCVqLhBO3bcizzEpnPYloQh5yfu6EUnKKHuF7+g7UcpEggCCIylcXyOgUXcTNbl4mSr2HqpIjjqJCAHbhIEC0rzrtcHU3TJG5Gyl5oHIFdcKCZKppZmR+7FOJaCIfkraiNKEgokou4xSaOjavSObxnLRgj4HL9wPHkAA5b/r1UyrhxOALE4/lrOJn3cvvuQTxuOwF/4eu+zwm4EFK9PTQ2p+PoesJpS6lUDDCAqNhR/NUke/Lz+ubCbpOo8bnpHChOwGoigpoI4/CV3lqYpZMg4Am0EB4a2248SsAdlecLEHQTw9AIR7vwekrHGObC52gkFLe+LrMOaGXTmt0V+0+DyS58SpGFhgKWkNdWS1jvLx4yViGCeh8+sXrsYVCmpecSfCTNxGj0xJ6IOggzhBNPWTkTMqEIdmwoRCnv4VSOrglimBg4yVgQLuPaCIKIV6wiqFcec14ImqkSTfXjlYtbhmMNxvT02RsIJrryjILwUIzOnf1ZBFwOTNMgGO3A526qqB2A19tMOLy76INy5B4fueetsN8QcKZLwtR14ls3M3l2OsC6J1LZvnpncxvR3dtK+oLrA+loie6BfAt7JATNNE1CnZtw10xGECvfouoJtBIP94xawS1NAQA6O4cs5UtVwBgK78RhD2CTK7OsANz2GnRDI5LIvqEkWWTqrEY2rS5eDSQXEXUAw9Rxy1UV7+u3GTIO0cOQ1pV/chzuh5SZIGoE8Yll3tgZEAURv1jDgNGNnqp8s0IudFNniD78jK+Eup8aBukp++FUjIRN02TA6MIvFM+KVgg+oZqQ3o9ayAqu0A0xkOrAI1fnZSIDSs4hr1JLUo8QVy2s4NXtTJ9XmVESjnUhiQp2W2nXYu5bqt3uR5IdhMOFDb3dHUPw/9h773BJqmr9/1Opq3P3yXlyHgaGMASJgqIYEJUg5nT1GlDM13jN4WLOqPcqXhQUUSQpAkqQHIbJOZ+cO3dXV9X+/dEndE7nDDN+f/d9Hh7OdO3atbt611trr73Wu4Cu9mDJNscNAWcjvnc3qtdL65QFPB6rLeTK4W9Ab2ghcmA7QoiiMcCSBU3+jEUwGirt4kiM92MZCXyti6q6dr4GsKLqBJqXMjqwFWFbtLb4GRuPYqRrFyJJpsKEI300N6yo3LgIkUuSRKt/BSORvZhZSmadC5rQHCoHdxchw5LdG4zED9DqXlq3NnCL1kPIHCFpzU24xhY2Q+ZhmpSO2VTiGisyBKUWDFJEmZzTWIQQjDKABx/OOlOJ3fhw4GSc+uLEszEpMi9bv1Tfy2A6lXk4XV/6cDZiZoi4OUmTozZLdRqypNDiXspQbC9WXvrwwd1DdPQ0oldZENMw44yF99MaXFn3/G1uWsXExH7MePHVyshIZmXd2lLa3XLcEXDywAHSoyO4V66hyZPxnYzHczdIyroipnjHs2gFVjxG7PDukhOneYaAixNAMjRCuH83DQvWlbV+i4WgZcMb7MahuBkZ2Exbs4+hkdoSOgBSRpSh0c20NK4qGn9Yyec1vQnhcgQIuDvpn9w6o+GwcFkbkEntrAamnaY/toOA3oZLrc2Xlw1VdtDiWMigsY+UXVvCwjRsYTNkHUKTHPjk+kgGMlZwi9XJGEPERH2+aSEE4wyRJkkjbXWPRZIkmukgTmSGQCuhmBUcsScI2aO0yj3FSabKl1SDkvkuw2b9JJywogyn9tPqXFyzWyYbXkcjHq2Bgcj2HBI+PDV3Fy4t7Q6bfgbSZpKBiS00eRbh0OpPBnI4PDQ2LmVo6LmicflG2mJsIkZbS2kL+7ghYDudJrZ9K6m+XnynbkB2OGhwZ5bZk/HaH05ZUQmuOQ0jNE5o7ybsdGHIU5M/Q/BjkczNmyZvYdtEBvcxeXgrjUtOQXMVkkwtG2eSJNHccQKSpNAY1Bgaqs7/K1mZWN9IdIDBoY00BZfjcdfmhy6GBncPXrWR3slNxI1JepZk+uzdXzklM54coze6FY/WSINeXFFtBlU84F4lSJPWTX9qN2FzDFHBBZDtfjBEkn5zHxISbUpxac1qYadNdMlJOwsYpY8JMVKT4JElTIbpJUGMDhbNSVENMsI1nSwiwgQjog9LVF4xTZOwLWzG7IEpLeHF9SuqzXRs06EtxhJp+tP7CpXVKrhAJtNDDCT30Kovwa1MkdEcasY1uxfjUDz0hTeTNDMvy0P7MgTcUyHxIZYcpW98IwF3F353rsuinkKdPl8XgcBCBvueJhYrlCoYGQ3TWoaA579+So2w02mM/n5S+w+itbTg33AmsqYhWRBw6sQMg7Rd30aNrDloWHs68cN7Gd38CJ72Rbgau1AcGQsy6M0QfDg2VXfMtkhMDBIbOoiq6jSvPDNTq24eKi9LkkxzxzpaWhr55yPPMj6yC1+gu6SYhxA2icQYofARLMugvfUknFnWZi0haIVjkWjyLERXvQxFduNvlRkZnCSZMHJJbIrshBCkrCiTyQESxiQtrkV4tfqtzXzfoE9tRJN1RoxDRKwRgkoLbrm0MLshkoStMSL2BI1KO365KbftHB5up+SmSyxhhAF6CREUzXjwl9SJMEWaKJNMMoaPIC10Va0pUQmq5KBTLGGcIXrZS1A04yVQ0oK0hUXUDjNhj6BLLrqUZZVLJBWrw1YEsqTQoS1h0hqm19idKRmlNJXMIBTCJmaFmEwOISkK3a5VOOTa9y2KjVGSJFqcC4la4wyEt+NxNGEfSmLbNm3dsxte0yWHhBAk0yEm432k7AStgVW49dqEl/KRXaLI7+9GdfkYHdlONNyPr3EhTldGzH98PEZLc+lV4jEhYDuVIr5jJ1Y4jB2OoLW04D1xPWowmJOJ5nPqhJNzC9aXFAXfwpU4mzuJDx1idMs/UV0eHE4/HukUJiMxJg7vwkyESUdDaO4Avs7luLyFmxb1lCHKhkNT8fvcpNJekCQG+55GkRzoum+KiCVIpzGMCKlUGFXW8Xk78Xk7prKA5rcop1dvwqUF6FnYwZHDfRyafAan6sOhuJElGdtKY1gJkmbGRx7QW2nxLSgkgDqEtfPhlD1066uIpIYZtwYZNg/jlD3okgsZBYEgLZIkrRimSONXGunWVszduqNw+a5KDtrFAuJECDPBGAPowo0DZyaZATBJkyJBmhQe/HSwqHbh9CqgSAotdJIUcUKMM8EwDuHEgXMm3M4iUxPOIIFL+GhRunBL86Mylw1JkmlQ2/EoDYTMEY4Yu9AkHV1yo+FCQsqMxU6QsmMZ/7Haik+voYZglaWKJEnCp7fi0oKEkoMcGtvM8OAYgVaF8fiRqYxImxQJkukwsqTgd3XQ6l1b9eqklhJFTlcDnd1nEo30Mz66C2GbOHQ/gwMvYPnS0qvWY2MBC4Gs62hLl6B6A1MWb+EP5Nd1ImUIuJYSQZrHR2DJCYjuVZixMGYkjN/tJBSJIcky7pYFOHr8KA7nVN/zX4E4GMy4PEIRg8bmFTQ0LcOIhzFSYUwzgRACBRmPp43GxuX1Www1QJFVOrvb2fncITp8q0iZMQwrgSUMJCHh1oI0OLtwTBU6PFrlxiHzgPuVZvxKc0Yi0o5jiARpjEy1XeHEpzSgS66jXt1WkiQ8+PHgxxQZsjVIYpJGIlMTzoMfHeec3Q3VwCm5ceLGEtbMWCwymgQKKkGa0HGh2CqycnQfa4ek06J10yQ6SYk4KTuBKTJjkSUFv9KErvWgTQnnHI0CrtNQZQdN7gU0unoYHYjQ1dM+pdVgI0sKHkcjjZ4FM4U6xVH8rWRZwR/owdvQQzodw0hFGB0P0dhwnFnAstOJc0kmd7scibodDmLG/AWBS1YmVdnhb0T3NBJsaiFuCnydGSGPo12K3ufNkHskknF5SJI8U4BzGjlhaEepDH0+Gpq9jI9E0VVvrlpavWXd5wEOSceh6MDsUrGqem9H4QWhStoM4R5rKJKSKcDJ/Fu45VCseKcsybgkLy7ZW7R0/fMJSZKYHImxYHkbzd5ZXYhqqx7PJ2QbHA4vDocX03KXrQ133GzCFYPboRGvMy6zGuvY63QQS85vlk85+LwZiyASrU0JCo6ORQ7gcjtwuhxMjM5vVlpdmIcEiFoxH0kXxxtq/k5HcVXzfGJiLFq2PNGxQKVn/fgmYE0jkZ57YHzJ/nWNRLJ8/3OphJwPrydjAUejxd0qlZIwjgaCTZkJGxqrr5RPSZR4qCtJFf4f/kVxHLzIJsei+AJulKNk9dZjBP1LE7BDVUjNwwZPKegOlYTx/E0clzOzaZJ4Hq3uSnBPuUWikdqt8v/D/2FOmOeXcWxqDrsqVKF4PpGsYOAd3wSsKKSPoh9SV1WM5/HNresZP1kqdfSseqAgC65cRQD3lFskXodb5P/wf6gGz9eqZ5qA3ccRAVd61o8NAVdpyWuKgnEULWCHph7V/vPhnKpvZxjHbnMrH9OTNRmvwir/f8x98P+i//f/z0jEMq696VXd84lS7sNUqpIW9XEMRZKKloqfL6iyhDmHhIZaociZ220+j6RfCaqW2dk2nkdXTD2oKgLi/zCD/z++XMwpfRVNKx1qVkoX+GjBrND/cU3AsiRh1ZkFV1X/sjyvcoiVr5eJh7QrVN94PqFOBb1bdYgDHXf4f8xC/z9koYrfdtqwKRf29XzDrsBfx89Ii0CSpBqqWNUOWYKjyO+F15tKXaxU/qhW1JPDPg15asfYyl8J/J/F+X/4F4M19RwoZSzg5xuWZbNlR1/J48c1AcNcyzaWhy1Afh7vwLSxLR/FzKBaYU8Rr5xvNSjHzyT+P/wfqsG0gWM/j27FSpAVmXWrS4tWHbNUZGHbSBXYz7Lto0ZWQghsYSNVOZb5wLQ7ZXqi5IzFNjPZRpKCXKPwu1Dluq3gGashi4BtYWUqOgvxvKTZloMtbAQ2QtjIyOXTWlX1qLohhLCxmfoNUY5qim3lsQjsKZWozH05drbUzFgESMjzJkaUgyoEg6bncNowsOw0kiTPVC8+Vqi0hj8mBGxFI4Tu/zuKz4vqb0Dv6kItIvlok/HTzhfMZJzEaB9GeBwrGiGdehtGaIih5+5HcbpxuIK4mzrRaqz9Vi2ml/mKLGNZBtFwP8noGIYRyRCMnSE/VXWiO/x4Xa24XU1H9eGyplwNKRGiP7ydlBXFts1MqW7bRJY0dMWD19GIVw4edUIWQhC3w0TsCVIijimMqYdIgA265MIt+/DJjXPSla12LCniRAiRIo6BgTzzSAkcwokLDz4a5kUUqBIMkSTCJEnimfp3U+tDgUATOk7c+AiiS0dfQ8QUacLWGAk7MlvQ1MqUd9fkjECPT23CJddeL7BWWLZJ1BghnM5wyOHxTRwa35/Rg1B1dNWL19mMR29GUvME2+c5acO2LeLxEWLxYYxUBE8F8fljQsCK30/ghRdghsNYw6NEnn4K1ePHvWo1qnNWntG0LLR5cKhbqSSRQztIhyZwNnXi7V6GQ/dhoRBoW0Db+gtJJyKkQxNMHtqKJCsEO1ehe+cmWZeP6SoYschB+g7twO1pxR/owaH7UVUd2cxYeul0nGQqRCh0iLHxXTQ2LMdbi6JUlRBCMDKeKakitCQ+vYUWdQmqrGf876ZJ2k6SMqNEjFFGjf006F0E9Y6jMpaoNcGY2YcqOfApjTRIbTgk58y10maSlEgQtSeZSO/AKzfQpHTU/VKQNbVktEBSxBhlABuBnwZ8BHHgnLHuLGFikCROlD724xRumsmqyDGPSIsUowxgkMRHA4205YgAZQqApkgQZYgjKEKlVetBPwqPtyVMRs0+YnYIr9xAUG1Dl1yZ762pCGFjiCQJK8pYuhdb2DQ7evBWWwOuBtjCZiJxhFByAJcWoCmQEY5v1FazpLkNIQSGlCKZjhBODDIa2UeDfwl+19GZv5FwLxPj+3A4vHgCnTQ0LWPhkmVlzztmChqSqqI1NuIINOJcugzj4BHCTz6Be8lynN09ABiWhWOOvsjkaD/R/Ttxty8guPjEmcoWkgUp00TXVCRZweEJoruCeNoWkZwcYuLgJlwN7QTaVsybBRqNZGpZ6bpC18KzURRHQXqjJMkzQh4BdyfJ5CQj4zuJyYO0Nq1BlufnJ0tbSQbCO2icWA3AgtaVDOXFr0uShENx4VBc+PQWDCvBSGQP0fQY7Z7laPL8xFvawmLIOEjaitOmLcqIuxSBKmmokoZH9mMJkzGrnyPmLtqUhTjl+isbZGO6qkWUEE2046G4LrEiqbjw4sJLg2hlklF62Uez6MAr1VaxuhzCYpxxhgnSTDsLis5FWVJwklFLC4oWIkzSbx0gIDfRILXOG9nE7TBD6UN4lQYWOYrLOkqSjC650WU3AbWFhB1hxDhMTIRp0RfOm3vCsOIMhHfjUN0sCJyMqug0NjQDs/HAkiThUN04VDd+VxupdJTh2D6iiWHagmtQlflZtViWwdDYNmzboq3jFHTdN6MV7HKWv8ZxsQknyTLOhYvwn34GycMHSRzYB4BhWjiq0AYthcTgEaKH99Cw+jS83csKygoZaQs9T8VJkiRcDe20rjqbdDzCxOEtNVVGKDmW+DhD/bsB6Ohcg1Llj+90Bunq2ICiOOgf3ohlV5FFl7esEnkvMcNM0Du5GZ/egpvMEsnjq0ymDsVFp2c1XkcTfdHtGNbcs+csYdKX2o0iqfRoK0uSbz4USaVVXUCz0s2AeYC4PXcxISEEw/SSIkk3S/FKgarIS5ZkGqVWOljIGIOERWG58nowIUaYZIwuFhOUmqsyBCRJwi810KMsJy4ijNr9c67lBhC1JxlKH6JdW0yL2l3VqkOSJNyKnwXedQhsBpJ7sLMre1Th1y2GpBmlL7KNBlc3Hb7VqErGcphOwIiX0FrRNS9djSfjdAToH38upy5ivTDNFAMDz+DQ/XR0nYau57pSdb38iui4IOBpKG4P/lNPJ9XfR2p4kEQ6jSvfZ1MljNAYsb59BNechuYpLiMYT6Vn9BnyIasaTUtPwTYNIkP76xrDNMx0gtH+zSh6ZonkKZEqaZfwR8mSQnPDSpwOPyNj2+f0QNnCYmByK43uHhrc3UQmM+WYAo3VEZ8kSTTonTToXQzEduY+UNko8XBJWZ8LIRg2DuKUPbRoxa27SvDIftrVRQyZh0pX7q0SEwxjYdFOEdH5KqBLLjpZxAQjJMTcCo1GRYgIE3SyqGTViXJQJY0OeTFJ4oTE2JzGkhIJRsxeOrWlVb8gsyFLCm36EhRJZTR1eE5jsew0A9GdtLgX43fm1t0LNHpIxFOkyyQVSZJEk28xXlcrg5PbajKuRMHmuc3wyBY8nlYam5YXnb8ez7+ABZwNWdfxnnAi8d07iKVSuCu8QYrBNtOED2zFt2Rtjk85H7FkCk+ZJYIkKwQXryM2dgQjNlnzOCBDMmMD2/A3LiSVzlzLV0eqpCRJNDUsxzRTRGIDdY0FYCx6AF3zEXB1ABAJJTDT1owqWrUI6G3oioexZP0PVMQawxQGzVr3nJbJLtlLUGmpq2ikPLUCSoo4ESZonWNJIU3SaaGTEfpKv5wqwBRpRhmgle66fMrT30mRFNrkBUzYwxiizGqljCUqhM3wVMVpXXaX7qOCHrAkSbTqi4jbEaJmdTURi2EkfgCv1ojX0VxwrKHZx+Rodap+DZ6FyJLCRLT++RsKHUZCJhhcUrJNpWf9uCNgADUQxNHaTjQUwu2ofQImBo+g+YLoDbmlQETeqimaNMoSMICiOfG3Lyc8uLfmcQAkY2PYVhp/w8IZaTqfr3aLRigSkiTT0rSaidCButwiaStJJDlMi2/pbL9CMDkepbFM6exSaHEtJmKMkrZrX8oJYTOe7qfVsWjWcpiDqHdQbsXGIqHUV115nGEaaJuXTTS35EPHTZj6iCbEGF4COKUyhFclHJJOUG5hwi4sGFkNovYkMuqcKk5PQ5YUWhwLGTf66lrFpcwYCTNMk3th0eMNLT4mqpRVlSSJlsBKQtEj1bn18mDbJqHQIZqbV5c1Hv4lCRjA2bOIyfFxvI7SBJlPqDBVzHLwCK7OxYUH8xCJp/C7K5Ohu6GDdDJCOlm7Zm5k4jC+xoVIksxkOLPcDwbqf7B0hw9NdRFLVK5gnI9wYgCfsw1FziWZ0cEQLZ3BmvtTZBWfo4WwUfvDHbUm0SRneasqD/kVGXKOSRIBuZmQXV0Z92wYIkmaJD7mb/MsSBMhxmomGltYRJgkwPxFDfilRuIiiilqJ5qQPUpQaUGu01+bD7fiRwCJOnz2odQAAb29pP+5pSPAyGCo6v40xYnb2UQkPljzWCLRAVyuRjStMOQv21URDLgJR0obBcctASsuF+FkCr9em7VoxiJIioLmrVw+ZjKWwO+p7A6QZAVXsJ14rDbSs22LVHwCty/jq0ok0iRTaRobZt0i+X6lauD1tBNL1E40sdQYPmdh2e7B3gnauuoLufNpzcTqWFLGrBA+de5WVTa8cgMJO1qzvkdCjeMhMK/x1pliojIGtW1UJonjQK87rlgusopQJAWX5CUuaiM9U6RJCwO3VPvqqBQkScKvNhEzJ4s3KLHpLoQgZozjcxQvcCnLEq2dQYZ6a5uLXlcbsWRxH3m5gpzxxCgeb3vF/hsbPYxPlN4POG4JWCgQMS18Tr2mbDgzGkbzVmfJhKJJNEXBW8ENAeBwB0jHq3+7AqRTEVTdk5PZNj4Ro7HKDa9S0B3+mUrF1cK2TdJWEl0t9IkP9o7T1tVQmI5czVgUN2kpXbO/M2XH0OcpdGwasiSjSXrNpJcSCXTmP3lBx02K2lwiKY7OWJySazZhIhtlLNuUiE8VQK3fPy8V6V9XPKTs2jYpTTsFkoQqTz2reauhxlY/mqYy1D9LwNXUg3NqPlLpSE0rlUyZ+wi6o7KR19DoYWJqo7sYjlsCBggZaWRZJuCs3gq2knEUV3UP9ng0c2Ma/ZllsChzN1Tdg2nMTuBqLFfTSKA5cpfYo2NRmqusW1XqGg7NPVNFuVqk7RSa4pyx8rInZ//hMRRFpqMnzyIttuRX88P2ZFRZr80PrCikRQpHsd39ORZ31CQnaaW2l0EaA12bu781Hw4cpKktMiNNGo36BMWLWb/T0NBrH4sw0CRnWddPpvPafjOH5CRNDe4QVSVtJ9FkZ8mXQc+SjGXce6C2laGiOJCQsGyj6gKe9pTPWFUr/04tTT5GxkqvPI47As4mwbFoxspr8FT/cAhJVP3GHg1l3sLNgcqELUkSlCA8u8T8Ewimb7E9NYcHh8O0t861uq401XfWtSpNHiEoJW10aM8QAAuXtRU9Xnk0UFRlv6LfsHbLqhIZSJT+nSqeN++op09R11jKkS8w9eKt9b6IoyOGJRXO3+pOKz3HFy7PzN1De4dKtsmPh5+Ol6/H9VTNbyTLEi3NPgaHw6Xb1Hzl5xGjk5MANLpzl2TFNt+mIakatpn7drWLfEuhwOjUplg1BGyZBrJS+U0v5NkfRtI0bCvX6hgeCdPS5JvRBq4Htp1GkdUKwjS5X1rS9Jk3dz4O78/4theuqI+ALdtEriFuVpIkZEnBYv6FcyzMzCZNDZtGMgoWVkUSq2ss1JZIlBnLUbgvoshYKtyj6fsy/2NJ1xxnLUtq2WiFhcvbmRyLEhqvzbUhhI1tmzWls0uygi1MbLv8vWlq9KAqMsMj/wIELJTCN+JAfybetbkGC1j1+DGj1flqhycyS4O2hiJCQHnL/3Q8jOaqzXJ1OP0YyXCOq2BgKISqKrQ217+xkTLCOKrwP2VDlXUEomj2TzJu0HtwlGVrS8vmlYJppxAI1Bo3jXTJTcou7RurB0IIUnYcvcbwLV1ykhKZscwnCadIolNbzLeOs2a/cTVjThGvWaRHl9wYUgV/eplrF/P/AqSsOLpSxOgpk/XqUNyk7WTJvYZlazvZv6v2+HjDjKGqzoop/tnuQFlS0DQ36XSG7EslUHV2ZDa2B4ZK89FxQ8D5ELZN/6GDALT6qt+00nwB0tEwdhWyhNGkQSSRor2xMhmmIqM4PLVFCiiqjiQrpFOzPqDeqU2CrhJRB6V+TJidBPHkOE5HbSFTkiTh1PzEjeK7xHu29rLihPLKTcUQN0O4VB9SjcTlcgSIWyUsg0rL6RJuCEMkkCV5Npa3SivYiYe4mN3UnA8StoSFUceGmhM3SWJVx3lXM1YhBHERxSllkV4V98Yh6VOREHNP2c1GnChOpcpnemqcsiSjKx4S6VDB3oTmUFm0vJ3dW0sLn5ccS3IcZ43GDIBTD5JIlM8w7O7MPOO9/aUjM445AZdyJxjDg4RtgWGatE0RcDnXw/QxWXPgCDaTHKnuxxgcj9DRWP4HMIwIZiqO0188BKYUJEnCG+wmMnFk5rO+gcyPMf3j1ArbNonGBvF7O2s+1+/qIJQorg2we0svze0BGvITMspsxAkhmEwN4ncUhrblty0Yi9pMxBqrO1usGEL2KH659vhZj+QjLVKksrLF5krCUSZx4a15qa1JOhpOYpRetk6j2jEmyVhqTmpbGUiSjF9pImzNLZU5G6adJm5O4tMKM9kqwa+3EUoVxuwuXd2Bqins2dI781k1G2pC2ITj/fjdhc9SuRA0AJ+vk3C4r+BFmW0pd3U1YKRNhkePw024Yi6HmWOmSWLfXpw9ixiMRGnz1xa25e5cSLz3AJZdede3fzxMZ0tpAhZCEO7fjad5QV2i7d5AF4noCEYy8yOMjEWJxw0WLpglilpigSfCB3E5m1BVZ8VJkg+3owEhbKKpjM83e5Lu2JRJyVx7SvEso2KIpscAgVsN1jQOAE3Wcct+JtIlguBrtIJTdoKYHS4k4CosPUmSCchNjNsDOS+neknYEiaTjNadTBGkiXFGyr6cqh2bEIIxe3BKzGdqnlW5MpAUhYDSTNgaK24F1+F+GDN68WnNdWlteB3NGFacuDGZ8/naUxcBsGPTkcKTplCwAQeEYv2oihOnw191BESmLwld96M53ITDvSXbLVzQRN/AZNkakMfcAi6G+J5dqMEgjuYW+kMROgO1LRE0XxBnczuRfYXCNflW9JHhSXqag6XHMnoE2zTwtiwCZqMZqoWiOgi2rmBsYMuM0/7A4VEWLazOAsgm50RygmhskOaG5cXb5k+ign+rtPpXMBrZRzpPyWzv9n4S8RTrNpTOa89G2k4xmjhIq2tp1oNd281pcS3OiHpbtWcYZsMWNkPWIZqVzrpF2oNSMyZmgZJZrSQshGCE/jmlErslH05cjFF8R7+WMU2IYWRkfNLUiqvGjDZN0gkqrQynD89ZFTBqTpCwIzTpPYUHq5g7siTT6lnGcGxPzobcutOX0HtghIkylmY+DJFgInKQluDKqs/JR3PTKiYnD2Kkil930YJm9h8sn7x1XBGwEILEvr2kJydwr8jo1PaHwnQFSvtoS7klPAuXYxtJogd3lI2X7R2dxKVrNPsz/rHsMLjExCCRwX0EF64rav1Wa7l6/B1oup/hweewbZMDh0dZXCUBTyOVCjM8spWWxtVVS1kWg1Pz0+DuoX9iS86GnGXa7Nh4mHWnV07hNu0U/dEdBJ2dONUqViclHnpV1mh1LGTQ2EeyxsB8yFhotrAYNA/glNx45RJunSqt4Da5hwl7mKg9mXOsJmuTQSxMGijjlqkCTXSQJMa4GK7bKg/ZY0TsCVrlnpqTKbJXGEGlFUmSGTIP1U3CcSvMcOog7Z4V1UccFPnd3M4mvI4W+sPbsOw0siyx5pRFbHnqQNVjMcw4A2ObaQ4sw6HWH/+taW6amlYwNPgchpE7f526RldHkIOHy7tvjhsCtlMpYls2Y4wM4z9lA7KmIRToC4Vp9XnRahBmF3ImVCSw5lTMWITQzmexUsV3cw8NZ3yyC9tnH15hW4T7dhPq20nT0lPRnJVJJjsWODsULSOiI9HUsQZF1Rk88hS79xyhIejJSUnO7Wv2ZxFCEI70Mjj8HM1Nq3B5a/ed5SPo6cbvaqd3/DliqdkJ8twT+1i8soOG/ESRrHsfM8Y5Et6C39VBg167HzofXr2JVsdCBlJ7CZkjuS/LCmSTsuP0mXtRJY0WpQLJVLXp5KRDWcSoPcCYPZiT0lyJ+EyRZpDDpEjQztyFxxVJoYNFxAkzTG8mjKxK8rWFxYjVx6Q9QqeyuOZNyXxIkkS7uhiBoC+9F8NOVu1+EEIwYQwwlNxHu3Np9ZtvZdDkXohLC3AktImelQF8ARebnpyVjC3lThBCEEkM0T/+HA3+RfjclVOJobyh5Q52EmxcymD/00Qjsy6sJYsz+0X7Dx3nFrCdTJLYv5/wY48iO534N5yB5JrNMDk8EUKWJHqCuW6Ichty05BVjeCaDajeAKNbHyV6ZA9WKjubDQ4MZpaci9sbsS2T+MgRRrY/gpWK07TmBWjuuSZNZCBJMo3ta/EHF/L4Yw8AsGRhOd+zTTQ2xMDAM0SiA3S0nYLHXdsmYDk0eHpoDaxgJHGAgdB24sYkTz+cEYw/9ZwVeWMRxNOTDER2MhI/QJtnGQ2uEiFrdQjoe5QgnfoKIuYYfaldRM3xspZWyo4znD5Cf3ofQa2tMvnOjK0yAemSi25lGWmR4oi1h5A9u1Eoa2oBCaaFwbgYopd9OMnoASvzVDdPlTQ6WYKmOumTDzBhD5cV1LGEyaQ9whFrDwJBt7JsVku4BvItFmUiSzLt6mK8cgN96T2MGkcyRFwCtrAIp0c5kthO3ArT7VqDWy+h/VHjnJEkiWbPYpo9i1n7gnZs2+axhzaWXOkKIYglxxiY2MJE7DDtwRPwuztK9l/r3orP10lb+3pC4UMM9T9LPDrC8mWZFdCuMokhcIxKEtmpFPEt27AmI9jxOI7WdrynnlaU7A5NTALQ0xBk/1jtoi+SLOPtWYazuYPkwGHGtjyGoupoHj+Kw8U+AdF4kg6nwfDmB9D9zQQWrEX3T22gWLVn7JQciyThDXQyERfYtk13p8xttz2C7vShah5kkYlyMFIR0okwDocXv78br7OlZLaOUGSkrDLclSokC0VBmirE6XY00NN4KpHYAKOx/fz90V2MDL2RdWf38Pvf/hmBRcqMkzKjKCj49TbavMvrq8FWoWKxLrvo0lcStSYImaMMpw+jy250yY1sZbIK0yJFyo4jEPiVJnocq1AlDWHNb7KAKmm0KwuJiyhhe4wxexBdcuLAmfExK2AKg6QVw8TES4BOFhdPrZ4DZE1FBprpwCcFCdljHLF3o0oOdFwzlq0lTFIkSIsUbslPm9KTG3JWAyopzgXVFjx6E2FzZKqSiYIuudFkHZAytfLSKQw7jlP20ujoxKMEa9eTqOKF4XU0cdHFL2T7pv3sObwRIWx0zYvm8CJJcuZZMuMk7Ria4sTv6sDnaisImax1A64YdGeAjp4ziEYGCE0coLsdxsZD7N7xDFKZGONjVpZe8fvQO7pQ/P6ZDB2BQLJyv+Ch8QzpLmoM8iAZq1Uq8byVO6a6PPgXrca3YAVWJEo6HsY2kggb9vUOsnrVSlrXnY+sakhF+Ktc37XCSEsc7h3n9DPOoPVPuzBSYcx0AmHbyLIDf2ABzkZvbq55vS8CVYYyhCzLCkFXJwFnB2k7yZMP7eC8i9ejaGClZfx6Kw7P4kwevp3XzzyVgZdUFWGaSJKET23EpzZiCoOUHcewk9gYSEi4ZT8NSm6hTsiQRtUkXMOY3ZIXt+LFEhYpEhgigYWFhIRT8uDXmnDgLHt/60ExV4MuuWhVurFFJwYJUiKJhZmpiCzpeKVgTqHOHMyTlOQ0NNlBk6OLRtGBIZKk7PhUNRIbTXXikRvRFff8FyjNezk0NHtZdWIPv/nx31nQcCppK0HKjGGQRAgLWVbxu9ppdgbQlPmpX1gOkiTj83fh83dx6qnr2bm7H1nWsEXp+XZMCFh2OtEXLpghW0FpcptIJJmIJ1jSXJ90YT5xSrKCGgjMKKZJFuwbjvDC9cuQqyx/ZCsg10nG0+du29nPOWcux6F7cejeqbFkbbaUtWKlgmKec8G01exQXDz59728/Iqzueiii3j6od31dagqYBa5QTWQnyo5UBUHHgXQgBLVi6dxtEgYMv5YN17cUgn/pTZrQZWqslwJ1fp3ZUnGiad6C3eOrocCZI0zuwDnzGelrlfy8/rdNS948VpkWeaRv22bKcBZbL+mWAhatSjn/y2VNOVxO1i0oIV//HM3gabym9rH1AdcLhY4G/vHxlnaUpqAq/EHl8PuvhEavK4ZTYhyqmiF1579gcptxOVj265+An4XPV3Fv1e5jLi5otyE3PjoXmKRJOe+9MTqOpsn66rkg3u0cJSuN+0nrvW/o4KjSL5F+5ive1plP+e89ESO7B+pTYCnAmr1/xbD6lWdyLLEtp39QPnQ1Xl5yiVJeqkkSbskSdorSdJ/zEef2dg7Os6y5vmrEJANocCu3sxO5eoFcwsdqgVbtmcy9U5cN5v+W484e+a8vCrIleKByyCdtnj0vm2cffEJOPS8B6GWyVzKsqn3Ia2CpKoikfkYy78CjqfvNh/Wb95v29we4MTTF/PQXzfXOJYKz0oZlHs+s4+dtK4H07LZvru/Yp9zJmBJkhTgR8AlwBrgakmS1sy132kIBXYNj9DgdtHq9RQcK3lekW9WTBUNMgRs2TarFxaqgeWL8swXDveOMzYe5eQTF1TVvl5yrhbZE/H+2zfi8Tk560Vrj+o181HRgvo/Eq4MVa35Ox1X1m+VuPDSk5Flmftv3zjzWS1kejRx8kkL2LVnkESisubxfIz4dGCvEGK/EMIAbgZeNddOswl013BGZHlF69xjYIshkUpzYHCcNYvKyzHO1dUxjeklybObD3Py+upTf3PHMjdCLrc02/zkAYb6J3jRq08tPFiFSHtFHOWHtS4S/n+BiOv4DjXfq2J9lLturdZvsfZFxnjRZaew9ZmDDBweL2w/hbn4fjPn1+7/dbkcrFrRwbObD2XaVRjCfBBwF5CdhN079VkOJEl6lyRJT0uS9LQVLZ31VMwvPE3Aq9tbptqUHkzRQp1VfLbt0BDrFlUXmA25N7ZeP/Czmw/T1OBh8aLiL5Za/MDz6YYQQnD/nzdyytnLaK2jWOfsNWt/AObDCoY6ieVfmYSPJvkeLR91nVh76kIWLG3l3j89U9uJFdwP8+H/Xb+uB1WReXZTdeXunzebXQjxMyHEaUKI0xRv4Q5uOVINJ1McmQixpv3o+Wg37e+nwedmQWswM57n4c489WwmffL0U2f1F6r1Mx0NZE/Iv/7hKYSAS648vbqT59EKPuYk/K9ExHWOd77I91hYvy9//VlEwwke/Mus//doux+qfS5PP3UxiaQxs8dTCfMx6j4gW12je+qzqlBtJMS2wWHWdJQm4Lm4B4QCm/ZlHObrlxWm1x4tP/DIWJT9B0c4fUNl/YViOJpuiJGBEE8+uJOXXHE6qpbXbj424+aKo0nC8K9BwvWmFj8f5HuUEGj0cM5LTuC+P28kVcbHejTdD+Ww4bTFbNx8mHSxMMwimA8CfgpYLknSYkmSHMDrgNsrnVRbqBdsGxxiUWMD/rwCnfO1EXdgaJzJaIKTl5WvCjHffuDHn97PSWu78biLC+w8326I7HPuvOkJGpq9nP+yk6obwHxYPFOYz4d7TiR8PBLxHMb1vLkd5nEuZOPlV5+Jpqnc/bsnZj6ryvqdR/dDqWdyQXcj3Z0NPPFMZmVbjXLinAlYCGEC7wfuAXYAvxdCbJtrv5BLoJv7M7qx6zor1y2rhySFgGf39nHqyiJSeSUwH37gR57ch6oqnLHh+HBDZOPZR/ZwYPcgl//b+YWppPOweQM8L64ImONm0/FCxHMcx3xsuM30VY/roVbkjVd3aVz6phfwxD92cGR/aZGbuVq/hf1V9zyefdYyAB55Ym/Vfc+L40QIcbcQYoUQYqkQ4iuV29tls5aKuSU29w9hC8FJXR1TbWocY157YVuYZhIrlcC2MtlLT+8+QndzgI6pEkXPhx94+65+JiZjnHXmEsx0AsuqoVw3dRBywZs/98YIITBtg7SVxLQNfv/zB1m0vI3TL1hVZf/zm/FkKxntYVMYxcVWni8SJuOKSis2pmLnKKUdVUyTbt59tYWNKQzSwqiqqkhN371G18PMnLFTWGXSbudq/b7ktRsINHi45b8fmr12/nwWAtMySJtJTGtqztRo/dZr5JzzghXs3DPIyFh0ZiyWaWCmS9f4OzZiPNEY4Xv/gexyoTY0oHd2owYCZfUWYobB3pEx1neXUzEqr9dgxiMkhnsxJycwk7EZ3QfbSiNrOn+3xvj4lS/ktJU93PHY9twxKxLyPKb/mukksVAfycgYf7v3BF52yXmMDT9HKplEkhV0zYfH247b0wKqUjY1ORu1ivNApqpxJDlELDVGyowiISHbEjY2N9y4kTdecz5XvudcHr1/C0q2sIiiwHwI4WSlBtvCJmZOEDHHSdkxbGxkO5OuLoSFQ3bhVgL4lSZUecpto6kVU5WnUUvKshCChIgQsSdIijiWSE9VfxbYwkJDxyV58YkAujSPWgMlCClpx4nY4yREFFMYM5WobWGiSg6ckhuf3IhT8sysWGp+6VT5QjPsJOH0KAkrjGEnpjQoJGzZRkmp6LIHn9aMRw3WVfa9oO6bpnD5O89j2zMH2fbsoZxjpm0QSQwRT42TMqOgqMjIMy8m3enH62zB62qtWHyzEkq5H5qbvKxe0cF/3/gQ0VAf0djQTEFeucxvcEwIWPH58L/4hVjRGNbQCNFNz6HoTtxr1qC6i4uvCwWe7e3nZWtWIJF5IKuBkMGKxYju34EVi+Js7cK7bA0O3YekKEhWxiK3knEOjI0zPDbJyV0u/hAem1VEKzKWaaLP1oXI1miwVZDN6TFISFNlSUxMQgO7SESHcfvaaWhexhPPTXDVFW5ee/mbePjRPVhmkmRykuhkH+Nju2hoXIbf1T7zUM2XFoQtbCajhwjF+3BrQYLuLnTVh6o4ZkjbtA1u/PHf+MTX38yiDSrPPXyIBldPeb3bUloLpTQiyFji4eQg40YvDtmNX22mRVmAKjmQJAlhmhmlLTtB1JrgcGo7XiVIk9adUSirkYSBskQctyOMWr1IKPjlRhqUNjT0md/AFjaGSBIXYQbEIRy4aFG6ZuUfobLeRJWWX0okGDV7MUnjk5tokxegSc6Z30AIG4MUCTvKiNWLhESL0o1Lq1FKtQrytWSb0eQ+4lYYn9pEs96DLrszBKyqCJFRrUuaESaNQUaSh2h2Lsgo+hXrsFrr94oNtHQE+fZnbp35zBYWY5EDhBNDePQmgp4edGcQRc5ougghsOQ0SSNCJD7IWHg/Db4F+AMLqn4pVOt+OO/sFciyxM033Ug8GsMb7MLRntEAlySJA1vvLNrHsXFsSZmHQA340Xx+9KVLSB/qI/LkU7gWLUZfuAipyM/1zJF+XnfKiSxvbWL38KyQeDnLNzHYS/zgbtxdi3GvOGWmssW04lnmXBnVlZGxe2JPP+eefgrhz38Hh6+JQNfqumrBFUMyNs5Y/xbcnlY6l5yLrKjIFjy3rZ/JUJwXXrCafz62F1Vz4dVc+NztpFIRxka2Ew8P0tpyAopSKBiUT8gVrWBVxkhGGZzYhqa66GnegJY3FabPUWUHD9+9mze/d4yPfup9XPni93Ek9BwdvtU4FFdpK7gGEraEyWBiL7Zp0Olcia4UVimQVBXFBJfiw6X4aBJdjKX7OZLcTqtjEW7FXxMJQ3FrWAibEauPhIjQrHTjkYuTmCzJOCU3Ttw0yK2E7FF603toUjrwK02z92AOEEIQskeYsIZpUjrwyY1FZR0lSUbHha64CMjNRMUkg/Yh/GYTjUpHdVKQVZBvjAgjiYP4tRYW6ScWVV6TJAmH5MThcOJ3tJAwIwynDxGNT9LmXpp7Tqn7k2cxOnSVq/79hWx56gDPPbYPgGQ6ymBsJ07Nz4Lm02ZWQ0KePVeSJFTFidflxOtqwTDjjET2EBkepb3phKJ1FetJvjDNFOe+oIcduw6SsLto7fKU3B/Kx3GRuydJEnpPD/4XnIXRP0Biz54Zf1+2H/aZI5nottMWZPQTKiVkxPsOEu/dT/CE03F3Lc5RrSqFx3ceoing5dyXvhornWT84HOIKRnGuYSjJaIjjPZtpqlzHY1tq5CVqeWjApZl88Ajuzj7jGW486IhdN1HR9cGNKePgcFnsKzKhUYrwUjH6B/fRNDTRXtwLaqil924sEyb3/7k76w4oYcrrryKoLOTvtAWDDOeaTAH36plp+mL7cAhu+j2rStKvtPI9j3KkkKLo4dWxyKGjAPErFDmQI2795KizFrEwmbQOoRFmh51ZUnyLehDkgkqrXRpy5iwh5m0yldBqAZCCMbtASL2BN3aCvxKU1VEKqsqfq2ZBY7VGYvYPFy2JBdQ1T2LihAjqUN0OJfT5OguJN8SZOpSffR41yFLMv2xnZX91UXm0ivfcBbNbQH+9wf3AZBMhxkIb6XJu5i2wKpZ8q0wDx2qm47m9XhcLfSNPEvaLC0on+mv8v020wl0uZeTT1rJg48eRHN4aqobeVwQ8DRklwvPGaeRHh4mNVwoZNEbCtMXCnPGotKRCtOkbIyPkOg/RHDdBlR3dWVQhAKPbT+EbQvOW7+chiUngxBE+veUvA5UDjdJG3HGBrbR0r0ep6ex6A97z9+34dQ1zj9ntkjgdDtJkmloWo7L1cTwyDaEEAV9VJos0xsPtm0yML6FpuBS/O7Osg919mbF3+94jgO7BnjHxy6h2d9Nk2cR/ZHt5R+oChtyQggGk/twqwGa9QWZsVSwGvM3gNyKnw7HUoaNg7MVGuoIoZIUhXGGAUG7sqgu0XmH5KRTXcqkPULcrlxWvhyiYpKYHaZTXYomVa4BmP0iAVAklU5tKYZIMWkNFz9JU6u6VykpxahxmC7XyuIlhcpGRCiZYpqupWiyznDiQOVzshBo8HD1ey/iyQd3suXpA5i2wUB4By3BlXidFSrEFNl8kySJBv9CAt5uBie25lReqWXzTSgSQtgMD27mqisvxbYF9z24o2i7cjhuCHg68kF2OPCceCKJXbuwk4VvqMcPHuGMhd3F/UlTsNMGkb3b8C0/AUV31RQPPBFNsPXgAOeeuBhJlgksOoHE+ACpSOmc89zvkRuOJoTNeN8W/M1L0N3Bkudt3zXA4d5xXvriE4oelySJYMtybNskEqmc51IqrnE0vA+XI1i0HlY5C8K2BT/7xt20dzdy2VvOxq+34tL8jMamHqia9RcUwulhbGHSpOeVFKqRhJ2Klwa1nWHj4Ky1VyW5TCNhR4laE7Q5FletC10MmuSgVelh2OotHxFQBqYwGDX7aFMWVqzynE+82ZAlhTZtIZPWMCk7bye+2kKjisxQ6gDNjgU4ZFdhgwrkOzNOSaLFtZiUGS0oejqDIt/jTddejO7U+Pl//QWAkehefJ52PHru/kytoWcBbw+qojMRqq6YZzH3Q2j8AKrq4NJXnsPTzx2ciX6oBceOgJVCF8M0VL8fR1cnyUO5N0coGQJucLtY1d5ScGwayYEjOILNaE2Fm2jV6EI8uGU/axe20xL0oGg6vp4VRAeqj+3LRjI6ihACb2Np1bNpC/qv92/lpBN66OosXt1XkmRamlcxOXkA27ZqDpdJmwliiRGaA5l4xVoTM557fB+P3r+dq997Ic3tAVrcS4gaYwUl7nNQ4gG1hc14qo9W55LiVniNJBxQWxEI4nYot2GVRDNuDtCkzpa1L0dsleCWfbglLyG7fEXcUpiwRvArjejFCG8K1Y5Pk3QalDYmrMGsD6vMIlRVouYYmuTAqxbRra6SfKchSwotrsWMJapwiwBL13Ty0is2cOfNT9B7YIRkOkIqHaXBU4WAVSXZSVWhuWEV4WgvlmXUtKIUioRtpQmHDnPxxZfQ3hrgnr9nUh+q9f1O47ixgPPh7FlAarAfYZo5JP3owYzIxTlLFgHF4nttEgNHcHXVqzIGf38uQ7YXrs8QlbOhHTMVJx2P5PiBS7khsm98ePIwvsbM8rpSUsZf7t+Kadm8IksMPb+dw+FDc3iJxwuXlYWTKPfnDSUH8Ls7yobiFLMksifvz75+F5Ik8e5PvTJT8kVvJZQcyBwsRQhFHtRoegyH5i3r862FhDP1yloJmUX8rxWrK2fqqXnlYOE16iTigNJC2B6tuYy7LSyi9gQBuVCgaXostY7HrzQRtyOkFbsm8gWYTA8T1NoKX5J1bjC6nI1IyMTNydwDed9JliWu+cKrCU3EuPGHGd9vKNGP39tVEIFTb+KFquq4XS1EYgNl2xWzfiPhflzuFl516emEwgkeerS+6jHHJQELJeMPVnw+0pO5hThHojF2Do1w9tLiFqUZDSPpGqonN5ytFjfEwaEJ9g+M8cJTMgQsyTLOYBupcG2bK7ZtYcQncfsrZ+8BjE/EePSJvVxy8Tq0fP2F6T5VGa+njXg8oxBXixUcS47hdefpadQoYjLUN8HN1/+Dc15yAhvOW4lXbyGWzvqNqiTheHoSn6NpzloR2STsURpIWNHiSRJlXBJxO4RXaSgbmpRNftUQoC65kFFIifIbPflIiBgOyYU65fetl3SzIUsKHq2BRJV+6el7atoGpjBwKXmbkZXIt0zChSRJ+BwtxI3yc+aSq05n5Yk9/PwbdxOLJDOVjdMT+JxVCHLVILrudbcRS+W6F6t5phLxUXoWLOPcM5dzz9+3YaStmjbfpnFcEXB+BpwSCGCFQ3lt4OH9hzi1pwuPQys4ZkbDqL5AHdfO/ff9G/dw6vJuGn0ZC03zBTBioSJnlkY6EUbVvUhy8V8mx1881eT2v24iGHAX3Yybhq77SRmRin1m/j27+WZZSTRn8Tjr3HPKW8G3/vKfHN43zPu+cBkNgUZMK4Vt1+bvTFrR2Q2dciRchaU1TRiyJOOQnaTseOnGRUg4KeLoUhlLvNg1qyBkp+QmJcqMpQgMKYlL9c6ZdGcw9eLRZQ9Ju7QM7DSyX2hJO4ZT9tTkn6/mhaqrXpJWaX9pS0eAt33kEp57fB8P3LUJANNOIskyqpKvBVP7PcpeGeoOP4YRqXqlktl8ExipMK9+1TmoqsId92wq2q4aHFsCLuMHBlA8buxEoqDNg3sP4FAUzlqcsYJzXAGJBIpz9mGqVh84//g9z+xGkWVedOpyAFTdg2VkxlKtG8JMJ1B1d0ltiGJ4+rmDHOkb57WXnVqyjeLyZqooV+FHm0baTKIqTiRJrkqkp9zENtMW3/n0rTS3Bfj3z1yKquik7VTWAMtbwZnU1RRato9znkhYk5yYIlW+cZ41bAojN4GiDuQTsqQoOBQ3pmwWPVbqv/Q8jGUGWd9Rk3VMUTqEUVLVAr962k5NlZufwlzIN+tch+LCnJ4veXNFkiQ+/PUrkRWJ733uj7NjsVJoaq5PvOgcrbHkkKJoSJKMZaen+sx9Pou5H2w7jaoqvPrSDTz93CEO95bfoC/3zB8jAq6WOCREkRrxz/b2E04muWB5oYyjQIAkFSfeGtwQ+wbG2NM3ysUbpixRSYIaCC9zQVFdEPz0WJTMJf5w+7OsXtHB2tWz0pi5E0PKfM+ix0pZwQLKxo5URvZk3rn5CLf84kEufs1pvPDiMyn4TSuRcLE5MA8kLClK1bNrmojnfmfmE/MwmiLuFilvzuQcK3tvp8YyT+Q7DSFE0Tnyitefyfozl/Lzb9zNYO+smyIzpyvcl2o2lUslXlQxabLbvuyl59Ha7OOWPz8N1L75No3jygWRDaGAMAwkrTAG0rRt/rn/EBcsX1Lwk0i6A5GuL1khn7TveWYXpyzroqPRh51OITlmx1JNUoasOLCKjKXSZtw9f99KJJrkysuLi6FbloGsOmoid0XWsOxZQZt6reDs837z47+zb0c/X/zOh2guVrW6BAlLmoYiqViiiPBQpQe5AhFYIo2q1mZBKooD6yjkhFqYKNS2RJZL3ZdqUMbPbYk0SpHE13Lkq0hKJpRunsnXstMoSuFzvWBpK2//2CU89fAu/nLLUzOfC1VGkVUse/ZZqsb1UI3kpBA2tjCRZbUq6xdAlhXe8fZXc7h3jCee2V9+DBVWvMcNAU9bp9l+YDMcRvEXZiMJBe7bvY8Wr2dGHW0aqs+HGQkXtC/WR9nxKHD3kzsBeNkZq0nHw2ju4plRpdwQmtePkQwhhMhxQ5SDrUAimeZPd23k3DOX55Stn54gRiqMQ88dSyUrWHZklm+WVWZ5XuOGnJm2+OpH/xePx80nvvUm5AqTLRu6w0/KKuGTrORHLEEIQghSdhxd9hRdUpcci+wmZcdqjh2uhJQdxyHX5lvWa/UbT4+5wriTdhw9ayzV3B9d9pCitJIXUNeqJSUS6GpuQodDV/mP71xNMm7wnU//seAch+ohbSWnwi8rux6qgVAkDCOKprqQS+zTZLedxmmnLGHd2uXc+LuHEKI63d9SOHYELE8RbYmKGMKyMMfHUYPBGVLOdiE8sPcAhmXx4lWZSIVpElR9AcxoGDttzNkNMTAe5undR3j5WatJhUZxeBtqkqhUNCeyopFOlN99LmYF33rHs6TTJq8rUhIoER/D6QwWvKHLLX0kSUJ3NhBPzvqrqhGyrmQF79i+k//6z//m1LOXc9W/v7CwgxKWikv1E7eLbyQCdZFwyo4hSwqqPLs5Ww0JOxUvMSvrN6qS1MrBEiYpkcBZ4+aeS/aQsEtEcmSjhvEJIYhbYZxyhvSqfTE5HD4sYZK2S0Ry1OkyiqcnCoSC3vO5V7FweRvf/OQtTIzOzovpuSZJMk7Vlxs9UQbVSk7GE2M49WDV1i/A1VedyfDIJH/88/2F183eH6rCIDluLOB8GIODKEE/irv4BI6mDJ44eGSGgKchaw60lhaSg1VXRcpBPmnf+cQOFrU1cvKqReiB3NjMajbjPM09RMczscvVbsbZCkyG4tx17xYufuFaWltmIxcsTGLRQbz+wtJJhd8l9xp+byehaG/5zbsaXBFCCELJAe7/4xbuv30jb7zmRZx67orCPouc79dbiRgj5a2HGkl4Mj1MQC0MU6pk7XlkP6ZIFY+eqJOMw9YYHjlQMZOt4HKSji65i2eL1TmWhB1BkiRcjkD1lUamQsb8WguTxlCR4/WRr4k5FYI4m0h18eWn8dLLN3Dz9Q/wzD9n0/7zSdTv7iCUGqQANW68zbQTNpFoHz5fpSo4s8/RqhXtnLZ+Ib+/7UkmRg9iyXPThT4uCdi20yT37kNftKhkG6HAX3fuYWFjsKBYp6t7EYneg9hGKqd9sT7KQSjwt2d2EY0nePNVr65L19TT0E0yMooRLx/CVsx6vemPTwLwhqvOnPlscnw/Lk8LqprRn61kBWf/2+VsBFkmGp+dxEUna5UTOGyOABIuLcgPvnAbB3cP8YlvXU3HgsIMxHwSVmUdj9bIWOJIzRlVucczfuGkFSVhhfBrhQkM0yhFxJIkE1TbGE1XeDllE2AZEjRFmklrmKBSQaugBIJqK+PmALYqzdkaF8JmzBqgUe+qbs8gz88ecLQRSY9iWFmuiHo3SxWF0fhB/HrbTDLQqvULeP/nL+OZf+7mNz+atSiLzUuPuy2TzZnMyjCcw8ZbKHwETfPgcOVa4+Ws37e88WxC4QR33rsdTfcRHp/VJq7V+oXjhYCzXAxCCOI7dqI1NaE1F0klzhrx33buIW1ZvGxtxuqadUP4cbZ3Edm9FVsufKBqcUOMHt7Lbff9k0vOOQWvSy84v9JmnKxqBLpXM967Bdsya7KCh0ci3H3vFl528Ym0tfpJxMeIRYdoaF1Z8rxykCSJlqbVjIX2kjZnH6h6XBFpK8FY9ABtvhVIkkQqkeaL19yIbdv850/ejNtTZCMsr49m9yKixijx9GT5i1cgYVtYDKUP0axX1k6A4kQcUFsRwiZklhCuKYZ8QtZUhKowLPrwK005Ptda+nDrDbgdQUbSR2oKNcyHpKqM28OoklY8lTgfRchTk3Ua9S6GkvszbpE5kG8kNULKjNLozoSPNrf5+ewP38joQIivf+x32Hb57ypJMq2BVYyEd2OWUAWs1vpNGRFC4UM0N5Wv9JJNqmtWdXDWhqX87k9PkUikaehcTWT8EKlEbfkB2Tg2BDz9nfLIUQhBcudu7EgE16oMyUyTarEyRaFkikcPHOaSNYXLXteSZQjLIrp7W9kg63KWcWKkj+jwQW7feBiXQ+PlZ64u+7VKuSHcwQ50TyOjh56dKX9U/PxCQv7fWx5HIHjD605jdGgrzW2FmsC1WMG6w0dDcBkDI8/lkHAByrgi0laC/oktNHoW4shK7Bjqm+BrH76J7kXNfOr7b0Ap9jBkK3bJGm2e5QxFd5MQ8bosYUuY9Md34VL91WVJZSGbiCVJos2xmElziLBZn4aDEIKR9CGEsGl0dhcl12qt6GatG8OOM5buq5mEp7/XhDFI1BqnVV9c3vqtEF0S0NpQJQeDxr7SvukK5BszxhmN7afNtxJZUnB7dD7/s7fidOt84f03Eg2VNwim555LD+J3dzAwsRlTqhwtUsz6TRlRBoc30dS4ElXPfUmWs37f/pbzmAzF+eOdz2a+suaisX01I33PkUqX3s8otwF/fFjAgJ1IEn/mOcyJSTwbTgW9ijATBe7YtpPuYIBTunN9opIsEzjhFOxUktCWZ7ASsYouh2kr2DZNwge3E+3bS+Oq09gzFGbzgQGuvGC2OnCt9eKCnavRnF6G9z1OIjWZ1U8lKzjE7259kJdffDIbTr8Ql7tx6rvXHyvq93XhDyykb/gZovHhjLxlFa4IIQQRY4ze8U0E3d0E3Jl7nn3upif28/3P38ap56zg2q9cXnwAWSTs1oK0eVcwEN3JRLKvfHiRquQQccKM0BvbhkNx0aIvmmpTOVQtH9OEpck6nfpyxtP9jBiHq6q1Ng3DTtKf2oMp0nToS+srw5MFWVLo1FeQtKMMGvsw7cqhldPfwxJphpL7CZsjdDlX5mxKFqCa+GpNpd23AhmF3ujWwuiVMn3YssRY/BDD0T10+FbjVL2omsJnfvQmFi5t46sf+i2H9s76mMuR7zQaPAvxeFrpG3mWeJY7otLGmy1DONLH4NCzNDUsx+vJlQgoZ8icdsoiTlu/kF//7jESyfSMgeX2tdHQupLhw88QmcisWLKf6UrRT8ecgK1YnMTOPUQefRTF78Nz1mnIjvL6p9nkd9+ufcSNNJeuyywlsklWUlT8605Ba25mctMTRPftwIxHC/qYhp02iPUfYGzzI9jYNJ1wFqors3P8uwefY3F7I6evKtSgqGYzDlUm2LEaf9syxo48x1jfFlLxiQLrZvpHt22L6GQfA4ef4EfX30wimeb977205D2pxQoGCPi6aW9ax0T4AAOjm4glRktuiAkhiCVHGZjYzHj0EO2BNTPkO9Mm6/p/++Mz/Pr79/Kiy07hLddeXLzTPBLu9q8jbkxwJLyJsDVWkvyEECSIMZjYy2BiD016Dy36ouJiMXUQse7wscC7Dhubw8ntTKSHyspKGnaCEeMIfaldeJQAHY5ldWkJF4MiqXTqK9BlN0dSOxhL9+VmHDJLupKqYtoG40Y/h+PbkCWVHtea3Ey2bFR7f6ZeeJIk0+ZeRlBvpz+6g+H4fpJmtGQflm0SSg9zZHIjhhmjJ7gep+ZHkiQ+9LXLOfmsZXzvc38su+kGxTeAJU2h0beIluBKRkJ7GBjfQsycLLlSEMImGhtiYPAZItF+2ttOwetpq9qIkSR499vPZ2Boktv/Uph27G7ooHXBBmKT/QwdfJJYaABhV/fylubiY6oXWluLCL72pVgTEYSRxtHViWNBN8oU2U0nv0nW7A2aLjk0/dlsG/jmq17KeUsXc853fkbasnLKE83UboslSA4eITnUhyQpaB4/ylRsrG2mscJhrFQcZ7AVV9sCHL5gTj8OSeGvX3knm/cP8OEf354zBiCnYGf2eXLOWMTM9WKTfcRHe7FtE4fTj6a5kSQJ2zJJJyKkU1F0dwO+YDduZzNvuvJM/u3N5/GBj/2WzVt7C/qcuV5eAc784/n/FmaaWHyYcKwfIx3HqXjQNA+yJGMLm3Q6RioVQVPd+F0dmcKGkoxUop5adumjaz5/GS+78nR+8V93c2tWJdscZPUjhCCeniCUGiJhhtHRcShuZElFYJO2k6SsGDIKfr0Vv9xUXZRBpdpsJZC0ooTSw0TT42iSI1P7bCqZwRQGKTuOjY1fbcKvtKDJlYXT64VhJwmbI0SscRQlM5ZpwR5LpEnZcUxh4FUbCaitpVXmankplXD7mHaasDHtqhHoihdNcQIStjBJWTEMO4nbESSgd+DSAjMvyPd87lVc+oaz+NV37+F3P3twps9SvttKMb+2bRI2RgjH+rGsJLqWeZZQFIRtYaSjpNJRdN2Pz9eFx92SScevEHaWffzFF67h0x97BV/65p3c9+COAkNluq0QNvHoCNHJXoxECNXtQ3P6kGWFHQ/87BkhxGn5X+XYEHBHq2h+1+tRfX5krwdpOlsoj1whi3DzCDi73bkLF/I/V7+GD/zhTu7ZsSevfXZfU5kv0XgmVthIgS2QVQ3N6UN1Zwp1ynbuOdP/f88rzuKdLz2D1/znrzg8PFkw1lpIGEBKC6x0EiOZIX8hbGRZRdO96JoXecrXK1ug6yo3/uQdTITivOeD/zuzYTFXAs58NlWA00qRMqKYqShC2EiSjKa60TUvqihcxhYj4WwClhWZj//XlZx/yYlc/9U7ue2Gfxa0B4rWlLPsqQfZiGALCwkJTXGiK25USc+1eEsU+ixAnURsCwvDTpCyE1hmxgJVJQ1ddqNJzpoyEutB9oahEDaGnSRlx2cy5mRJRZfdOGRX6WKp80C8+f0JIWZeiqaVQiBQJAWHw4+uuAtkT9/9qVdw2VvO4dZfPcwvpgTWoX7yzT5fCIFlpUiloxh2cupZUjLz1+FDduSL+JQm4OxjTl3j1794J+MTMf79I/9bkHhRsNKccj9YpkHKjJBORhG2xfa//7goAR+FBMzKkHUHjgWds2Q6/cwqAiwJIecSWzaEInJIGODRA4cZDEd4zfo1MwRcCpIko7q9M2WKpCJkW/y68PuHNvHWF5/G6y86ha/f9Pey16kGQpNQJRfqlCUu2dkEPvu3rUAqZfLTXz3I5z72Si558Truumfz1LhyC3LaqpxDwoUFO0tXVFYVHdWlg6upeCn7vM+EohSQcHYBUNuyue4Tv0eRZd79qVdgWza33/hoYb9FCnsqsopbDuDWAlVUF1aqI+FpEqqRiGVJwal4M+ptJdypok5yz0elOF1JktEVd3kd5WzUqttbQ+y1JEk4FFemOOs0Svjw3/nxl3HZW87htl8/kkO+pVAL+U6PRVWdqKoTd4VCm7UkXbzhqjNobfbxxevuqJj1lu37lZwOnDTh9BYJyczCMfEB+6beRjORDUVCxfJRbgPNkgV/2rKdc5csos2Xm+JYT/xvqZC0sXCcu57cwaUvWEvQm5l0pULSqhFrL4di7e5/aCebt/Xyzreei8/rrLnPUu2L5shXGR9cKVPOMm2+/rGbeeTebbzns5fy6reeU3xQZTffqvBX5m3QlW+r1uUjLodsX+xc/ps31Pr9qrl/lfor5q+VJP7tP17Oa99xHrf/5jGu//pdOcer9fuWI9/cc+dGvtnHOzuCXPna0/nbP7azZXthYle1cb/HXVXkBb4gniIiO9kopg1Rqg3AH57bhiLLXH7yCVPnFWlfZWpyqXOEAr++7xkcqsIbLjq5/IlVopa4YIDv/vQ+fD4X73z7eWX6rD5FebZN/VOhKhL+6M08fM8W3vXJV/DWD7+keEeVBFaq3TSqReR9non4mONoEO90v+VQ5LdTVJkPf+MKXvO2c7nt14/wk6/ckXP8+SbfWnHt+1+MaVr89FcPANUbUjnP9PFYlFOWJF6ycHneh+W1IbJRjJSPTIZ4eN9Brjj5BBQp/61XrI/yn5WrlnH/c3u48oXr8TqnymHPoxVcSSlt38ERbr39GV51yXrWrColV1l7VETmsypSOmvw12Wfb6Ytvv6Rm7nrd09w1btfyAe+/Nri4j2KMndrGGoj4ex+/xXJuN6xV0u8FWJ8i/1eulPjsz96My961Snc8L2/1W/5VolqDIhanpELzl3J6acs5r9v/Cdj47GqXQ+14pgQsGFbvHrZGqC8hTuNGTGecjdBgZs3bqbD75vRCT5aVvB///VJfC6dK194UumTKiC/enJV7abG8cubHmF4JMyHP3AxStbEq1iavsZS9lAbCVc637YFP/zCn7npp//gkis28NkfvRmXp8RK6FhYw9l9H+9kPJcxHkWrF6Ch2cvXbvg3Npy3gh984TZuvv6BnOM1kW+V1m9hf/W7Hrwenfe/+yJ27R3ktrs2Vuw7t9/q2k3jmBDwZDLBOZ2LaHd7y7YrR4zFFNL+vns/A+EIr9+wvkj7Yn2U/6yUFbyrd4SHtuznjS86FbeuFYyjqrjgMqjkikgk0nz3+vtZtrg1RyeioG1dE3V+/cHFzv/19+/lh1/8MxvOW8G3bnoPrV0NxQdXDQkfTSLOvsaxJOX5GMP0PZgPqxdK/jZLV3fy3T+8n8Ur2vnKtTdx9++enDkm1CLVWJg7+c636+G9776QYNDNt370NyxbHDXrF44RAU+kEsiSxGuWrQWKbMaV8/uWuRmmLLjp2c2cs2QhS5pKPNSl+q3RCr7+7scJel1cfWH9vuB6rOBpPPLEXu59YDtvvvosli5uKdl2vvzB803Cd938BJ999w00twf5/h/ez9pTFxUfTCWXBFRPSLWQUKXrHQ1SLtbvXPuuxydeDmV+j7MvPoFv/vbfkYCPvul6Hr1v28yxmkLNYF7Jt5Zn4vTTFvOyF6/jplufYNfeoZIxv8VQq/ULx9AF8cTgES5fcULV51S7Gff7jVswTJM3TlnBlazceqIkALYfGuLBzft408Wn4nOXF+mp1gqudUPu+z+7n1AkyX985GWoJeIYM/3O3R8MtZFwSQnLrPYbH9vLh173YyKhOF+/4d9KR0jA/FnDM+3ngYiLXX8u/80njsZmZInfQFFl3v7Rl/KZH7yRg3sG+eBVP2HfjtlS788X+Ra/Rg2uB6/ORz/4Ug4cHuWGmx6r2Fe1Kcflnvljlor8h71bWBpo4rS2ElqcFQp2QnFSHksluHPbLl590lr8zvzg6/JjqqSSlk/cP77jUbxOnbe+ZEP5jvP7nIcNOVuBcCTJt370N5YvbeMtbzi7pjEcbRLOnF/ZGu47NMYHr/oxTz64k3d98hV87idvxut3FT2vamu4HiKeTzI+Vqjnu1RLvCXue3N7gG/877u54t8u4O7fP8nH3/KLooLq+Tga5DuXeF+AD77vxTQ2ePj6d/9C2ixfZr7asLNKbsdjRsB3HtxJxEjx+lUnAkXcEEVQbjMumzx/+eSzuB0aV51yYun2lci4ijm8u2+Uvzy9k6svPJmWoKdgHKWs4HKoxxVx19828/orzmDd2q6SbevxB2c+O/okHI+m+NIHfsNPv3onp527gh/++QOccNri0gOtZre83qiAfzUyrnfM1d6fMvf6BS9ey4/+/EEWr2zn6x+9mR98/jbSxmxCyvFEvsXHMdvmwvNX8+IL1nDDTY+yc8/gUXc9TOOYELCwbOLJGLcf2M7LFq3C7yhfRLFWK3jX8CgP7zvIm884GS3vx54mQts0MeNRzHg0p05aPVawIku8+5VnFR1fNa4IW7JJp2KkkxFMI7fcfDWuiB/84u8MDIX49Mdfgdc7ey/r8QfbsiBtJjCMKGkzUVLKc75JGODPNz7KR9/4M8y0xTf+999460deAopJyoxhWIlcKcRqrGGYn02rKXIzbQPDSkyNpXqltHnF1HgsRWBIBoYVnympXt35NRBvifvr9upc+9XL+ewP38Rg7zjvv/z73Hv74xhmPJOSXEpdj6NPvkLYpNPxzPxNzz5L5eZ+e1uAD19zMVt39PGbWx4v2z9U73qwZIFpJEgnIiXbHBMtCLUpKHwXnsGJy1bx4Ne+x3/efwe/PLAdOZvp7KkvWSC+U1mgB+DsngX86g2v5TN33sstG7dmcsUnQ6QGeklPTGCnksi6E8nOqKBJyGjeAM62LvRAC5Is51wDmNGIyNeX+Ojl5/O6C9Zz9ZduZG//WMFYimlEmMkYidFekpExTCOOoupIIiMuImwb3eHDHejAHWhHltWSacqZ/mHV8nZ++I3X8/jT+/nsF/+Uc7ySXoRlJIlGB4jFRzDSURTZgYyMbVvYdhqH5sWjN+HztKMquS/LalKWZ8dRmrRm0pdtE1MJ855PXsblb3wpu3ce4HPXfptNz+7Asg00xYVbC+J3tuemwJbpu3B81aUNC2ETMycJG8OkzBgCG0XKRL2YwkAVKi7Fh9/RmikEOp+aEHkWrRCChBUmYoyQMMNYwswR45EkBZfixedowa0Gc8dSywuowkvttPNWcM0XX0NTq58bfnwb3/3GL0gaMRTZgYSENTXBddWLz9mKx9k8ow53tMjXNJNEov3E4qOkzVjmWZKm56+J5vLh9rTh9XWgKFoOoaqqzA++9Qa6Oxt457W/ZnAoVNb6zTeI8q1f20wTn+wnFhkinYggKyqSrHD4yT8dP2I8+uJu0f6f78WOJfjjK99Gg6Zzxic+gPPEVWj+YKZRHgFDIQnnEmGhStqtb7sav9PJi6/7AeEdWxEpA72jG0dTC6ruQZLkKYEegZ1KYk6Mkxzqw0rG8S1ajd7UVpSA868d0HVu/8Lb2X54iPd9d7aiazESttIpwod3koqO427sxONrR3N6kWRlhigtM4URD5EY6yMZmyDQshRfsDtHY7YYCV9+6alc828X8oOf3s+tf36mZFvIkLBtm0xM7CcSHcDrasHrbkPX/TMiKpIlsG2TlBEmEhsiHhvC5+mg0b84R2hlPkhYCEE42st47DAuLYDP2cZ5F23g2i9cTlObnztufIxffuevhELjRI1RIqlhXFqAZs8S1GwVsnki4mh6nJHEQTRZx+9oxaX6USXHDLEJITDsREa9zRhGlR20uBZXr9FQA5JmlOHEfgSCgKMVtxpEk505YzHtFHEzRNgYxhImra4luF1N1V+kAvEGGj38+2cu5YKXn8S+3Yf55Af/i4PbJ/A4mtBVd0ZhbIo0TStFMh0mnBgkZUZp8i7G6+ks/oKaA/maksn4xF5i8RG8nja87jY0ly9nbqYli1QqRCwyQDw+hj/QQ6B5ycyz9L53XcgVrz6Nz3z1Nh5+bE9F10Mp61fYNuHxg0RHD6L7mnE1deJwB5FVDaHA07/8yHFEwEu6Rcfn3w/AZYvW8t3zXslVv/4Jf7vzTvSeHvQVSzI/1hyt4JcsW8YPL38l7/rqddxzeAC9sxvZLkbeuf83QuNE92xD8wbwLVuLnOU7KGUFX/3Ck/n4FRdw7Y/+zEOb9xeMRbYEydAIk4e34mnowtu2dKYUdim1NNmEdCrG+MA2ENDSdRKK6ihol93Hlz99GWeeuoQPfvy3bN85ULRfADMeYmhoM7ozQFPjChTFUVE5zbIMxsZ2kTLCtDevw6HNxnHPhYRN22BwcjsSEq3upTjUWRJze3Tecu3FvOLqMxgbCvOLb9zNQ3/ZjC0sJhJHCCeHaPUux+NozB5o0euWxRQZ28JmOLGflBml1b0El+qvcOLUy8MYZix5hEZnF0G9o/brl+h3PNVLODVMs2shXq2pspWtqsSMcUbi+/FojTS7K1TDqEC8siJzyZUbePO1L8Hp0vjp937D73/xIF6lLccgKOVySNpxhkO7M9VPgmtQshXSakiyyCfgRDrE8OhW3K5mGhqWoshaRZebmU4yOr4T00zS2nESF55/El/67Kv5w+3P8IOfZ8S1qlE6m+1/ql8jweiR51A0nWDXGmTX7MpsmjqOWwJ2oPLIFe9h0+gAb7v9JuJPPIcaDOJcuxJp2iFbp0xlct8+7v3sx5F1F5f+7EYE5Yk3+29hWUR2b0GYJsEVJyNNk2UJK1gTMr/7zBvRFIUrPv9rjCl1rumxJCYGiRzaTuPi9Ti8DSXlKjP95pKwEILwyD7i4UHaFpyGouoF7ab78Xp0fv7dN6NpCu++5teMT8QK+k2lwgwNbKQ5uByvt73ktYv9GyAaGWBscg8dzSehO2ZLEtVCwpm+LUzLoG9iE15nC42ehTNkkd/XqhN7eP/nX8XSVZ1se+Yg13/1DvZs7SORDjMY2UGLZylevbnwIjWQsS1sBqI7UCSVVn1RzcLqaTtJf3QnPkdzpiTRHCCEYDR5kKQZpcOzMtfKz0YJ94ItTAaiu1AklTbPikISrsJ/vv6sZbzrU69g8Yp2nn18J5/96H+RGPahq57ZcZbZ3J12OQghGA3vIZWO0NF4EkqJggvVWr7x9CTDI1toaV6D29U81a7IfkYRv68Qgkiol9Ymi1t//x0OHRnjA/9xc9Goh2pcD6YRZ/jg03hbFuFtWpDR9C4S5lqKgI9ZFIQ0tXlmYPLbXc9xYfdSFre04XnBKZhjExhHstSHyoSklaoZZwwPkRzo5adPbGRFWwsXr16e075YH9l/S4qCf8WJSIpC5MjumeOlNuRM2+Ybv/sHPS1B3nxx7n1OJ6KEDm+nYcVpOLwNBedWig2WJIlA6zLc/jZG+zbPbCwUC02LxlJ8+iu34fXofPGzl6Fps50LRcKy0gwPbqKpeRXuYGFp+2p2k72+DpqDKxgc25KzAVRyY67EQ2rLMkPhHXidLTR5F+WQRH5fOzcf4QOX/4jvfvaPdC5s5vu3XsPHv3U1S5YsosO/luHYPgyzSFn5ajfrgLH4QWRJoc2zAlnTa47R1WQnXd41hI2MiPtcEJ7y9XZ6V+eSb5Wxw7Kk0uFdjWmnmUj2zh6o4n4sWdXBF3/+Nr72q3fidDn47Pt+zutf9T6SI4GayRcy87fZvxxd8zES3V20ckXVbgczxfDIVlqbT6iZfKfH0tm9jJ/95PPEYjE+85U/ViTfwr6n2tgWo4eew9eyCF/zwpLkWw7HjICzceOujZi2zdvWnoqkabhOO4Hkjr3YySIP1BTKJWZYZorYzu14TjiRv+45wL7RMd533pnk39KKN0iR8S1dS2p8CGOyfKFGocCTu45wzzO7ePslp9PZlFm62pJN6NAWfJ3L0dyll7PVxAb7W5YigEiJUtjT/ew/OMLXvvMXTljdxQff96Kc4+MTe3C7W/B4M/WwioWnVUPCHl87bmcTY5N7c9uWeiiLfB6K9yIkmUbPwqKn5Cdu2Lbgnluf5p2XfIubf/YAZ120mp/95SN85EtvYPXS9QyVeLiBWeIpQT7x9CSx9Dit7qUlfJXVJU6osoM29zJG4gcwa4lOyELaTjKWPEybbxWK5qw7WUOWZNq9ywkZQyRFoiLxdi9p4RPfvpof/fmDrDqph19cdzf/9vJv8odbf0+Ld+nMpmeplGKgZBKOJEk0NS7HMONEE0O551S74SYEI5M78fm6cLkap9pVT74Aiizx2f+4lI72Jq79+A/Yu3tT3X7f8PB+VKcbT1OmTFm1UgPZOKYEPG0Fj6Si3HFgB1euWIffoaP4vTgWdpPcd3C2cQ1WcOrIYRwtrWjBBixZ8MOHH2dlazMvW5tbablYH/l/y5oD76JVRPtniaZcWNq3b30Iy7b5j9dfmBnL5AhClnA3Z5ak1cYGF0tTliSZxs61hMcPYmfVnCo2CR98dDe//t1jvOIlJ3HFqzMWedqIkYiPEmzNVaKrl4QbG5cTS41jpHNflNWQsC0sJmJHaAmsAFUtvUNO4QMfj6W44bt/4+0v+RZ/ueUpXnLFBm556Dq+9N0P09hdX4jVeOIITe5FKOUKWBZ8n+IZbS5nIx5nMyFrpK6MuIn0EAFXZ461WRcUBVVz0+hewET8cMlmy0/o4tM/eCPX3/Uhznzham6+/h+87eJvcusv/8l4ZACH4sarN5clXigT5QCgysiSQktgBeORgzPhjbVEOyStCIYZpyGwaOazfFQKtXzvv1/IGacu5rs/vY/DgyrhcB+WaZRsXyoM1DINopNHCHatLvrCzl3hlramjxEBF1opP9/2JB7NwZtWZ7QVHEu7SfcNIqzS1WCLWcHCtkn19qIvnLWq7t6+m51DI3zggrNQ5fwfqPjfM5/JoDe1YqWSGIlwpS/G8GSUH93xKOecsJiLT1tBbPgQntaFJTdCak1T1nQPDleAWGSodNupfv7nN//kgUd28Z53vpBzX7CcSKgXr7+roFRMpv/aSViWVXzeDkKJ/sJzy5GwKhNNDONUfTkbbpXkCPP7nBiN8OMv3847L/k2f7nlKV726gu48b4v8Zkfvol1G8okckxjioiTIoFpp/BqNUQNVEDQ2UE4NVQyjroULNskaowScLZXbpyPbCs/61769FYSZoS0lZz5TJIkTr9gFV/91Tv5/q3XsP7MpfzuZw/y1ouv44bv3UsskkQIQSjRT9DVVZF4y4aYZZ3rdARQZJV4arzmON9w+AgBX3fRmm5QmXxf+6pTee0rT+X3tz3NnX/bjKI6cPtaiU72UgzlQs5ioX6c/tbMCoX8FWzWOcejHnAx7AwN80Dvft629hR0RUF26igBP+b45GyjKqxgMxZC0nUU7+wOva3Adx58lEWNDbzmpLU57Ushp7qyJONsbseYGJnts4wV/LsHnmPrwUE+ftUFeFUbZ7C1ZIZcPsq5IqYngNvfTjI2mjfeQleEEPCVb9/Njt0DfObjr2DlssYZ10M1E7hYO6FIOZ953e3EE2MlM+ZKPbhxcwKvq6Xg87IPc4k+h/sn+clX7uBNF32Dn373RtZtWMR/3fhufnjbB7j48tNKS15Oj8WYwOtszVSkqMFnXA4OxY0iaYUl3CsgYYbRVW/pTbd8VHCtQKakkkdrIJ6exN/g5rK3nM3P7/kIX7j+rfQsbuG/v/kX3nLRf/Hr799LaHx2vKadwpRMnK6Gkn1XsnrzIUkSHm87sfREkb5Kzz8hBPHkOB538WrGlTI9zzlrGe9714U89OhufvLLBzLnKODxt5OIjeVcqxjyEy6SkRHcwY6ZfmbHW3YYBThmBCxPkamUZcVev/UJWlxeLl++DgClyY81GaoqPXkaZjiM6g9kjmV9u3/s2c+zvf28//wzcWm5d7MaK1j1+DFj4dy3WwkStmTBF39zLz63ky994v0zERT1pCkXmxQOVwAjESp4QxcjYcMw+dSX/8ToeJTrf/IZli7pKdt3NSSc/ZlDc2NZKSw7XfQBguLWcCodQXcGirbP9F87EUcmEvz4upu54txP873P/RFZkfnQVy7nN//8NB/6+hWs21A8JCtpRtDVPGnUfGuyDlJ2qt5M6fYakLKimdpzxVDnmBRV5oIXv4Av/ujd3Pjwp3j3p15JeCLO1z58E2+9+Dr+8D8PE4/llrsXqkxSxNA1X4kldvnfp2RWpCqjO/ykjNzssEoZbqaZQJZkFN1Z0K7SnF23tovPfuKV7NwzwJe/fRd2lsSkw+knnYpg53FMuWw3WwYjEUFz+cuvWqtIS55nCaa54bHhQzw73Md7Tjyd3+3ajOxxYY1M5jYqU7hTKGAnEsjeQjEXocB19z/MTW+5iredeSo/fvgJhJIVdqbkhpXlfya73Vh9iaq/y56+Ua7/0/28/4qLeWj3+ExscDZsRZpJ0Mi+lq3khqZlF9K0VVCFCyudWSIiSzlZcgVFOhWYDMW59pM38JNvvZXrvnoV13zkt4xMCaYUK9KZX9izVLvMZzKq6sQyUygODaHIM1WWc9qqs8U6hRCYVgpNdcF0LGmJcLVihT/z+4XZsDVNcRKLRfnrH57mr394mlUn9XDxq0/l/JedyMWvPpWRgUkeunszD969iT1b+6YunUJTSggAZaMU4ZQYnyY7Me1U0WOlYFopXHrDnK1wWZZYc8oiLnjFSZzzknUEGj2Mj4W44zePc++fnuHgnuIurJwqJlbx+1IP8Wb3rakuzCx3SDXaDqaZRHUUJrlUIt8li1r46udfy9BIhP/44h9Jpcwc0pQVDRQF20rPhHdWEtqxTQNJklBUB3bOsaxxVakJcUwIePqFKisC25KQFIGYiuP90ebH+O8XXc6lS1dz86HeWXexLGYTM/KQWylZkB3ukE3Uz/T287ede3jnC07j989uYTQWr0i8s2OWmB5MDlnKs7HB+YR+/R/v56JTV/HpN76ITV/4NaFYskLF59IknA1bLdwoqETCvX3jvOM9X+Y3v/wK3/zqlXzgY78lFEoUbZ+5Rg0kjIQg+/rTadx5508/LGlrKlohO11WLkvCmf4qEzF5Y9m56Qg7Nx3h+m/cxVkXruGCl53IpW9+Aa99x3kMD0zy+P3bufMOmcNbElCvvEMpQlIUhG3VRKZzEfh2eRysP3MZZ1y4mjNeuJpgk5dkwuCJf+zkntsf4a9/+RttntXFr1uMyMj5hSr66MtZvdmQyDxLJVdMxVZmCnmjqUy+XR1BrvvqlSSSaT76uVsIhRNFIx4kmA3trJBqPPVX1pimjxX9KlN9lj52XFnAAH/v38uO8WHev/5Mbv7rXeAsMsQyVrCkO7BTKYqVrxcKXPf3f3LB8iVce+EL+Mwd9xUcL0XGlpFCygogr4aETVXhw1//Cbf/+Mt86o0X8YnrM3WxssedbQXnI5uEc6xgM4WkablxsxVIGIfGlq07+OQXb+W6L17BN796FR/+xM1Eosni7amOhIUQmMJAKeKzLGUNoykosoZlG7naEmplaxjKE7EppZE1PcfiBkgl0jxw1yYeuGsT3oCLsy5czZkXruHi157GpW98AalUmh0bD/Pco3vY+vQBdm/py1H2qgembVTvy52CImtYorrwNafbwaoTe1h3+hLWv2AZK9d1o6gKsUiSpx7axWP3b+fJh3aRjBuEk0MzRs40KpX2UWSVlBmpm3hLXcO0UshqcQGuUu4uRXbkiGZVIt+2Vj/f+vpVKLLEhz71e4ZGwkXJV9gWtm0hK1pZ8s2GLKvY2Jnz5MJ7k+NerODkPWYELCs2tiUXWMEC+P6mR/nJCy/jVcvW8ufevbNkWoUVrAT8pPbsz/ksm/AOhif536c28rYzTuU3T21ix+BIRStYKGBGQ6hef1kLNh+q28+mTf/kx3c8ygdffS4Pn3mAOx/fXtCulCui8DtmyM9IhDP+JzWTKVcNFFVHyBLPbtrLp79yG1/77Ku57qtX8NFP/p7olP+vHhLOLCUlZIcORe5LKRJ2OP0k7RhepciDWCcRCyFIpaPoUynS+e6JaURDCe7907Pc+6dncegqi9a5Of3cEznz3PW89cMvBSBtmOzZ1sfuzUfYt72fvdv7OLJ/BKtMZl8+UmYUj6uncsMsOFUvUaMw5lzTFBauaGfp6k6Wre1k1foFLF7ZgaLIWJbNnq293PLfD7HxsX1se/ZgwThTWX7uamqqATj0IOOJ4hECQM3EO42kFcvJoITSG2Azew0OD6aZxLZNKJJJl31+S7OPb3/9dXjcOtd+6ncc6h0vGetrpKKoDldmAzYL+eSbkxWnKahOD+lEGN3TUNL1UIl84Ti0gAH+emQnO8aH+cglr+Kvf/yfIkFrlLSClUAAMxbBNgzkbIs1q92P/vkEl61bw6dfcgFvvOGWnG5L+YWNiVHcPUtKti1mBSsOHVl38Ivb7uPcExbziatfyMa9ffSNhup2RQhFIhkZQXdndqazSbicFSxJEk5XA4nYKE9vPMhnv/pnvvSpV/HNr13JRz/1e6LR+kg4kRjD6cyob81kERa4KQpdEi49SDw5hsfVXDyFGcq6JTL95hJxMh1GkbUCqzObDPKvZaRMNj5ygPvvfYiehvUEGjysPnkBa9YvYM3JC3nplafjdGX6S6dNBg6Pc3jvMH0HRxjun2S4f4KRgRCTo1EioTj21P237DSGFUdXc4mmFGRFJtDgZkFjE5J/ghNWbKC9u5Huxa10L2mho7sBZUohLRZJsmdbH7+7/gG2P3eIHc8dJh4t7WsWQhAzQ7QF2qssaJm5jkN2YwsLw4znhAtWKspaSc8hnhjNEQqqRL6QiUTS9QAxYwKPo61ku9YWH9/5xtUE/C4+8tnfs/fAcNmNsmR0dOZZmkY58p2G7mkgFR7F4Z89t1q/bzaOiRaEc2mX6Pn6ewCwLXnq/1PhJlP/v0hv5r+veicffvAubt2bqS0141IoIdIz3Sa2ZSuK041ryZKc87LbXbXuBL788hfzkT/dzZ1bd021y+5n9v/pyCSRHZtoPOXcGQGS3GvO/p2vFREbPEg6GmLNqefwu0+/iQMDY7zzulswbbugn3xXRDG9CNtMM7jrIdqXno2iZazHfCs4m4Qz/WT+nYyPMz64k64FZyFJEmdtWMIXP/kqDh0e46Of+j2hcKLgnGwUkLAQ9PU+TnPjSlzO3Elc7PzM55k+TCvFkcEnWNBx1kzyQ0kihrJEPI2h8a04NT9Bd4kqK/ljydoUPDTxFO2+1Ti1XMKUZYmuRc0sW9PJwuVt9CxuoWdJKx09jaha7pNtWTbRUIJYNEkkEiEWjYOpYZkW1tT3VlQFRZFxODVcHgdujxOPz4k/WLjBlDZMeg+O0ntghCP7Rjiwe5B9O/oZ7J0onfGXhWkijKXGGY8dpLvh5LLCPMVcDWORA9jCpMU/lbxTp9U7Tb5pM0Hf4FMs6HwBsqyWjbDJRyQ5Qjh0hI6u04q26+wI8q2vXYXXo/PRz91SVFg9+zwhbPr3PETzotNwODO/eyXyne4vnYwyuv8p2taeNxPlVMz69TodOHWNe6979/EjxlOJgG0jTfTvj/OPb19Pk9fHC2/5BYZtFRIwFFVKsyIRIk89TeCMs5CdzqJCPYotcctbX0eb38clP/4V0ZRRXJRH2IQ3PoXe0o6rc+EsMVdJwLaZZnTzP2lYsp6Xn38G//XOl3PDPU/zvT8+XDAmKK4dPHsMJnq3A4KG7rUFoj3ZKEbCQgiGDj2JJ9BJwJ9ZGp9+yiK+/KnL6Buc5GOfuoWx8WjBeTljyCLCcLiXaHSAjo7Tcr53qXNzj9mMTOwEJFoaVs5+XoloSxxPGCGGJrexoPn0jH5yjYpooUgv0dQIXYETq9L1lWWJhmYfrZ1BWtoDBBo9BBu9BJo8uNwakp6iIdCMw+FAUWRUTcloUps2pmmTNkwS8RTJuEEskmRyPMbkWJTQeIwjR3rZtusp3NZiZKn6RWoxArSFTe/4szR6FuJ1Fo+7LgfTSnFk9Gk6W0+ece1Uc93Z/mePCSEYHtuKprppDC6tmnyn/b1C2PQdeYyGxuW4A7lW8IKeRr751avQHSof+dzv2bOvuOWb3X9oZB+pVJiWBadkXav0WPI33cb3b0R1+fB3LCvpevj6u17O+qWdtDX4ihLwMXdB5PuCkW0Sm3aidbTyrc2P8uuLr+TqlSdyw46NZX3B00t6oQgUnw99wQJiW7fiPeUUUOSCDTlLFvznX//OH952NR88/wV85W8PFHU/JI4cRCgSzo4FRa+X3RYKXREyGv7Fa5g8tIV7nvRy2opu3vKS03h2Ty8PbzlQcD/K+YPjsRGSkRHaVryg8Lw8f3BxdwQ0daxl6PDTON2N6KqHJ589yCe+cCtf/cxr+P43X8/HPv17+gcm887LiqiY1nyNR5iY2E9Hx6kz7odiERJQnIiFItMYWErv0FPEEqN4poVVSvhtZ1DEP2zZaYZDO2nxr5jJ8qtmwy4bfm8XUXOMCaOPBs+C8mMgo0sxNhxmbDjMjuzvJQT9oa24tACNngUlz6+ERFQiau+lzbeydBZlFe6EsegBHIobT55SXMWNtSmououm4FKGJ3bQ1XxKwaZTteQLEIkNYKTjNLeuRRSNLS4fly5JMs2tJzA8vAmHJ4CqZmKCVy5v5xtfvhzLElz7qZvZf2i0Ivmm4pNEJo/QtmS2kk215DuNQM9qRnY+hiPYPCuylfWVrzj/RC4+dQXf+9PDhSdPYU6JGJIkXSdJ0k5JkjZLkvQnSZKCVZ9bJLlC2DaJ53Zhx5I41y7jocH9PDF4mGtOPgu3WiJHv1g6siJwLlkMikRsyxaEPfsgZd+gLcND3PTMJt6w4STWtrdOnTt7PNF/mOTAEXwr182KX2e/BUskYuQnaDgb2tCDrYzvfZrrbrqXnUeG+eLbXkrHlGBPvrO+WJJGMjLGxOEtBBefmIldpMgkyV8+FUnU0HQvwdYVDPc+Q8qMYSuwccsRPvSZ3+HxOPjht97A8qWlfWwAhhFjYOQ5GhuX4XB4Srar9Lms6bS2nMDIxA7iyVz1sEq6A9MprpadZmBiCx69CY+zUI5yOmGgEuFIkkSrfyWhxACheH/OGLL/KwchbIYiu5AkiQZ3bZtv+WjyLCZtJRmJ7psp8VPbWATj0UPEU+O0+JdPvSSruxcz6cNT1/C5O3BoXgbHt2Q2wSj/+whFLiDfaHyI8cl9tLaeUFTms9qkIN0TxB9cyFDfs5jpBBtOWcR3vvE6EgmDaz7x2+rINxFipG8TjZ1rUadTiWuoajz9TCqaE//idUzs34gRm8xps2ZhGx+54nz+ufUAN9z3dMm+55oJdy9wghDiRGA38Ml6OpEVGyuaIP7oRqxIDO+5JyFNbTh8/ZkHaXF5+bd1mcrD5Yp3ZhOZJMt4Tl6PwCby1JOY8XDRdt9+4FFGY3G+9MoXoUyRrJ02iOzcSqL/IIETN6A4XbnEW0eMvG/BShy+Rvq3PcIHv3MjsgTXvfsVONTCLLmc72RbhIb3MnFoM42L1qN7GqpKV579roUk7A10EmhextDhp4hO9mHJgp17BrnmEzeRMky+919Xs+GURQXnCSGIhPsY7H+aYONSPA2Fmrf5qcqVPnfqQVpbTmR4fDvjoQMF2gll05lT4/RObMTlbKCpYXnRNrljKE9AmuKkq+FEJuN9DId3Fa21VowIhSqTJEFvZAtC2LT7iwu0lB1bXn+SptHRdCIGCfqi20hb1ScBmZbBUGgHsdQonc0nI2vO6izePN2GaUiSRGtwJarqpHd8IwkrUuTkqe+RR7y2bTI2sYfR0F7aO07G4fDmtS8+L8qFmQUaFuH1d3LWaT6+9oXX0jcwyXs/9lv6BiYr+nwj44cY6d1IQ8caXL7WqWsVbw+lyTdzTMIZaCGw8ATG9z5LdOQgQtgEPE6ue/crGA3H+MwNf6Wcl3fefMCSJL0auFwI8YZKbV3LOkXPNzI+4PREjNT+flIHh3GuXIi2ZAGSLOfELP74vFdzftdiLrjl5wwnYrnuhAobckII0od6Sezdg9bahrOzB9UfyGn30uXL+cFrX8HX7r6PH//hTyT7jqA3t+FevAJZVSuLuFfpD4aMOlp4/3Yuueh8fvHFD/HnR7fyhRvuLejLNtMkR/uJjRxCdXoIdq9BVWbTMMuJuEN1PmEjGWFscBuSJONr6MHraqW52c83PvdaFi9q4bs/upc7/7IJYVvEYsNEQkfAsmlqWYOu+7KuVaryRamNuMLPTTPJ6MQu0kaMgLcbr7utuDJZ2iKRGicU78cwojQHV+BxNuV1VpsATmZMszfUtk3GogeJpkYJuDrwuwpr4UHGykyZUcKJAWKpMRo9C/G7Oua1NpwQgsl4L5PxXrzOFvyujpIqaYaZIGwME04M4ne10+BdhCxVYWNVExmhyploisQwo5N7cOkN+L1dOB2BKes6tw/LMojEBghH+9BdQZoalqMoedEpNWg65Ld96xvO5q1vPJtHHtvEBz/+XSSlKVPLMe/7CkXCtk3i4SEi44eRVJXGjrVoumfqeqWvU458M8dn26aNGKFD25CxufH7X2LD6iW87Vu/Z/vhIYQCm3744aO7CSdJ0h3A74QQN5Y4/i7gXQCK331qy9tfhjkRQdgS+uIO9CWdSHpmJzg/ImKhp4F7L3snt+7byn88fE+mvyo35KYh4ilSfX0Yh3vBtlH8fhR9St80ZfDLa9/HeSedyIs//UUGVSeq11e2YkbB3zWQsG2ZpIYHeM8rX8C1b7mc//z+r7jx7n+CJCEsEzMWwUzFcQZb8TZ04fA2zlaKqLKSBlS7MWcTjwwTnezDSEzicHgJBJv59lffy7lnn8j//Op2vvL1n6I5fPj8Xbi9rTNlnfIxVyIWQpBMTRCO9hOPj6ApLhwO79RGlE06nSCVjqCpLvzOdnyutqLKbjmog4wzY7NIpTPkGkmOoMgauuadKsopSFspUmYUSZIJuNrxOdtRldqSLmpB2koSTgwSSQwCErqW1OEAGQAAh9dJREFUEewRcsYNk0pHsIWFz9WG392ZGzZWDFXGAhdbfVh2mkhskEisH1OkcTh8aKorU5TTNjHSEUwzicfbhs/XhVPP1fwo5ZKqRofE4VD5xIcv4aLzV/OX+7Zw3Q/+QmhygHC4j3Qqgqb70BxuJFnGxiadjJA24jg9jXgae3B6m2eepWojHjLH8sZaZNNNCMEHL93AW19xLh/+8ne55d5HMjwiKxy48xf1EbAkSfcBxbTxPi2E+PNUm08DpwGvEVUwut7dIro+fiVSIIDscc58g/yICJgl4U+fciHvWLuBl992A9vHh2uygjP/n+pPCEQshRUJIxJJECBpGl3tndzzofewa3iUN91wS8nyRWX/roGEpz//5jtfzvknLeOdX7yeRzftQpIVNJcPTffOlkGqIjxt9ljtJDwN2zIxUhGsRAxZFnzkmtdy9eXn8/jT+/jyN+6ciRUuda3M9Woj4VLHbGGRNmIYqQjCNkGS0VRXhgSziK5i1EQ26iRjIQSGGSedCmGJzA1VZX2KBPX5rYZcbhyKMqWjkSRlRrEsA4FAkR3omhdNcZUfS5WkC5U3+KYtXtNMYaQjpM0kIJAlFc3lw6F5CqzRzHn1k29Ls48vfe4yVi3v4PobHuS3f3gyc+4UOVpWmnQygmHFQQgkSUbTvZmit3l7SPNNvgCvPGsNX3jrS7jpHxv5xs33YxgRzHgUYVvs/cP3jo4FLEnSW4F3AxcJIUqXsMiCa1mnWHTdu7GydqvEFImWigv2q04eeM272D05ylV33Zy5dhVWcHa7clWUAV6zZg3fuPQlfPmv/+B/n3quyDmFf9dKwPnHPKrGDR97Ha1BL2/62k0cGZ4s6Asqh6fl9l8bCRc9Z6rPV77kRD747hcxNBLmM1/4IwcPj5U9b/aac3dL5B6vTJ7PBxlXHEM9BUGpPiqhZswj6UKhj7fweG0bsdW6HNat7eILn74Mp67x5W/fxSNPZAokVFNKqFKK8XyQ74lLOvjZhy9n475+3vfDP2JKufO5lAtirlEQLwU+DlxaLflmQykWPJp/jalNt7CZ5NsbH+bM9gW8bNEKoPoNuZnPijnos9r9act2Hti7n49cdA6LmxoKzqlYSaOKqIh8xMw01/7kdixb8INrLiPocRYdfzn5ykqTsNLGXNFzpvq8457NfOgzv8PlcvDj776JC89fVfa82WtWL7Qy/Xk5PdZiO+sFbaqIDphB9k5/DSRVCdkbfbX8N2+o43tVFVVR4f6X+/1qtXrz219+2al85+uvIxZP8e8fvfG4IN9sdDcH+M57L2VwIson/vuuAvItt2k/15n3Q8AH3CtJ0nOSJP203o6mw9JkxZ76fyGp3rT3OXaMD/OZMy7ElR+WNk3CJcLSqvsMPnPXfSTTJt941UsKqmfkty36d5WhadnoGwvxoZ/+mbYGH99+36tKRkYcCxK2FdiyvY93Xftr9h0Y4XP/cSkfuuZiHHnFPkttqFT7kFVzLHO8eiKumozhqBHyUUed4646nG2OxFvrvMiG16vzpc+9mve/+yIef3o///6RGzl0ZGxmXpY7F+ZGvgVjzms7/WwGPE5+8IFXI0kS1/z4T0wmk7ntKrxb5zTThBDLhBA9Qoj1U//9e7XnqlNEW84Kzhdtt4Tgs4//jS6vn/efdGZmDMWKc1ZROSP73Ox2Q4kY//mX+zmpq4N/P+f0IudU8XeNJCwU2LR/gM/86q+sX9rJF9/+0hnJzqNNwpVE3af7HR2P8sFP3cxv//AEr3rZen70nTfS3dVQ8dzMdUtbw0eTiKFOMoZCYjvWxDwP46mVdOebeKH6ldHKFe38/Idv4awNS/jhL/7Op79yG9FYqmKMLxSf17WSbzlt3+ln0qEqfOu9l9Le6OPan97O4Sn3YbE+SuG4eNVPk3C+FVwMT4/2cuveLbxr3eksDTTmHizjisgm6kquiL/u3MNtm7fznnPP4JTuzoJz5hITXI6E79u4h+/88SEuPnUFH7ni/KJjg/kl4Uz/1ZGwZdlcf8NDfOILt9La4ufnP3wLr7jkpIJza7F6Sl2vUn+zxyuTxUzbesk4G6WIcC4kfTT6hILY4ortq1ldzIF4q1kNKbLEm153Fj/61huQJIn3f+ImbvnzM5k+qiTfwmuXP6ce8pUliS+/4xJOWdbF5359D5v299fFC8eEgKetO7UM0ea7IrJLF3316QdImGm+cvaLgfJWcDZqcUV84Z5/0B8K883XXIJP12c+L4dqrOCy5yjw6/ue4cb7n+X1F53COy45vWh/8PyQcKmJ+vjT+3nHB37Fth39fPQDL+GrX3gNDXliMnN9EGs9nmlTHxnPiZCLoRpCPRr+5zq+U7X3rJrfpxhqefF2dgT53jdfzzveci4PPLKLd3zgBnbsHijpcqhEvrZ6dMgX4JNvvIgXnbKc6255gL89s7sk+dpy+T2gY24B57siiqUoT2OahMeMGF9/5gHO6ljIa5ZNF9msf0OumCsiahl8+La/0Or18MVXvKjC+SX+rnJTrqC0/R8f5M4ntvO+y87mteedWPJ7zJWE5+IXHhmL8tH/vIXv/+x+Tl2/iF/+9O2cf87KgnPn0y2RfXw+yRgKyWveSfkooN7x1kq69b4Yq/2NJQle9fL1/OJHb2VhTxNfvO4OvvTNu6p2OUBlf2+x8+ol3/dfdjavPWcdP//LE/z2HxvntCI+ZrNMKWP9VrMhd/Pe53hmuI/PnvFCGp15dauKbMjV44rYNDTI9x58jJetWcHrTjmx4Jz5JOFs2DJ84X/v5cEt+/nk1Rfy0g2zxDafJAz1kfB030LArXc8y79d+2sGh0N84dOv4oufvYzGBk/B+fW4JSqTbOU2mXa1kfHMeUVI+fkm5lJjqHUcNa0O5vgSrGWV093VwHf+62o+9P6L2bK9j7dd8yvuf2hnpp95It9yq7nZNtnHSpPvW15yGm+/5HT+8PBmfnzHo2XJt9wzPo1jIkfpWd4hln/3nQBYU3G/5tT/p2OD8+OCM3/nxgYv97dw1yvfyt0Hd/LBBzLlfuYjNji7rWzBz666jLMW9fC6X/6ObYPDRc6r4u8akzQAnLLC9997Gacs6+ZTv7ib+57dU7S/zDirjxPOtCkfK5y5Rumkjfz+FVniiledxtvfcDZG2uLnv3qIO+5+riAPvly8b6nY4WrOraVNbvujEw98rFHzy6aqF1n5NuVKw+efq2kKV712A2963VkYaYsf//c/uPu+rZl+6iTezBjKn1dLenHmGrN/v+Gik/nIlRdw95M7+OwN92DlV1Ius+G+7ZtHIQ74aKCaDblpV8Se8Ag/3Pwoly1dy4U9S4HqXREzbocirohs2Ap87Pa/MhqL873LX4HfWegPPhqREQBJ2+Lan97O5gMDfOWdl3DBSUuL9pcZZ64lnPtGP3p+4en+LVtw85+e4m3X/Ird+4b48Psv5offfiPLlrRW1UdmDKUt4krn5rephlAy7WXqtZCPJ9TzPap355RvU+tKZv26Hn7xo7fyzrecx6NP7ePN7/2f4558r7rgJD5y5QXc++xuPvfr2si3HI6JBexe0ipWXfcmLD2TOlnJCobSGXKaLHPHy99G0OHkxX/8H8JGqmyaMmSsRzuVQsRSTKciK1NjKWYFA6xva+c3b76SR/Yf4j03/3nOqcrZx2wzjUgkQNhIsoqqZXLZp+FRNX5yzWtYvaCNT/zsLh7YtK9kn+XSljPH88eQV37ItrDjcYSwkSQZ1eFGKfKeLmcNA7z4gjW87x0X4Pe5uOOeTfzyhn/mVNyo1A+AlDZJp+MIYQESqupCUbSqzq3lOpXPtadSgBNYU3KMqqIXFeh5PmDLEpaVwrIMIFNaXVWcVaVEV/tiqqbtNOlaloFpJkEIZFlF1VygFjJPa4uPd7/jAi46fzX9g5N896f38cQzGU3sUjG4tbocbMvENOIZvW45M38lWZkT+V5x/ol88vUX8Y9Ne/n4z+8inffQlSJfW7KwEnGEbbH7+i8ePxUx9NaAaH3lqVi2hNYaQF/UiaOjEUmW6nJFrGvo4E8vfxN/2reNjz70F6DQFSGEwByewDjSizU2AZaN7HaBLSEMA2GaqL4Ajs5O9OZ2pGlB76x7/cb1J/GfL72QHzz4GD986PGp68wer4WE07EwycFejPFRbNNA0V3IyAgrjWWk0JxenE0duJo7kVUHPs3Bj655DasXtPLpX/ylandE/vUzx3P/bSXixCZ6SYSHsYwEisOFLDIl1a105t9uXytefxeqI9ffXlQPYqp/n9fJ219/Npe+bD2JhMENv3mE2+7ciFnE1TDdj2WliUYGiEUHSRtRFFVHQUEIGzOdRFE0XK4mfL6uHEW2o0HGtm0RSwwTiQ2QMiLIkjqlQyEwzSSSJOPUgwRcHTj14LxpQhSzYIWwiSfHiUQHSKYmAVCnKgtbloEQNrrDj8/bgceVqwo2n6QLYCkSqVSYaLiXRGIc2zZR1SljSphYloFD9+H1deDxteN2ubj6yjN43WszkrI3/fEpfnvrE6RSmZfZXK3edCpGbLyXZGQEK51EcbqRJBnbtjLz2eXBFWzH3diJojnrcjs8uHkfH/vFXRgirxBsHvlaRorkcB/JyUGseAxZdyIpKgP33nL8EPCKk9aIhq+/mnQ8SbQ3RGLvAJZh49uwArkpE9tbi04EwEdOOo9rTnoBb//brdx/JGMhTpOwOR4msXk7CIGjuwettSVzY2YUxiRsw8AaGSfV14cVCeNetgpHe0ZacFZdDb72iot57Ulree/vb+f+XftmPp9Gpb+tVILonu2Y8Qiu1m6cDe0oLvfMAyPbmbd4OhoiOdRHanIET8diPO2L8OlOvv/eyzhpSQef/9XfuOuJ2VoM9ZCwbaUJDewhERrEHezA4+9Ac/pmrG/ZBGFbGKko8cl+4uFB3N5Wgq3LZ0ThM32Xt4YXLWjife94Iaefspje/gl+8auHeODhXTlthbAJTRwiPH4Qt7sZr68D3RnIUTsTwsZKRDPSmJF+HA4vzc2rZiojVBpPKRRTZcsIiO/FoXnxeTtx6cEcEaBpUZx4YoxwtA9JkmhpWIWu+2u6djVIJCcYndiFLCn4vF24nY0oSq4IkGmlSCQniET7SdtJmhpX8P+1d9ZxcpXn377OGZeddbdsPBv3kOAJDsVpi0MphZZSb6lRl1+NGgVKoRT34u4Qd99kJetu43bk/WN2Zmd2ZGc3geQt+/18AjvnPDYz51znnvu5n/uxmOO3IEqkdKAbtnYDATd9PfuRZX8oO545H63OHBNOp8hBfL5BvO5Ozjt7Kd/42jXk52Xy9vv7ufs/79Pd4wyVOwyrFyCIn8GOA/hdfZizSzHlFA8lsRoeiyTIBD0OvAPteAc7MeWXkVE8NbKzRyr4Xn/WUm654Hje2lbL9//9CkGSW76yKuNurcfb1YI+vxBjfgk6ayaCRoMqwr7ffczpKMeiJUuWqJ9/8Kc83rSO4NC34Gvpxb65HmNlAYY5U0NP0zG6Il44+1ryTBZOf/Z++n1ekMBf14i/oQnTrBnoSosRosCeKG2lIINkt+PZuxfRYMY6Z24MBAxoePTqy5icm8Pn/v04tT19kXrRbST6O9DVibN+H6aSSizFVZELJQ6OUd+z4vHiaNyLEgyQNX0RVpOVP990Pkunl/Pbx97h6Q92xb2fSDspIBzw2Blo2IExI4/M4ukRoCbOcDY0FjnIYNdBfK5e8krnYzDFphkcDcTLF1dx07UnMXlSPjW1Hdz3wIds3taIJPnobt+BRqsnN38WWp1p9OQ8QYlBexMOewt5eTOwWAoTlxsjjBVFort3H3LAQ17OLIxpADUE7E76BurIzCgny1Z5RKxhVVXpt9fjcneRl50YqIlg5fX209tfg9GQRV7uzDFlJRupaN+u09HGQH8dWdlVZNjKEAQxYTuCACefMJPrrjqeirIctm6v4fd/foTWHiMajf6wwatowefqo791N+bMYmyFUxF08ZMYI/uRFD/2thqCHgc5kxeiscRuwBoN3y+fv5Ibzl7Oy5v285MHX0+Z3yHgd2Ov2YbWkoFlyiw0+mHXVLjNYwrAMxfMUbdu2cqlH9xBj98RgXDQI2P/cA9YLFiXzkgI4VSuiBm2fF447xreb2vgi28+h29fLVJnH5blCxGNxqT+YIiHsKooePbtRXH5yFi4KAbCRWYLT193OQFJ5tL7HmXA64vUi24j+m9fdzvuQwfJnLkIndUW0/fI8jAig5qk4u44hLenlZyZS7GYrPzfDedy0tzJ/OP5dfzrlY1x7yfSTgIIB9yD9B3aTlZ5NabMwlH9whAbJeFxdDPQsZf80gUYzFmj1g2NY+j/osDpp1Rz3eWrKCrIZPe+Fv7wx3vZtbcHW9akOHCNBlC/30FP23ZycqZitRanLDtaW4oi0dm9E53WlBRcqdqRJD+dPTswmXLJzZqasq/RpKoqvf01BCQPhYXzY3zf6UhRZLp7QxNbhflzE/pkk9ZNMKFmH2zG6WimsGghOr0lKXhPXDWDa65cyeTKfA4193Lvgx/y0YZaBntr8bp7ya9cgkY7emJ2SAFfZy/9rbvJKZ+H0Zo76mRbqI/hvz19rdg768iZthSdyTrUV+icKAjcdsWpXHLCPJ75aDe/fuztlBNuAb+LwX1bsJRNxVRYlnTi/ZgCcPbMMrVz7yHW9tbwvW2PAQxD2Kcy+M4OdJXFmKaVpeWKgGEIf2HmMn687FS++cITPPD4o1iOX4pmyFeWbmha6O/QTeDZsRtBq8VSPTum7PzCQh656jJ2tXdy3cPPEhxKQ5gIwpLLgWPnFjLnLUNrtqYVngbxIWqu9gb8g93kzFqGHi0/ueo0zl1ezePv7eD3j78bCflKBWFZCtBTs47s0tkYbflRZYhTqlA1r7ObgY79FE4+Dm2CnStGA7FWK3LWmjlccfFiiovy2LO/jUce38D6TfUJ66WCZyDgorN9K0XFizBqEu8WkU6bPX37URWZ/LzZ47ZgZTlAe+dWsrMmY01ilacju6MFl7uD4sJFoyedTyJFVOns2olBn0FOTuoHQqroE6+3n96uPRRVLAtNsI2QRhQ45aRZXP7Z5UyuzKeppY8HHlvHe2sPoAyFMsqiymD3QYJBD/mlC6L2WBxbhIMU8NJdv4HcigXobTnx5UaZbAuVEfD0teHqbCB/1srIw0mv1fCrG85i9cJp3PfaJv7+wtq4+iPdDv2712EurkoJX1UD+39zDIWhBRWJfze8zamFczk+P3b1lM4oYDtuFr59h5CdnoTJelIt0Li/ZhNrWw/x89M/w+zVJyEaop620U+yBKvfRoahCYKAeW41wb5eAr09IxZpdPG9F15naUUZvzrvtKg2iPlbVRScB3ZjnjIDrdkaXyZFyMrIcBZLcRWCoMHd0UhQULj9wdd58K0tfO7kBfzmi+fEZFGLblfRCBFfl711P6asIgzZsT9n05kIiV49Z8oowGQrZKBzf9LFG8lC1hQNSJLCw48+z+mf+Tp/vPMNcnOs/OZnF3P/Xddx+urZ6HSahO0lalOvt5KdM5We7r3ImtHD2RK16fb34fUPDFm+43cfaDR68vOq6es/iCT7R6+QQMGgh0H7IQry5qQN3+j3Ev4nCCL5edW4XB34fPa4OuHPKdVnpSgSvb37yCmqjoOvyajjwvMW8tB9X+RH3z0XgF/84SWuveXfvPNhDYqiRr5vQRDIKpiGLPlx29uTfpep4KuqKgNte7HmVo4LvtH3gTm3FJ3Fhr39IAAZZgN3fv0iVi+cxu+eem9U+CoiuFpq0Zpto8I3lY5a4OPjze9T7+rke7PPx6zRo4sywbQ2M6ZppXhqWoDUy5RH5opQga/85y4CssxdF1yOXtTEgnWM8cGCVoupega++rq4si8fPMgd763l/Lmz+OpJw9tbRyvQ24Wg0WEoLBlzjDCMWE2jFbBVVePpbESRJRQR7nj2Q/70zPucvng6d3/zErKswzfJyFhhf8BNwNlPRsm0xH2lES8MwzdEZsE0/O4Bgn5XwgxU4fqJ2pAECftgExnZ03jhtZ1c8aV/8es/vQIC/ODb5/D4A1/i6stXkpUZv7VOIhhbM0oQRQ0ed0/UOEcHDAzd2IMN5ORMQ9DpEsJsLDIaMrFYCnA4WsdUL6xBRxO2jDJ0utTvPZ3xabUGsrInM2gfCvdK9zMZatfp7kRvsGG2DD+wCwts3PSFk3nyoZv52pdPo3/AzQ9++V+u/+oDvPX+/hjwRksQRLJLqrEPJNh8NUkGs+gQs4BnADnow1pUFVsu4XXLiDLxk222ill4+9spyjTy7+99lrmTivj+/a/w2IjlxSPbU0RQgqFoh4yqmeOGLxxFAEuqzG/2PkOB0cZXZ54OEIGwRqNgmlqC1NqF4o/dmXa0BRqqLNO0ew/fevd55uQW8YPloaxioyXsSZUvQpeXjyIHkOyDcWXvWruJp3bs5pYTV3DR/OqYegDezmZMZYknZcYDYY3Fgs6aha+vI1L2obe38Z17X2JmeQH/ue1zVBZmJ2zX09OMqaA8MgOcqC9IDOGECzf0GqzZZbj6W6L6S+LPG1Hf4+jEYMpCYzJHMq29/u5errvlAb51+1McrO/i+quO58mHbuKH3zuXubNLk7YbsvYEbJkVOOzNCctFg2ckfPx+B4ocxGyO39Z+ZD+p/kUrM6Mcp6sdRU3g20nRh4SEy9tDRlb5YT8IIPS+zZkl+IJO/KovZdmR/aiqitPejC2rAlEUWLakil/99CIevf9GLrlwCZu2HuLmbz/MV777KGs31qGqiWEY3bbBlImo0eN19YaOJ3lwJ1oY5BxoxZJfGeObTwTedMPMRK2elStX8tAPriTHaubmvz3La1sOxP+KTRDn6+1qxZBbiGCMn3AL10tH43MuHabCLKpxNvFU8zo+W3k8r7fvYcdAY6SM3qpFm2tD7R+A4gI0ohLjD4YQhBVZRNSoEX+wPOhENBl4t7+F+/dt4frqJaxrb+aNpjpUjRry84rqsD9Yo8ZMygHD5Qh9kAIiusJCAgO9aDOzRpSFn7z6DkUZGfzi3NPoc3t5v+5Q6IvzS0hOB7r8/JBpHm5Pjq0f2a9OHPbfjiyniMM+YUNeEYG+bswF5ZGyb22vpWvAyZ9vPp//3PY5vnvPy2yqaY5p1+/oJXvKQhSNEOMXjlj70f1p4v3CqkaI85sacwrpbd5BdnQ5MexfHzl5EQ77U/G6ezHbhn2k4RtJlGHL9ka2bG+kvDSbC85eyBmnzua0k6tpaOrhtTf28Na7++gfcMe1bbIV0NO7D0WRRv3pHg1hT2AAi6Ug6aRbuooGpFZjQaMz4JdcGI1Zabfh8w1gNNjidhBOV4ksW1HUYDLn4fX0o8tML2sdgCz5KCnO5Zprz+Gs0+dQXJhF34CbR57eyAuv7qCnzzXc7xgiGyyZRfhcvZgy433kicALoevf7+olq3Rm0v5GAy/EQvLMpTO4/erT6Oju5ev/eo3m7sGkv1LDYwgrYO/DXDE5YbtjSc5z1CzgsLV7b/2rtHn6uH3uRRhEXYwrQpebQbDfGXmdjitCdtjRZIeiDH677V129XbwxxPPpjwjFDKVcKnyKP5gVQNaWyayY9iPFl02KCjc+uxL7O/q4S+XnMPCstBsvORxoLGG4mpTfSljtYR11kwCHntcm7sbO7nqd4/RPejizq9dyBWrF0bOy0oARQqgNQ5txx3lD0vaXxKXRAxoDBaUYACJ2F8qofeS3C3h9zvRG+NDvMJ9KhpoaRvgb/e+wyXX3s3//fU1vN4gX/7iKTz50M385ucXc+pJszAaouKRBRG93oo/6ByT1ej3O9CZs+Ks5HT8yKlkMNjw+52jF4weS8CJPo3Qt0RjTTVeg8FGwB+6fkf7bKxWA+ecMY+//OEK3n/7fq69YhVtHXZ++n8vcNn1d3Pfwx/R0+eK+a5GKlX7OnNmws8lWQYzVSMgBTwIohaN1jAu+EbPi4iCwNcvPoFf33A2e5s6Oe/6b9LY0582fBVRIehxoLXYIm0nqpeOFXxULOBo+ZQgv977DHcuvZEvTz+NO2peQSfKBBUNOpsBf6cDrUaJrJALSxBVVEWIWMFhqV4/moyQHzSgyHzlved56bxruevU87n4pUfwR2+aGG0Jh+vHWKHDlrBgNaN4fbHWcVRZlxzki4//l8eu/iz3fO4CrvjPk+zpbA+ttgu3HW3tHoYlrDGaUAI+VFUFjRDTZtugg2t+/zg/v+YMvnXZyUyvKOBXD72F2+NHNJhAIxIdT3441nConIhGb0SSfIjGEAxHJvYZaRGrqooshVYsqcKwVTxS4RvN5w/yypu7eeXN3VSU5XDGKbM5/ZRqjrvtPLy+AOs21vPuBzVs3noIrc4UN/k1EgQj+5IkX8LZfUgdHTBa8iCt1owkp/7ZP1Ky5MNozB6177FI1QhoDWY83t7k0LUYOG7ZFE4+aSbLFlWh02lobO7iL/94lo+2dEcWT0ByazfcV9JzQ9eBVm9GDg4vS08ndaQc8IWu+zSjHGL7Hf47w2zg1zeczarZk3jyg538/qn36He7yJWCkfjd0SbD1aAEgoCo0x8WfOEoAVgc+j0eBu1Oex3PNK/nc5NW8l7XPrYPuSIEAcQhEoUhPJorIhyLFfIHC7R4Bvnmhy9x35pL+Olxq/n+R2/EQDQC4ShXRDIIh5UMwn1+L9c/9iyPX/NZ7rviIi77Yxu1/b1JwTsWCMPwOSUuSU5sO24pyHfufYkvnrmcm89byZTiXL75l8cZbIxvG+IhnKjNaBdBbLnk/rtkIEZWh1wyUWGEmtFBLMrQ3NrPvQ99yL8e/pC51WWsOXEWJx0/ndUnzcLrC/DRul2sXX+QXXsH4twUqcYcPZZ0NepEllZAlYUxgVTRCIdtfSd8f4KASuxnW1RgY/nSyaw8bhqL5lWg02no7nXyzEvbePv9/WzevBFZ8pNTMCMldJP2GT6XZF4gmbshWfQMQvx1H1smtcthelk+v/vSuRTnZPCLR97i2bW7h9oQCPsIR4Nv6A8VQRDShm8qGB91CzgM4bvrX2Z53jR+Ov8SLv/ob7glPy5PIGJVQTyEw1YwDENYY9IheWItoLfb6/j7znXcMn8lO3s6efzAroRgTQZhANXvB2PUUtQkEG51Obju0Wd55KpLeeTWm7jg+z/BSXLwpgvh6HNKwA96XczEXiJL+Z+vbuRAaw+/uOYMnvzFjdx6u52dzuGLZySEgbSs4VC5oTKqiiwHEPXxiWmSgRiNiKjTI0t+tLrYZcTpgDjc/669reza28pf7nmLeXPKOWnldFYsnsRpp4bCLQ/UdbJpyyG27Whi7742AsHEE2KiTo+k+tFrhn/6H07ynrAkyR/J15CuNJrQ55Ku0p2YkyU/GdYMli+dzOIFlSxbUsWkitCkY2v7AE+/uJUP1h1k/8GOSDy5RqvHH3ActsU7UkHVj6CP93EnBe/QWOSgf6hcfJuprF6AC1bN4XufP4VBl5cv/vkpdjZ0hKxZRUZVJEStLj34AoJWh6LKqLIcWmo8TvjCUQSwXiMTkIdH55UD/Hz3k9y17Ca+XX0OP9v1LOqAHW15IRqNEsmYFlYiCANosm0EOhqAYSsY4E+7PmReXjE/P24NNf097OjpGHVSLgwpVaMiOexoM20j4JkYwrUDfVz32LM8ePnFPHn7bVz9xIv0uD1HDMJBlx2dJTNygYhJ3BWqBt7f3cDnf/Mov/viOTzwx9u5/+V13P3SZiRFiVykY7WGQ+VCEJQDXgRRg0ZniNhXcRnWEoBYbwr5ATUGU9xkXajP5CAO9x+RrLJ9VzPbdjbRUv8uJ516ESuXzWDFksl8/tLlXPW54/D7g+ze386u3S3s2tPK/gPtkWQwBoONgM8RE2qVCizpwjngd2C2TEmrbFh6gw2PqyutcYwmi1nP7OpS5s0uo3pmHnPnTEan1eAPSOza28qLr+9iw5YGWtsHYuqFP1ud2Ya/vyGu3VHTV45i8QYcDvRRy9iTtRf9HWuNFuSgDxkJcQS2UsHXZNBx2+Wnct6Katbvb+KH/36VAZc3Asagx4nGaIGouPNUO9aEBiOiNVmR3A602dlJyx2zPmBhaF11GMJhK3ifs5EHD73HdZNP5b22fTzevR7z4ukAEQiP5g/W5thQHG4Unx/RaIhAWFFVbv3gBV449xruWX0B573wEN2e4VncVJERqqoS7O3BNGU4fnY0CO/t6eYLj/+Xf3/2Ah644iKuffS/9LjcKSEMSc6NgLDf0YMuKhA9OkIiUTutg3au+8MT3HrGXK4/5xSWVFfxw3+9SluvPWH7Y7GGPe4eDJboGIjQDZXQgo0CscGcjc/VjdlWkDRqItxWWKPB2OcZQKs1cqh5kEPNG3nk6Y2YTXrmzylj8fxKFs6r4NorViGKApIk09DUS01NB7v2VLF16yZcXpHgKH7dkWNKJlnyE5Dc6M2ZSYGUSAZLNn19B5AFeUwr4IwGHZOr8pg2pZCZ04uZMaOISeV5ofcqK+zdV8djT69lx55Odu9vIxCI/VmSyMrV6i2oaigZk95gPWzwhuVzdGPKLEwLvMODEdFbs/DZezDnFA+VG93l8OsvnsWkghzufnk9976yMbSsOKp9v6MHfebw9Ztyu7Coc7rMHPyDPREAp5xYTwHio7IUOWtmgbr8nssBYqzgoKJBK2i4a8lXKNZncfYdtxJcWBRZphxtBafKHezcdADRZMQwIypMJCpfxLPnXEXtYC+Xvfw4flkiYf5giEBY7hvEs2s3GScejxidzGeU3TQA5us0/OcrN9Ll8nDNQ0/T7XInqBv7+aQ6p/oD9G37kNxFJ6ARY3/GjVw0OLJucHCAE6ps/P62WxAEgd88+g6vbqqJrTNKLonodlVVpbvmI7LK52CwZqe1nDksWfLTVbOW4qnHx+UGCI1jlGQ8CdrtaduB0ZxLRnZ51Phjy1gtBubMKmXurNIQqKYWkmENuUEkWaalbYDGxl6aWvpobumjpXWAjs5BXO6xrWob7G9AknzkFVSPqR5Ad0fofdgyy+POZdpMFBdlUl6WQ2V5LhXluVRNyqO0OBtxCIADg25qajvZf7CT3fta2bJtJ13tBymuWB5pZzSfbvT7kCU/OcWJ30eqh0siH6/k99B1aCNFs06KiUdPNaYwwLyDXbi6D5E3bXnclkzRcBQE+PypC7n1wuMZdPv40QOvsflgS7yLQZDp2f4+OdXL0JqsacMXQAq4Gdy5kZylJ4Fek7ze0N8Hbz+GckFkzSxQT7j3swSGPvEwhMOgLRKyefD4r7N3oJlbtj+IgjomCMsON/a3t5OxeimCcTjuMQzh00qncc+pF/FCw774rYwgBsJqUMW1fhOGsjIM5WVxZUeDsCpJzLL389gvfkqP28PVDz1Ft3P8EHbW7kEQRDImVyeslwrCqqoysHcTU6bP4k/fuYGFU0t5bXMNv3n0HZxRfvOREIbEIHZ3NuG1d5E3ZWnEH50IwqFxxNcfaA/lXsgrmpO4EqODONy2z91HX8deiievTGo5JnxACFBSlEVpoYZJZTYWLJhPZXkexYWZaKLy8jqcXjq67PT0OOnpddLb52JgwM2A3YPd7sHl8uNy+3F7/LhdTtpbNlJcthSdfvTcFEaDDovFgNVqIMNqxGJS0IqDVE2ZS0FeFnkFGRTkZVBcmInFPOxTliSZto5BDjX3Un+oh/rGHuoauunqcUTKKIpMR9MGsvOnYcwsSNR9nKItU1ny09GwnoLyRehNwz7ysYIXQtdfb8sO9OZMbIXDrpnRwDtcX6H74HqsRZMx5ZREjWW4TEGWlZ9ddwbLZ1bw3s56fvbwGwy6fQktVGfzQWSfm6zpC1PuYjESvuHzjv07EM1mLJOnJ6wb/fcxBeDsmQXq8fd+FiAOwgFJpPf9Gi5ZeTa/Oudm7jzwOg80vA8QB+FoV8RICHv2tRDs6MV64kLUoU8iOn/wl2cfx3cXn8Tvt3zA33eGk6vHQ9i7rw7Z7sCydBGiGg3e9CEc6O1hDgpP/PJn9Ho8XPfwM7TbnQnqxn5OI8/5eztxNR0kZ8FKREGbtGwqCEs+N/37NpI/Yxk3nH8KN517HP0ODz9/8E3W72uKrZcCxEGPg976LeRPX4FOG79kNh0QK7JEV916MoumYc4sSrgvXex4klnTAToPbSCnuBqzKTd1I0nGqaoq3W3bMBgzycqbil6noaw0h9KiLEqKsygpyqSoIJP83Azy86zYMhKHrQEoioI/IBEIyEiygiwrKIqCIAiIooAoiui0Iga9FoMhdZazgUE3PX0uevucdHTZae+0094xSGvHAG0dg8hJ9rQLbZqq0t819JArmZuyn1TuBbe9HUdvIwWTlyNqkrtFkoE33L6rrxl3fxsFU5ZHUrGmE9MbKhcaX9DjoL9uC7kzVqAxxV53Zy2byfc+fwpaUeQPT7/Pf9ftSeoaCDj6sdfuJGv+ytj0kWnCF0CW/QxsW0/GjLno8nITlptZmE+2xcR/rrzk2AYwgD8o0ruuHr8zSMGaan4y70pOLZzLTZv+xc6BpgiAIflmnhCCsKooONeGkrBbVsxBHXJ3R0P4jlXnceGU2Xz13Rd5oSGU3DwaoL7aRgJNrViXLwulsyQWSmOBsKe+lnlZWTz+89txBwJc/8izHOobiKsb39bQZ9PXjevAHjKrF6MbWlSSbIujsJKB2NfXiaO5hpypi5k7Ywq/vOZMppTk8ty6PfzpyQ9weVNbw7LTTl/DNjJLZ2LKLkraPyQHcai8SsBrp7dxG9mlszHZQhbaaCAOjWto4Y3kp7t5K6aMArLyYzN+jTWSQQr66Gregs1WRmbOpJRl9XotWZkmsjPNZGWasVoMmE06BGUAk9FAdm4pBoMOrVaDKAoha1pVkRUVRVGRJBm/X8LnD+L3S7jcPlzukBU9aPfQP+Dk4P71qGjJLaxOuUovIcRUlcGeWnzuPgorlsQk0I+UScOXrYpC6JdTx36Cfhf5FQtj2hoNumG5+9twdNWSN3kpOoMlbfBCvK/X3dOMq7uRnGmL0Rot5GVa+MEVqzl5/hR21Lfz4/+8RmuvPQV8Bxis3U7GtHkYsvLizg+/9+Rji7Q10IfzwE4yZi9Al5UTc25hWTH//PwF9Lo8TMnPPbYAfOr9lwxbvYqGwKCHjg8bEfVask6YhajTYNYYuH/519CJWq746G/Yg960XBEQBeENNSgON8aF1WiHVsiFIawXNTy05rMsyC/hilefZHNXKHmK6g7g3XsAxeHGsmwhosmUMIcwpA9hVVXxHapnqk7LU7/9JaKo4fpHnqWmqyeubvRrVZbxNNTh7+nAVr0AXUZW0nSWidpJCeGmfVhKppBdVMVN5x7H1WuWMOD08KtH3uaDXbGz36H3oODpacHZUU9mRTUWW/xS0kQQhtQgDjoH6W3eHkmuHe0bTAVjj6Obwc79WDNLseVNHjWLWTpAloJeelq3o9NbyS6cMZzKdJT34ffZ6evch85gJa9o9mEvawZQFIme9l0oikROSTU6gzWtelLQS3/nfhQlSH7pwoiPPd2IioSrF1WVwc4afK5eskuq0Wcm/6UR3U9o15WD+Fx95E1ahMYS/x7SBW9obKH/e3pacLbXcs1VV/L9685Hp9XyjxfX8sg72+Py94b7UBUFT0cj7o5GMqYfPnzDfwcG+nDu24mptAJj1WQEUeS4qgr+cdln6Ha5uPaRZ3j/1i8eOwDOmZWvnnLfpaiqiqPTh/1gD/amQXIWlmGcWoIgCBHQTrGUce/yL7O5r45vbHkIdYz+4BD4evDurkWTm4O+qhRtXlZkujNTa+LZc64kx2Dm/CfupWbnLoItHejLSjFOn4wQ/VP/MCEMEBzop2ign6d/9TNsFgs3PfE8W1s74uoqAT/+tjZ8HS1obVlkTJoZE2sbB+x0k7tHlZG8LuyH9qIqMpa8ChYumM/PrzmL6WX5vLH1IH944j167W4UWcI30ImnuxlR1JJZUY3WOHwjpZqoG6lkAJMlP/bWGgKeQSw55ViyStDoRsBPCj0EvM4eXAOtyEEv2cXVGC3DESHp+Ixjx5kgWkORcfQ24LK3YckswZpVmtCXq6oqfu8ArsE2fJ5+svOnY7YVHbG94cJ9uAZbsffWY7LmY80qRW/MjOtDVVWCfhcueyseRxfWvEpsuZPSfhCkE6mhaMHr6GawowadMQNLThlGa26kj2jwSgEvnoE23P2tGDMKyCiblsQKT9DPKNENAJWF2XzvsyeyYvZk1u/Yy0/uf5FuvzbhhJgiBfD1duDpakY0msmoqkZjNCXsP5XLYeTr6L+loBf3wX3IHg8Xnncuf7vhahr6Brj+sWfp8Xmo+/4x5APOKLOpM65dgq/fC3odmdPysU3LRzGEfuaPnJQ7v3Ql35l1AXcdfJP769+NOZeOPxhA8soEmjvx1bWjeH1oMjMQjSYQoNyazavf+Rm+QIBz/vE7BrKtaKyWYYAmiIyA8UNYlWXy/X4e+tJ1lOXncfMf/8rru/aGtniRgsgOJ0owgD6/CFNhGTpbVly7CV+PwxpWVZWAvRdPdysBRy8mk42vXH0pt1z+GQJBid/f+xj/fvxZtJYcTPllGGx5Mb7wmPbHAOJQ+fhjAY8dV18LvsFORK0enTEjNKmmqgQDbiSfC53JRoatDLOtEEFMYj4xdhgPj3nIzx1w4xpsw21vB0FAb8hAo9WjqiAHvQT8TrQ6I9bMMsyZxWPetWIskqUALnsb7sE2FCWIzpARWcQiKQECPieCIGDJKsWaVZp0aXW00oVu3DFZwmvvxDXQSjDgRmfMQGswAwKKHCDodaIqMsacYiy5ZehMGfF9pwne0DiH/9ZrNVx/1jKuPWMJ/qDEX577kEdfegd3bzMB5wAaowWt0RLaCVmVkLxOZL8PQ3YBxqIydLacqGTwyfsZeT4dEKuqyufnTOcnF5zNlv0HuPKXv8EhCAhaLZ0P3X/sADizKls94Xeno8m2oTXrYlwREB+aBvCj6s9zevF8bt3yABt761L6gyH11vaSJ4hsd6F4fSALCDotC6bM4IkLrqXFaefSlx7FGQyMGp4G44cwQI7eyN2Xns/80iJuf/K/PPT+OgStFq3FisYwvFHnWMLUxgrh6DKqIiN53chuF2X52dz+hYs4ceFMDrR287vH3mN7XVvKviAxhBONI7ZO/DFVVZD8HiSPE1WWQBDR6k0hII+YCErHZxwa7/iudVVVkYM+An4naiAAgoBWa0A3BORPQiMjEwI+Z2TFnEYTelBptIaU1ne68cip/Lojx6PIQYJeJ1LAC6gIGi1aiw2N3jRqCtZIf2mAF+Ck+ZP51mUnU5aXyUsb93PHsx/Q7/QMA1CWkbxOggEPqqqEtqU3ZaA1WeLD1sbpchj5Ovrvr5+ykpuPX85bB+v5xjMv4XLZkd0uVFmm9e9/OnYAnDcrTz3t3xcBEBj6tpNBOAxao6jjnqVfJdeQwVVr76TTNzimSTkg5X5yAMcXVnH/mkvY3tPGVa89nVaMMBwehE2CljsuPJvV06dwz9pN3PHO2qgVZdH1idHHYQ2PlCDD6gVT+dYlJ1GcY+OVTfv56zMf0T3oii33MYI4tu7o12q6MI60OU4oH+say+IPGBt0k7aRZjjZcPn0wDupMJtvffYkVs2uor69j98++Q5bDrYmbDfVcuJE58fichj5Ovy3ThT5xXmnceG8ah7ftoufvfYOUpQfWhWh/nvHkAsiEYBhdAgXG/P59/Kv0urt5Yb19+JXgmOalIPRIfyZymr+fOJ5vN1Sx01vPY+kKh87hLWKwI/POIXLF8/n1f0Hue251/FJUlz9+PaSnxvZR6Lzqazh6NdGvZbrz1jG1WsWo6rw8FtbeeC1zXhGJssfA4gT9RVbL/m5UN30rtuxAjnS/v8nYB4raMNKB7gwfuiG6iarkx54szNMfOncFVx0wjy8gSD3vLyeJ97bSTDBhZbQsj6C8E12Lstk5G+XnseyyjLueG8td63dlHABxzEH4HP+c/4waEdYwaFjiSG8Iqea3y28mjc7d/KjHU/FnDtSEL5y2iJ+edzpPN+wj6+/9zKKqn7sEBZkuG7ZIr635kT2dHRx8+PP0+v2xNUf7fVYIQzpW8PFOTa+ev4qzlo6kz6Hm3te3MBzH+1BUmIbSARi+His4lD99K/h8QI5pr9PGM7jhWy00gUupBct8XGC16jT8vnVC7nuzKUY9Tqe/nAX/3xlQ0wOh1T9jZrLIUGfY0moE349KSeLez5/AcW2DG578Q1eOnAgaR/HFIDzq/PUsx84HyAphKPjg0dC+MrK1dw07Qz+UvMKDx/6KOZcusuVR4PwzbNX8L3FJ/PYwZ3c9uHrAB87hAHWTJnMH88/G7vPx5efeIF9nd1J2oit90lYw+FjsysL+eZFJ7JoWhnN3QPc9cJ63thygJGX0pEEcahe6vOhNsZ+PR8JKB9LGgtsIf3wtPFAN1QvPfBqNSIXrJrDF89ZTn6Wlfd31fPn/35IY9dAWuCFT8blALCyqoI/X3wOsqJw81MvsK2zI2k/qkal4dvfOjYBDKNDONGk3M/mXMkphXP4xtYHWddzMObcWCflEm1vD/Ct+Sfy1fkr+fe+Lfx0/TvAJwPh6rx87rr0M+SYzfzgxTd4ee+BqHok/Dut1+OwhpOVE2Q4YU4Vt5y/iuml+Rxs6+GfL27g3R11hw3iZH3G1k19frid8V/fxzqYxwraaB0J6IbaSVU3TfCKIuccN4sbzl5OaV4m2+ra+NvzH7Gjvv2IgTdRv+NxOQBct2IR31l9AnW9/dz85PO0uIaXfsf3Ebr+jjkAn//guRFgjgQwjO4PNog67lxyM+XmPL6w/h7qXV2HFRmRDMI/WHQqN85Zxr/2bOEXGz8+CI+sk2sw8beLz2VpRRn3rdvCH9/5CDmcbH6s4P0Y3RKCAGcsnsGNZ6+gqiiH2rZe7n1pA29vrz0iIE7Wd3wbo5cZbu/IXPMfN6APB7DRGktKy3SS9IwHupDY4j13RTVfOHsZpXmZ7Gns5O6X1rN2X+O4wZuo3OFYvdGvjVotPz93DefPncVr+2u57cXXcSvD8yDJ4AvHGIALqnPVzzx4HkBSCKfjD84z2Lh36a1Iqsy16+6iP+D6WCB8+5I1XF+9hHt3b+aXm0JxyEcKwnHnouroVZEfnHYSVyxZwPpDzXzz2Vfo93iTtDHG12lYumOxhkVB4PTF0yMgbujs4z+vbeHVTTVIcno+YvjkYTzc7v8fk26jaVw7Jx8mdENtpA9eo17LhcfP5arTF1OUncGexk7ueXk9H+1NDN5k/R9pqzfV6/LsTP526bnMKMjnrx+s566PNsZ8bsn2kwy3cegbxxiAL3n4rAhsR4NwKn/wNGs5dy39EvWuTr604b6YyAg4chD+yZI1XFe95GOxhOPOjZicu3BuNT87azWDXi9ff+Zltrd2xJxP3iZx+rjdEqIgsHrhNL5wxlJmlBfQNeDk8Xd28OxHu2MyriXrP6bfIwDjUDvplUvcx7EJ5sNJ1J5uKsojCV2APJuFy06ZzyUnziPLamJbbSv3vb6JdfuaDgu8icodKfACnDp9Mv93/hkoKnz7+Vd5v7ExaV8jN/MN65gCcGF1nnrxw2fGARjGB+GVuXP47YIreb97H7dteyzt9JUwPkv4wf3buH3dW6gcHoRDrxOfS+QX/utF51KSmcEd767l/vVbE8YLj+t1moAdC4gBVlZXcs1pS1g2owKPL8Dz6/by+Ls7aOkejK8zSh70IwXj4fbGVn40HSlQHw5YEyld2A73P1p7qceXCLwzyvP5/OqFnLV0JhpR5P3d9fznzS2RbYHSHcd4wJuwTJqvdaLIN089nuuPW8zuji5ufeYlWqP8vSP7SwZfOMYAvHDxAvXc/5xCX6AnqRUc+jv9SblLyk7g6zPP47HGtfxp/8sx544khG9beAo3zV3Ok7W7+N6Hr48rRA3G5xfO0Or51Tmncdas6bxb28D3n3+dAa8vro10Xicsc4RBHD4+vSyfK09dxJlLZqDTali79xBPvbeLj3YfQklw/R0ujFONJ3W7Y69zLGmssIXRgRtqd+zQ1Wk1nLpwKp89ZQELppTg9Qd5fv0eHn13Oy098ZnKUo0nHfAmGsdooB15LPrv0kwbf7zoLBaWlfDwlh389q0P8DN8gaTy98a2GTreeOu3jx0AL1q8SH3uvaf5Q+0vkAiO6oqA9CB8y7TP8LnK4/lLzas8fOjDmHPREA5KAorLS9Ajgaoi6HWIVstwjtJRIPyNeSfwtQWreOnQfr7+3ssEh+JgE+aOgJTWsKqqqH4/qsuLqiihpchGK4JWm6QOXLF4Pt9fcyIDXh/ffe41NjS2xJyP1lhfK8EAitsdGosoojFZ4nbeCGusIM61mblo1VwuOWEeBVlWOgecvLB2L8+v3UNHvzOujhqUkHxuVEVCEEQ0ehMafewmnunAONW40pUQVJD8bhQ5NOmi0RmTLrf9OBXO8yv7PZGlyKJGF8p/kEbinXSAG+onPeiqqooS9CH7vaiqypSKYi5dvZxzj6smO8NMc/cgT36wg+fX78Pl9X/s4FUCfmSfB0VQQnsVmq2IWu2YrOCzqqfz83NWIyDwg5ff5LXa2qT9JfL3RsaiBJHdblRZou1nvzl2AFw8uVBtq+vg9S0v84fXf0P+zBzMFTmIGvGwICwg8JM5l7OmaD6373ySV9t3RM6pioq3ZQBvQyfB7kFUrQ7RbEBRRVR/EMXjQ7RZMVQWYagsQh2CTjII3zhrOT9YegrvtTZw09vP45VCN2Y61jCyijwwiL+lFbmnD1VR0VgsCAioQQnZ40E0mTAUFGMoLUU0GBO6JP50wVlMycvlvnVbuOO9dQRleWgMsWVHs34ljwt/eyv+vi5UKYjGZEEQNKiKjOxxI+p0GHIKMeWVoTXHpxMcK4i1oshJ8yZz4aq5HDerEoANNU28tG4fb2/ey0BHE97+TmS/JwQWjRYUBcnnQRAEDLY8zHll6CxZMQBMF8ajjTEsRQ7iGejAO9BO0OtCozciavUwlBtClSX01mzMOWUYbXlHJAVlMqmKgs/RjbuvlYBnEFGjjzyMlKAfOehHZ7ZhySnFmFWEKGrShi2MDlyIhW7A2Y+nt4WAox9bhpXzzzyVS848kSVzZhCUJF7/aDPPvL+d7W1OBK3+sMGbqGx4PJLLgbezhcBAD4oqh65fUQzlhvC5EA1GDHmFGIvK0JjMSeFr0eu5/axTuGBeNdtb2/nWc6/GhJhF9xmqFw9f2esl0NpKoKsTxedDY7WAVkvfI08cQwCena3e99Y9nF18Gf/edjcPvfAf/K4gpasqsJXbDisyQido+P3CG1iQNYlvbX2Idb0H8XfZ6d9Qj6DXYphciqEkB9Goj3FHqJJMsGcQX30HUs8gprmT0VWUIQhCUgh/dsp8fn3cGezo7eC615/BHgi7A5JDWHa58e7Zh+r1oy8vQ19ciKgbYUkFFWSHA39bG8HOLgxl5ZiqpiAKsVeOSdDyvTUncsXi+ezr7Oa7z71GbU9f5PxoIFZ9AVwNNQQH+zAWlmIoKEGrt8SORVaRvW58Pe34utvQZ+aSUTETURdvFY8FxOFzxTk2zj9uNuetmEVJbiZOt4dXP9rKG1sb2NHUh0LUZz9kbXn7O/H2tKLRGcismI3WmHjbn7ECOSJJxdPXiqOzFoM1B3NOGXprdtweZnLQj9/Zi7uvBUWWyCqrxmDNSdLo+OVz9DDYuh+t3og5txxjRh6idjjzmqoJZSjzO/vw9LUR9NixDSXLT2WhjwW6YQU9DuxNe9FpRc44bQ3nrV7JqQunY9Bpaejo4/n1e3lh/R66Ojrw9rfiH+zBXFyFpWhS5BdmeMxx40kTvOFxyX4frvp9SG4nhpJSDHnFaEzmmGxnqqogu134utrw9XRgyC/CPHl6nFW8uLyE/zv/TEoyM/jHRxv5x0cb4/I5xI4p1uWgShLe2loC7R3oyorRl5agybDCUBKgpluOIRdE8exs9drH1nB55Xepti3i73W/Y9O+DdR/0IGt3Eb5ylKkoR0sxgNhs8bA3xbfRKUln+sf/Q0ffvABmUumoC0LJRAfzScc7Hfj3lqDoNNiWTYPQadNCuEzy2fwlxPPo8kxyNWvP0WHO/RTOhGEA63tePccxDh1MvrKckSG+0w2Oaf4fHj3HUB2u7AuWITGbI6zhk+dPJlfn3MaGQY9f31/A/ev3zJqzHDQPoBj3w4MBcVYy6eGrMwRZWLqKaGb3NNch6+3A9uMBXG7IYeVCMTJ2gWQPR4G67azauliPnfhOZy2eCYWo54+h5u3t9Xy9rY6ttW2IkctAVZVBU93M66OBmylMzDnliZufOTYRoGyIgUZaNyJokhklc9OmEox0fvwDnZhb9uPOaeEjKJpR8Q1oaoK9rZQEvTM8mqMtrzRKwEB9yCDzXvRGq1kV84JpWYcw+ReIp8uQLC/lUUVmVxw7lmsWT6XDLORAZeX17cc4MWN+9jX1BWqHwU2yefB0bgPVQ6SOXNRzPY/YY0VvAD+/h6ctbsxFVdgqqyKSUuazMJVggE8DQcJ9PeRsWARWmsGBq2Gr5+8imtXLKJt0MG3n3815aq2UHux8JWdTlzbtqPJy8Y0cwaiXhdX75gCcMnsLPXqx9ZgEE3cNOXX2HTZ/F/N7XS5Oqh5vRWtSUvpSVWRi3g8kRGZWjN/n3sjuWYbN66/l3p/T8z50SCsSCqeHbVI/U6sxy9KCeHjCiq559SLcAcDXPv609QMhHe5GC7jP9SGv64By7JFaMzDN3W6k3O+5mb89YfIWLIsIYRzDCZ+duZqzpw1jR1tHXz/hTdo6O1P2FZwsB/nnh1kzJiHPicv7nyiOtHjDQz24ji4C9uMBegzc5KCNR0QSz4PA/s3YSmpwlxYiSCDQadh1ewqzlg8gxPmVmHS6xh0eflgVwPv7ahnw/4mfEPbqge9LgZqt2Itnow5vzwyxrEoDGVFluir24LObCOzbOaYXQqyFKC/fht6Sya20pmHBWFVVRls2o0sBcipWpByL7aRUjQCqiIz2LQHRQqSM2VhyrzJyYALkGE2sGr2JFbOKOTkxdVYzSacHh/v7Kzn9S0H2HygBUlRUi/OEFXcbfX4ejvIrl4WgfB4wAvg7+vCWbcX25xFkVzZSeslgLG/qwN37X5OOu8Cfve5C5mcl8MjW3fy+7c/jFlYMbLfhC4HpxPn5i2YZs9AX1IcVwcAjUrTzd85tgB84xMn4VN05OgL+MrU/8Mp2fldzc9w+93se6mJrEmZ5MwNvaF0IiOijwUVDa66LqwdQZ6+7U70Gh03briXJvcYISyDe0sNqCrmxXOGjiWG8MzMAv695lIsOj03vfVf1nY0AyGgSgN23Ju2Y125HI1laCPBFNEOSSHc1ESwrYOMpcObGo6coDunejq3n3EqFr2OOz/cyL/WbYkkyxHk0CTF4JZ1WGfNQ5+dO65oCYBgfx+O2l3kzF8Z2aljrCAmqNC/bwPGvBIsRZMS9mvUaTmuupJTF0zjpLlVZJiN+IMSmw+0sHZPI+v3NtLQ3EbfgY3kTF2MzpIZ306aQB44tAtBFMmsmB21y/PY7g9FCtJbuxFr4WTMUTv3jlWurkN47d3kTl0S5/qANN0HqsJAww60BjO2spnDx0d5rkwry+O46kqOn1vFgimlaDUiPf2DvLf7EO/uOsTmgy1IcmroJjrnbD6I5LZjq16Sdq7gkWOVvW4G9mzENnt4b8REdVO9Num0fHXZAq47eRWdThc/eOlN1rY0p+w3UZSDKkk41q3HOGNKYvhG1TlmAQxQbp7HTVN+wEHnHu6s+xNeh5fdzx5i2nlT0WaG/HtjgbDk9tPywm4KTpvNpJLJ3L30S8iqwo0b76XV059woQYkgXBAxv7mFszzpqAtGt4DLVECnyKjjQdOu5QpmTl8/6PXeap2D6os43p3I8bpU9CXFo0pQiJaghyyilzbt6GzZmGaMjVhPYA8o5kfn34KZ1dPp6arhx+99Ca720M/Dx27t6M1WmK20k7b+h1xzNV4EMXjJnPmwlHrQjyIXa11BF12smYsQhz5uSToWyuKLJxayolzJ3Pi3CoqCkIukPY+O+t3HuD9D9dR4zLR6/CkbAviPzPvQBfO9oPkzTxuTNZmWNGgDu8YXTBjZVzUxmhSNAJBr4u+g5vIm7liaKeJ8UtWAvTsW0d21Tz0GYn902V5mSyZUc6SGWUsm1lB3tA9d7Cth/d31vHCc8/S4DWiz8gZdWIvaSY0ceiBsGcTxvwSzEUVKcsnekgooop91yb0uYWYyyYlrD+aFXz85Ep+es5qyrMyeeCtd/n1E8+gTpmSsu9kIWaevftQkLHMmxNfb4S1fEwBuGxOpnrD4ycDRCC8MOt0PltxIx/2vM5jLQ/Rvr0b14DEpJMrxhQjDNC5sQVUyFgc+mArzcXcueRGfHKQGzf+kw5v4mTukBjC/rZ+vHsasK1ZghpVL5E1nKExcOfJF3BiaRX/2LmBXz73JP6mNqyrFh+ReGHZ68W5fj2ZJ56IKMRugTPSGl4zfQo/OfNU8q0WHtu6k9+9+DrtG9eRveIEBI1m3NZv+JiqyPRv+ZDM2YsT+kqT1QcgING7431y565EYzClV2fE+bK8TFbMqmTFrAqWTCsn0xKCXXP3IDvq2thR187OhnYaO/vj8lJES1VV+vavx1o6DVNGfurO05SjtQYQsJXNGHPdwcbdaI0WrEWT066Tyqr19Lbh6+8gZ/oSNKLAlJI8FkwtYcGUEhZMK6UoO/Td9drdbD7Ywvp9TWyoaaLH7sbd2UjAaydr6vzkfad0P8S+Drod2Gu2kbPkxJhJuVTvI9x+YLAPV/1+shetAu3oFnT063yrhe+ffhLnzJ5BQ28/P3rlLTY2NWJf9wGZy1chGo0pwTuyPTnoxfHhOmwnnYCo1yWH79BEXtOXvpsQwEco3cfYZRCD+BUdRjGIT9GxffAN8o3FnFpwHp2+bt6Y+TKdjx9A8pWgM4bcBnpRjgEtgF4jE5CHzymSjLehi4Kz5qMTZYKKhiZPB7du/Rd/X/JF7l5+AzduuJcunz0CYY1GiUBYq1GQZBGNqEQgrC/JxrNDRuqzo8vLisQJixo1AmFBo6LKAk7Zz/XvPMVPl57Gl+evoFISuPXt55EIfaERoIrqMIQ1agTC4S8ysn9cVB1VA6LVhDYnB397O8aKihhAq2J0PXizvp71d7fw9ZNWcuWS+ayZOolfPFHAm0Mr0VRNLOzCF1jax9BgLCrD29GMdursmHGnqg/g6W9Hl5mLYDJBkjqJ6kWfbxmw0/rhLp7+cBeCAJNsGhaUZXH8qpUcP7eKz6wMjcnp9bOvqYu9hzqpae7mQGsPrT2DESgH3YOoiozBlkeS7e4SvrdUMudX0FuzgYySqSn9ryOlSAF89m4Kyk6IOzea62CkNKJAZWEO05dOp9IcZMmSRVRPKsY0NEnUNeBke10b2+rb2HKwlUOdw3MGqgZUUcXd20zmlHnxYxkDdKOltdkQTWb8/d0Y84pSvreRffjamzGWVcbBNxV4NYLA5xbP4xunrEKv1fDn99dx7/otBJARdTr0hcX42lowTZs2oo3kq9pUjYq/oRV9SRGCUUcMphPAN5WOCoDDH99ICL/Z+SB5+kIuLruC/kAvhwpbcHW6yZqUGYFpGLR6UYpYwdEQtve50WUY0WWErKFwvQZ3G1/beh9/XXwD9yy/gZs23hezrVEqCAuCgKE8j2DXALq8LESNkhLCkqrwo02vU9vfze3L1/DCpEnc+NZ/aXU5UkMYYkCcCMIAupJCgu2dUFERuVCEJAB3yQF++c57PLd7Hz85cTl//9J1bG5u5RevvcuBrt6xQ3fEMX1hEY7d24aPjeh/ZP1wGwF7H8bc0A0YvmET+YrThbEK1DuDbHjwCZ7Z1YWo0VJZkM28qmLmVBUxZ1IRV52+GJ0mVMHtC9DQ0UdDex/7ag7S0FJIt2ymvdceE20R09cYAKgxmdEYTQR8DvTWxNEiieR3D6CzZiHo9aT721Sn1VCWl0llYTaTinKYUpLL5JIcqopyMepD94g/EGTvoVae+XA3e5s62dnQHrP4RdUAI0Aj+72gKBG/+qjLlNOcVDPkFRK092EoKEqrfKhtlYCjD8vM2SnLRR9bWlHKj848hZmF+axtaOKnr71Do2MwpryuqAhv3UFMTBuqn9zqjT4n9fZjmBHluhhRLxq+I9uM1lGzgMMaCeGnWv6MTfczrqv6CnWzGzjQtR8mhS6AdCCs9Dkw5Foir6Pr1bpa+NrW+/jz4i/wzxVf5KaN/6LdOwCELOxkEAbQ5tjwHRoOTxkNwgD/Wv82+zds5t6vfJsXz7+ar7zzAus6muMhDEmt4WgIQwi0Glsm3gMHYz7HkZCOrguwq62V07/6ODd+9Va+dcrx/PeGK3h8+27+9t56BjzecYNYY7KgyAFkJRCzYi4aVolgHPTYyaiM/XkefQOPB8aCIKKxWgn47BhsuTT2DdDUPcCLG/cBoR11JxfnMrM8nxll+UwuzuX4uVWcv2pOpI2gJNPR76S9z057r4P2PjtdAy66B1z0DLroc3oSJhVKJJ0lk6DbPiYABz32mIlEQYBMs5Ecm4X8LAuF2VYKszMozrFRkm+jNDeTopwMNFE/57sGnNS197Hl4E4OtPZwoLWbfbt34XH0k1U1d/izHAWoQbcdbUYmaIWkD4NU1m4yYGttmfh62uKOpwKq7HEj6PSIusSLOqKPlWRm8O3VJ3DO7Bm02R3c8vSLvHGgLuFCDq3NhuxyoioK6ISE7YVeRwFVUZBdTrSZttCBFFZvKvjCUQSwTpAJjniXIQjDQ42/4aapv+b2s3/JNx75SgxoR4Ow5Alisukir0dC+KCrma9uuZe/LbmBe5Z/kZs2/Ys2T3/kfCIIA+isejweP4KoRnJHjAZh1evnve4azn/pQf556kU8dOZl/GrTu9y/d2uc5ToWl4RoMqL4fCiiiiAIwz7ZFNaw4veDwcATu/fwWk0tt554HJcvns95s2fwjw838vDmnQRleRwgFhANJpSAH9GijyuX8D2oKkrAj2A2Rn7yxy2JHgOMo+tr9KGxJCrnV2X2t3dT09IdU1du3c28pauYXFlGZUE2ZXmZlOZlcsqCKWRnxE+CBYISAy4vdo8Ph9uHw+3H4wvg8Qfw+IP4AxIBScbZX0kwGEBvyydsVGtEAUEQ0GpE9FoNBp0Wg06L2ajDbNCjV04mKyuT7CwbmRYTWVZjxGqPVo/dTXufnR0N7bRtstPYFXrYNHcP4vLGPiBUDSh6PbKUfClwos9Llv1oDPGTiOOBLgxfBxqDCdnvS1ln5DHF70c0mVK6Gyx6HV9ctZTrV4T2Lvz7hxv457rNeFUp5mETYxxotaDVoCgBRAwJ+46BrwiKJIEoIOh0SeEbriMKAiZt7FxNtI4IgAVB+BbwByBfVdXeUcsPPU/DEA5bwWG5ZQcPHPolN076Jb+6+Pf8uflX2IODMcuSgYQQ1ooyKrrhcwkgXO9u5ZYt9/LXxTdw7/IbuWXz/TS4ukeFsDhEEGHog1YVISWEw2p093Phyw/xpxPO4ScrVrOwoJjvffg6Hik4PpeEFqLWcCTw5cZbw6BGfD/2oJ9fvP0ej23bxW2rT+S2oZzDf35vLS/vOYDKGP3BKZKgxJSNLGUN/yexxZEKxjAKkDUC6ii+t5E3WL/DwfZDreztcMSVNeq0FGRZKci2kp9pJTfDTI7NTLbVhM1sJNNipKwgE4tBj9mox2LQodeN7bbyByU8vgBufxCH3Y7TG6CpawCHp4N+p5c+p4d+h5vuQTddg0567G6CUvxPgOHPIEEnggAJ7NiUQFZVEISUwB2tjaRuGzE98IaPpQKvThS5dNFcvnLCcvKsFp7fvZ8/vvsRHZ7Y3bsT+5mH7gtVTQnemPqqGrrmR4FvrtHM3045F78ss5pvxHfOEQCwIAjlwOlA82hlo2UUgvhUXRyEw66IvkAnv3/ju/zwrL/w1anf4Y8HfwV4CCjaCCghHsJakw6vMxB7LgGEG9xtfHnzPfx1yBL+6uZ/U+NoTwphv9ePaNTHTM6FrWFREyKCIouImnBQv4Bo1qEMPendip+b3n+Wm2cfx7cWnkB1TiE3vf0ctYN9Y3JJAKhuH4JeH/r2Itbv0PeRxBoWjAbkgA9VVSMxmHUD/XzxiedYVVXBd1efwB8vPJsvHLeEP779ER81NCVsd+SxkDXrQzDq4x4EyeoLgoBgMCBLPrS62AiI6Doj64WVyjqWAz5EnSHhjZw0PE439NlYbHHnvIpEU/8gTf2DaSf0EQTQaTT4O+sxmMxYCivRiCIqKoqioqgqsqzgl+Q4kDpbDiBotFhLpsS1G/Oe0p/XA4Y+F0PizyWRFBEEgwHJbU94flzQHaonSb5I7Hiq9qKPiXo9it8Xe20AZ82eztdPXkVlThabmlq56ann2dnVNeqYwveHKsuokgxGXcLzieoKRi3ICqokIeg1CestKSjlzlM/Q5bByI83vBn/5sLvK+mZ9HUH8F0SPV6TdhoqahRCq050Q1e2QQy9Ng79f9f+nfx1wy8oMJTylSnfRCfo0Q/tA6OLyh2oH/pbL0oY8yxIUZMLkXOa4fLhus3eTm7edA9eOcBdy25gQfakmPMazfDdrQ7a0eaGwnU0UXe9EPXkE6PKixoVTVYG8qAzQgkV+Mfe9Vz5xhNkGow8/5mruHBKdeicRo194kZbcSOexEGHHc2Q/2lkvZHWQvi8aDAgiBpkv2fE6h74qLmZC/71CN987hUyDAbuu+IiHrr6UhaXlyZtN3xMDnoQNNrIDZWoXPTx8Dmd1YbkcqCKRP4l0sh6I6WIw/9kQUFyO9BZ40E6sq2YsVhsSUEzWv1E/xQx5O7o6+vEiZZ+r5cet5tet4d+r5dBnw9nMEBAlePqajMyCXgdScearkbWDXrsaBM8YBJ9juEHnNZqIxj1uYw2lmTf48h6ktOO1pqZtL1Ex0SrBTnoRwmG2HDKtMn898YruOOic/AGg9zw+H+58uGn4uA7ckwj7xfJ7UDMsCAMuXni7qeR4WUaFUEUETOsyM7hX0zR9W6Ys4THz/kcPlniolce5qmGXYk/MA4TwIIgnA+0qaq6M42yNwqCsEUQhC3OgeHlfskgrJV8ODo8dGr38kjznUyyTOdLk29BI2hSQthWaMBv9yH4vHHnEkG4w9/Dl7f8g76Ag78vvY4TCmbGnNdoFERRxt/Wh6loeHIkHQhrzTpEiwmpZyDGJbG+u4lzX3yAPX1d/Pnkc/n9iWdG/EQpITx0TuruQZuXk3ZavPB5bU4Owe6Q/3Pkhalo4MWaA5x59wP87LV3mJSbzaPXXsb9V1yUEsSB3m602dlJb6JkMNZm5+LvS3yzjBfGQfsAotEMen0cTJJJ1YAuOxefvRtFVMcNvJGSAz5krzsl9BJJl5FF0NmPIo++4Vyqh0BMOVXBP9iL3pYLxMM22WckWiyogkrA5xgVuqnAO1L+wW60OfETk6lgLIgiuqxsTijO5ekvfJ67P3c+Zp2ebz33Kuf/62Heb2yMNTwSjCnRPRLs7kabkxN3Pq7+iLra/GyCQzuWh+tlG0zcf/pF/Hj5qbzdUsdnXvoP+wbjrfFojQpgQRDeEgRhT4J/5wM/AG4frQ0AVVX/qarqElVVl2Rk6yJWbrSiIdxZ46CgwojBomO/40Oebr2P6sxFfGHSTQgISSGs0WnInZrJQE13DHBTQbjHb+crW+6i3tXJ7xZewXlli2POB7vtiCjoCrPQahS0Q5BNB8KmqaX461pCZaK+xC6fk8vffJS/7lzHJVPn8tL5VzMrJ7QIIA7CUW0rQR/Brh50ZSEopnq6j7ygDZMq8LU3h2Z8w2VGXAEBQeHhHTtZc+f9/ObN95lRkMej117Gg1dfwopJ5TFtK4KCt60ZY+nwqqZ0fXjGwhL8gz3IcuKJoegbezSrKlzf09mEaWiFVbRGA47eloOqKgSdAyn7SBd4AJ7uFoy5xWNeVSeajOiyc/H2t425z0RSRPAOdiOaTGgyMtJ6IEWgJwiYiirwdgx7F8fyvSQ6HvS7kFwODPlFaZWHkKvh9JlTeevPv+P+m79AlsnI9196g7Pu+Q8v1NTE7c2WCLyJ7gtVlvG3tqGfVJbc6oV4X6+oYqgsI9DagaKGOLaiqJzXLryW40smcfuGN7np/f/ikHyMplEBrKrqGlVV54z8BzQAVcBOQRAagTJgmyAIiYP7oiQIQy6IsMtBGIaxTpDxuyXat3dTviAnUmbbwOs83/YQC7KP4+rK61NCOHd2Ac4DXfjtPvQaOQLdaAiHj4XrDgbdfG3bPWzpr+f2uRdz7eSTANCqQRxb67FUl6PVDn8R0RAOg1gQ1QiIRY2CqFHQVxShOJ3I3UMJejRqBMSyqvKnnR9wxeuPk6HX8/xnruL62YtDcwJJXBLefQfQV5YgmoZv7NF+ZkV+3mZmIprM+FoPpX7aA15V4v6t2zj1zvv55RvvMSknm/9cdQlPXv851syYggD4WhrRWMxos7Ni6o52U6kaEHV6jIWluBpqUtYZOcZk1rHP0UPQ68RQWJwWoKJhrGoETGWTcTTVxDycxqKYn/sBN56eFkyllWOCeHjMluIq3G0NyIH0wt1Gvp+Yf5KEq+kg5pKqlGNO9pmZCsvwD3QTcA+O65dJ9HFVVXHX7cdUOgl0ifMVR5fXiSIXzKvmpZuu5m+XnofZZOKrf/47J93+K57es5fgiPjGdMEblre+Fm1BbiQ/S0KrN8kvUiHDiLYoF+lgI99dciKPnf053FKAC19+iAcPbh0uF3W/J9IRW4o8BOEl6URBVM21qj9/dg5+NfSzO7wc2afqUBSVLS91Ycs3MmVFbiQ6Ilzm5ILPcWbRJaztfZNHmv8DDC9Ljl5e3L6rF3vDAKVnzkLUho6nk0VNK2i4bdZlnFmykGdbNvDDh/6K3+4m44S5kcmrREuXIfk2R/6OQdyb9mFbvRSicgNE55HI0Zn5v1VncVrFND5oO8S3P3iVrqFZ3PBEWqClHV/dITKOPy7is0qV1Ce6bliKy4tzw3qsixajzcxMWCbRii8DGi6aP5sbViymIjuL+u4e7nz0CV7v9yDpRiyJTnNJsyrLDG5bh7l0MsbCxOkk05n4Unw+BnZuwDZtLvqs3KTlUrWlqir2A9vRmCxx8ckjlTS5EKH31L9/E6a8EsxFlaMNPalcLbUE3aE8GapmfJ5CVVVx1u8GQSRj+pzRK4TrjejO19uJp6mWrHnLI3mgUz3gkp3ztB/C39NF5sJlMZnmRpbPMBi4dOEcrl6+kGJbBjVdPdyzbjOv7j+I3+3AuW0ztiXL0FisCcebKPZ2ZB+B/h48u/eQcfxKRL0+pbshWWxvldnGHctXs3DyNB47uJOfb3obrxKIlIuJhLryBx9vLoixAHjKXIv602dDAeHREJYlhS1vDiAFFOacXYY4lPFpJIRPK7yK1YXn82HPazzW8jAQD2FVVWl4pwXJJ1F86nREXfoQFhC4YfKZXDP5FN7evYHbD71AQMeo+SMgOYQ9e5vxN3WQccJCiMp9oI6A3xXTFvKjpafilyV+vO4tXmjYHxpjWye+XQexrliExpaRMqkPpAZxoLsb7+69WBcuikB4ZJlEbQBoFYHTJpXyhaULmT9tKgMeL49v3cWjW3bS7XKP6DO+/sjjksuJffcWrFNnYcgvSjsPRFiy34t97xaMBaWYyyYnHXc6bSpBPwN7N2HILcZSNmXM6SQVWcJ+YAeiTodt6rzDS0epKNgPbEPQaLFNnTum5cyqJnT9uw7tDyU7ql6KqE3uCklnhZ+zqYagfYDMOYsTJuMfDcjetma8zYfIXLAUjcmcsE5FdiZXLVvIxQtmY9Hr2dDYwr82bOGD+saYsv72NrwNdVgXLUZjtUb1Mzp4VY1KsLcPz45dWBbNR5OXE1sgjRVtAnDt7MXctuREvMEgt975J95RB9EVDqV2HdGGqFFp+PwPj51kPFPmWtTfPjczAlS/qmOwO8CWtwYxZ+qYsaYYjVaMWagxEsJnFl3HyQXn8HbXqzzT9giQAMKKSuOHbbg7XRSsmoy5KBTFMBqEJbefgY31XLLgdH5+6S3UOtv5xpaH6PU7Y9ofM4T3t+A72Ix53jR05YWo0eWi4FdlzeGPx5/DooJSXmrYx7f/dRdd9Y1Yli9AO3KGf5wgDnR349m9B1PlJAyVk4bTW8rx0IjEHysKvuZGfE2NWGfMYeWihVy3fBGrp09BVhTeqKnjkc072doSu8pptF0xJJcTx95t6HPyMVdNj8BiNIs10NWB69ABzKWTMJfG/8RO9TkkkxzwY9+/DVGvJ2NyNRqDKS0rPODox1m/F50tm4zJ1UdkeyJVkXHU7kb2eciYMicS3TGae0XyuHDW70MQBGwzF8TunjGGYcVMaqkqnqZafN0dWKfMwpBbkJYVrAT8uOsPIDns2OYtQrTG7l4iACdMmcSVyxZw0tQqArLMy3sP8MCmbezv6kk6P+Bvb8Nz8ACmKVPRV5bFPewSgVeVZXx1DQRaWzEvnh+ZfAPStnpLrTb+cOJZrCyu5O2WOm5b9xod7a24N+5CX1GMaXYVwtAvbjGqzWMSwIqi0taicGivm84Wierjs8ibloUgCPiGLONUED67+AucmH9WSggD9DQ46FjXgi43g+yZ+VhKbATRDZUftphdPT5ctd24G/swzyzFNruU5fmz+cW8y3FLPr659SEOONrj2h8LiKV+B65NB0CrwTC5FG1RQWQDzhhr2OPni5Vz+c5p52H3erh9/Vu80lIfOZ00sxqkDWHZ68WzZy+K14uxrAJ9cTGiXh9TBkAJBAh0tONvaUFjMmGeORuNyTRUDsqzMrli8Xwunj+bTJORmq4entq+hxd278fh84/om4RSpCCe2gME+nowFpVhLCqNWErR9VRZwt/bha+zBVWWsU6bjS4jK2XbyZQMyqqi4Gk7hLejCUNuEcbCMrSWjPibXFEI2PvwdbYQdDvIqJqFIbcwrr1EMdTpSlVV/D3tuBoPoMvMxVRYhi4zOw7wqqoiuex4u1oJ9HdjLp+CsaR8TA+CdMbmd/Thqt2LxmjCWFyOPjc/Yp1H+3plrxt/Rxu+zjaMhSWYpkyN2Wg232rhwvnVXLpwDhXZWXS73DyxbRePb99Nt9edqOu4h4fkdeLeuxdkGUN5ObqiUHKc2Pekovh8BNra8Te3os20YZw7C9EQFYecxlJiAbhi5gK+vyw0N/TzTe/wZP1w8Jfi8+PbewCpz46hqhRjVRGiedjdeEwBuKhCr15wUzH2viDGTAOV1RbKZ5pRh2JJo33CkB6EU7kjALx+sDcM0LO/H/+AF0OWCcFkBAH8XoVAvxvRoMVYVUjGtAK0FkOkfpW5lN8vvIYsvZnbdz7Fu11749ofC4RVRcHfOoC/oQ2pdwDBZEK0mkMbCQYlpIGQ71dfWsi8RYv54xkXMy+vmNeaDvDjtW9FLtA4a3UcIFZVFWlggEBrK8GubkSdPuRb02hAlpGdbtRAAF1BAYbSMrRZ2YhJUoaZBC3nzZnJ5xbNY25xIb6gxOs1tTyzfQ+bmlrjAsUTAVNyO/G1txLo6gCEEPi0Whi6qWWfF11mNqbCcvQ5+aMCZry7IQtKaM8xX1crvp52FCmI1pIR2pQTFdnvQ/a60JozMBaWYcgrGlce4XSlSMHQvnxdbcg+N1pzBqI+lEJRCfiRPU5EvQFjQRnGgpK4hQ4jle6DIKEFqsihh2BHK5LLjmgyR/ZiU6QgksuJIIjoi4sxlpShMYesXq0ocvyUSi5ZOIdTpk1GK4psbGrhsa27ePNAHYEET8Skq9fCf6sqUl8fvvYWpN4+BIMBjdUS2oZJkZCdTlRZRl9UiK6yDG3WsMstXat3ki2b351wBsuLKvig7RA/WP8arZ7h+Ohol4M04CDY1EqwtRu0GnTZFgSths47jqFNOSunm9Tb76vElGtCZxAjMAUSTsxBagifUXQtpxScy9reN3m0+UFU1IQQDlu7Pr+Ar9+L5AkQlEVEgxZDthllaN17oi3vc/RWfjXvGuZmVXJP7VvcV/cuKuph+YUB5CDIDjeK24sSVBF0WjQ2K+iNEYtLIwjcMGsZ31x4Aj5J4teb3uOJg7siQDsSIA6NTUHxeJDdboSgAhoRjcWCaLYM5ZxI7p6IbQ9mFeZz2cK5fGb2TDKMBloG7Ty3cx/P795Py0D8ooe4FXSqiuL3IbtdEJBAFNEYTWjM1oR5ZMcC2vFAWQn4kTwuFCmIAIh6Q+jhoNGO2ec8mkZzEyiShOR2oAYDqICo1YUeDgl8szA2qzudsjGuCUVGdruQfV5QVdBr0VozEKNySEwvyOWCedV8Zu4s8q0Wel1u/rt7P0/t2E1j/2BSN0N8v6l9vKqioLjdSD43KAqCRoNotSJYR2x6myZ4tYLIF+cu5esLV+KXZX65+Z24RRXR8I12OQiijOL2ITtcqJJCy7f/fuwAeNHi+eodz0/DETgYAexYIBydNyJcZk3hlawpvICNfe/xUNP9KCgpIZxou/uY8wkgrBe1fGfmJZxVsoh3u/bw051P45EDMWWSQRiSg1iJKqeMgNxI3/BvVp7JiqIKNna28MO1b1A72Bc5n9ItAWOOmAgdi28mXRBDyCpeM2MKF8+bzXFVFYiCwI62Dl7aXcNr+2vpccX/3BzrRNx4yxzJekdbY3VtjKXeaGUSnS/LyuTs2dM5d85MZhTkEZRl3qs7xDM79/JBfWNcCFmkrXGAN1m5lPG8kDJz2aKCEn696nRm5RTwSuMBfrrxLbqH5oAg8UTb8N/x6wNqL7n92ALw+o1vs7b9WtxScxyEwwCOPpaOJXxS/mWcVXwZOwY3cN+hu5BVOQa06eysEXd+RIQEwKXlJ3LL9LNpcvfw7a0P0+LpiyszVmtYGQHrZHvPAVw6eR4/WHIKVr2ef+3Zwl+3r8MjheKlx2oNwycDYkGGogwr586eyXlzZjCrsABFVdnS3MZr+w7yRk3duGCcbpmxlPuk2klX44XreNsYL5TLsjI5c9Y0zqyextyS0HKArS1tvLT3AK/sP0i/3xtfieQW/xEDL6QN32yDiduWncjnps+nzeXgpxvf5M222piyyaze0OvEi7OOKQDPmp+p7tx2CFnx8lH7Nfjk7iMG4RW5n+GC0qvZ79jB3fV/JagGPhYIL8yaxi/mXY5W0PCTXU/yQXdNXJl0IAzjs4ZzdGZuW3Iyl02bR7vbwc83vMOrjcM5go82iBO1F93GlLwczpo1nbNmTWdafih2d3trO2/V1PPWgToa+weT1h1NY56M+//U6k2k8cD6cKzgGYV5nDZjKqfNnMrMwtBKzl3tnby6/yCv7a+lzZ56GXN8P4l59HGDVxQEPjd9Ht9beiIWnZ77923hLzvW4kkS1wujW72RIYgKNRf99NgB8Ix5RvXR185iftFD+KQu1rZ/gYDSf8QgvCDrNC4r/yKN7oPcWf8nvLInbQhD6jC16PqFxix+OfdqZmWWcX/du9xT+xZKCr8wHHlreHFeGb9YcRrVOYWsbW/kZxve4cDAcCj2JwniZGUTtRndzpS8HE6fMZXTZkxlTnEoiqCxf4D3aw/xft0htjS34U+QfjHVOMZb7uOqf6R0uNbw4Uy+QSjn7vJJ5Zw0tYqTplVRbMtAUVW2tbTz5oE63jxQR+sYoRvqLz1rN1HZwwEvwJLCUn66YjVz84rY0NnMjze8Sa2jJ6b8eKze6FQFxxSAZ80zqHe/UEmmYQlzC+/DE2xibccNBBXHEYPwzIxVXFl5Cz3+Tv5a9zvswYGPBcJ6UcvXp1/IZ8qWsrW/nh/ueJK+EfHCML4JunStYY0gcMW0RXxz4fFk6Aw8enAHf9q6lv6ohERHAsQJ2+HIWMXhdkpsGZwybTInT61ixaRyDFotvqDEpuZW1jU0sf5QCwe6epKm3vs0W7/RGnO4W5LyGkFgTkkhx1VVsGpyJQvLitFpNLj8AdYeauK9ukO8V3eIPrdnzNAN9Ts+N0PSdscA3lKrje8vO4nzqmbR7nbw2y3v8ULTvpjyh2P1hqXVKOw5/+fHHoABso0rmV1wD65gLevab0RSXUcMwuXm+Xyh6tt4ZBd/q/0dXf6OhBCGw5ucAzijaCnfmXU+bsnPj3c+yea++rgyhztBF3qdHMRZOhNfX3A8V85YiEcK8vcd63lg31b8cogyCaH4MYM4ab9J2o1uy6jVsmJSOSurKji+qpKpQ66KAY+XTc2tbGlqY0tzGzVdPSgpruP/1Qm5j2PiTSeKzC4uZElFKUsnlbKkvBTrUMzsno4u1jY0sfZQM1tb2hKGjcX0MwZrN9m4jhR4o9vK0On58vwVfGHOElRV5e49G7lnz6aky4hhfFYvDOeMOeYA/MCLJRGI5phOZnbBndj9e9jQ8WUk1X3EIFxqmsy1k36AKGi4q/5PNLhDDvXDiZAYeTzcRoWpiF/Nv4JKSz7317/Hv+reQVaVmD7g8K3h0OvkbokpGXl8f8nJrCmfSqvLzh+2fsjz9fsjkPq4QRw6nvDwuGAcbq8ww8qKynJWTCpneWUZZUMxnU6fn53tnexq62BHaye72jsZ8CSe8BltfEdCY237SEyyjbftggwL80qKWFBWzPzSYuaWFGIayu3R0NfPhsYWNjS2sLG5NWbvwKT9HQHoJit/uODVixounzmfWxeuJNdo5pm6Pfxh2wd0+Bwx5cfjboB4qzdaxxSAZ8/Tq/e/GEq+EoZonvl0ZuXfgd2/mw0dXzmiEM7RF3LtpB+Rpc/lgca72DG4GUgN4ejzY4GwUdTxjRkXcU7pYnYNNPKjnU/S4R2M62c81jCk75YAOK6gkh8sOYW5eUXUDPTwu80f8Hay1XSRRscH4mTtpV6GnDxXQjpALrZlsKS8lMXlJSwoLWZGQV5kc8p2u4O9nd3s6+impquHmq4e2u3O1I2mMeZjUekAXAAqcrKYWZjPzMI8qosLmF1USP7Q0uCALLOvs5sdbR1saW5ja2t7SrdCpO8xuhdSjTdp+cMErygInD9lFt9adDzlGVms62ji11veZc9AZ0z5dN0NkJ7VC8ObOuw895fHFoAffakQnxoC3FggDMnjhCE+VjhcxqzJ4KpJ36fSPJVn2x7jne5XAT4WvzDA6oKFfGfWhQD8eu9zvNmxK65MuhN0MH63hACcXTGLby08gcmZOWztbuOPWz5kbVSO17RADB+bVZyqTrI+ErVt1umYXVzA3OJC5hQXMruokKrc7EgZh89HXW8/9T191Pf2c6hvgMa+AVoHHUjjTEMZ7vtI6nAsYp1GQ0V2JpNys5mcm82UvFym5ucwOS8Hy9Ayc1lRqO/tZ09HF3s7u9nV3sn+rh4CUZuyphzfOKAbOpd+nbSgCynBKwBnTprONxatYkZ2Prt6O/jd1g/4qOtQTPnxuhsgudWrGQHsYwrAc+bp1UdeCs12J4fwniEIx/uEYXwQ1gp6Li3/GvOzlvNR7xs83vxwzIINSB/CcWUSgLjYmM3tcy5nblYlr7Vv5//2vohrKEnzkbaGQ6+Tg1griFw6ZR5fnb+SEouNjZ3N/GnrWjZ0tkTKHGkQJ22T8cM4VV+J+rDodUzLz2NmYT4z8nOZkpfLtPxcci3DeSYkRaHD4aR10E7bgIN2h5NOu5MOh5Nul5tel5tB7+jJtT9uiYJAlslIvtVCYYaVIlsGRTYrJZk2yrJtlGVlUphhRYxa9dXldFHb00ddbx8Huns50N1LbU8vfik92MLoK/OOFHST9jUO8K6pmMo3Fq1idm4hdYN9/Gn7h7zaUhMzeTsW8MLYrV4Yzje+5ezfHDsAnj5Tp973cA7mHB1arZAUws5ADes7bk4YHQFjg3C4nIDA6oIrWFN0Abu7t/KXTX8gIPrQZFvR6OLjfQ/XL6wRRK6sXM11k0+lL+DkZ7ueiZmgU1UV2elFdvmQgyDotGizLCja4bX8qaxhGJtbwiBq+NzUBXx53goKzRls6mrhb9vX80FbI6qqovr8KHYPyDJoNKF19UYDQqI7Y8whZ2ODsRIIILtcEJARBAHRZEY0m+OS4oxlKXC4r2yTkcqcbKpyspmUm0VpZghgZVmZFIzI2AUQlGX6XG4G3G4G3B4GvX5ckoTTH8DlD+AJBPEGQ/8CkkxAlgnKMpKihpZVq8M/hwVBQCeK6DQieq0WvVaDSavDpNdi1uvJMOjJMBjIMBrIMhvJNpnINof+acWRD2iFLoeTNruDVnvoIXKof4DG/kEa+wdw+UMTS2NaiDEG4IaXryteLyqElv9mZSCOyBE9sl5a/aUB3ug2BeCskiq+ungV1QUlHBro5a/bP+L5tgMxk7SHA15I3+oV/V4kuwdRVtn5xbuPHQCXV2jV679kwT6okF2gY+ZsHaXTTOj0w1nQck2nUF3wN9yBBtZ13JQwThjSh7AiKfQectG014Wzy8u5J13KNy/8Ie0DrXz/oW9TV1eHIUNP5rQ8cqZnQ9Ra9sP1CwNMt1bwk7mXUWkp4Knmdfz+vSfo29+Mv2MAVa9HkxFary75FWS7G0GvRVdWiHFKCRprKPPYkXJLABgEHZ+dNo+b5i6nxGJjW1MDdzz5GC9vXo9gNSNoNaiSjGIPrU7TFRWgryxFa8siocZgFUNyGCtOD/7WVoKdnSjBIBqrFUEXSsajuD2ogSC6nDwMZWVoc3KT5twdT36GMJx1okhhhpVCs5FsOUA2KvlWKwX5eWTbbOTYMsi2WLCZTdgsFsxGY+qGxyiXP4DL78fpDzDo9TLg8TLg8dDV1U1Hayud7e10uz10OJx0DQwS9HlRPG7EDCuG4hL0RSUJAZhI6aanHAndYG9vKIHTQD+C0YBoMiGIAmowiOx0IRgM6EtK0FeUIJriP5/DgW70eFRVRRx0cl5hBbecciYzyiqo7Wjjjlef45kN7xOwO0P7yZUUoK8qRZsd+3A9UpNsYfhKdjeB+ja8zX1kmSz89vpv4fC5ufy4s48dAM+bp1NfeCUPVwBammV27JLp7ZZZerKFqmn6CESzjauYXfAPvFI76zu+lHDFHMRDGGIn5/qa3Ox5rw9Tpp7i6kws5dlodCJVlllcUfkdBETurf8rW+s201vTT2+ji6KFhWRXFyGIoRv8SLgkDKKOL5St4fLpp9DU286P33uQPZo+NEZdDKxVVSXQ78Xb0ImvsQtdeRGWuVUhEHHk3BKK14+8t47L5i3naxd+lkm5+dQN9vHP3Zt4rn4fflkOWcVeH8HmLgJNrWgyMzDNnYloNKbtnoDRYaxKEt7aWgLtHehLSzCUliJarYgj318gQLCrC39LC4gilplz0GZkJG88zTFES1UUfC3N+Brr0eUNZYGzZSKIYmxqSUki0NeL1NmGQVXImz2PzIJC9FoNOo0GvUaDZsji1YgCqgqKGrKIZVUlIMtD1rKENyhFrOhoa01VVQI9XbjratBmZGAoLUeXkzu8I0rUmKXBAfxtLQT7+zFNnY6hpDTmATUe2I6UNDiAe+8+BL0GfXk5uoKCONgrgozsdBJobSPY3om+shzjlMkIGs0RAy+AKSBxcXYpN685m7K8fPb1dnLnno282lIT+QzVoQd3sLWDQGM72oIcTPOmoTXHjvlw3Q2KP4hzewNSRx/mKYWcc8IafrT0UjJ0Ju6rf4ubp5917AB4/ny9+vzLoZhO/1Bqw0OtKu+/6SOrUMcJp5kJiqEJg0zDUuYU/pOAPMD6jhvxSK0xVu7ICIloCHtkLQfX9tHZ4GHmSQXkVloSREgUcGXlbRQZy3i27VHe6X4Nn91P3XsdoKpMPr0qkibzcCHsPNCJfWczp5x1Br8440bKzLk807Kev9W8gVvyR8qFJcsiij+Ia1s9gV471uPnobWFnuBjcUuEXseeD3QM4NmyB0NVKYbpk9BqtZxdMYub5ixndm4hPV43D+7bzsM12yMLOlRZxl/TSKCpFfOiueiG4nITghjShrHscuPesg1Ndhbm6TMjOYkT1g3nBVZVAm2teGtrMU2dhqG8PKpMah9yqjEpgQCuXdtBELHMqo6kUhxNgd4ePDX70OUXYJ42I2HGtrFKVRTc+/cg2e1Yquegy8oevY4IktOJZ98eBL0e69z5MXl4E9ZJAdywFFHF33AIf3MTppmz0BUVxsI9SRuKz4dn334UjwfL0kWIpuHdYNKF7sj2S602rq6YyeXzl2IzW1jf0cQ9ezbxXkd9XL1od4MqSfj31xFo7cG6ci7anMxxuxtgGL7BPieOD3djLM9l0vI53Db/AlYXzeOAo41f7HmKRk87a0/7/bEF4NdfycM31HcYws6AyFuveJEQWX2uhYAQuhGt+jnMLbwPVZVY33kTzkDtqBBWVZXd7/RiH1RZcE4RRN3UIyGsF41cUnYr87KWsaX/Qx5q+jcBxc+h9d04W51MO3dqBMIwtiiJ8HH7vnac+zvJWT0Hnc2EUdRxw5SzuKxiJT1+B7/Z8zxrew4AJIwb9jZ04N7ViPWkBREIw/hAHOzsw7NlL5YVc9Fkj9iSBVhVOIkvVC/l1PIp+GWJ5+r38cDebezrD23DLfUN4Nm8C/P8OegK8mIrjxHGisONa9NmjNOmYSiP3RcuHZAqTg+urVswVFRirKxMWi6ttoIBnFs2o8vNwzRtegxg0rGelWAQ187tiGYzllmzD3tLItfunaCqIYgOWbxpW7GKgmf/PmSPh4xFi4frpwHbULnY197aWoLdPVgXL0I0GkdtJ2aTWFXFf6iJQFMz1lVLE7okRrN2AZYWlnHt7EWcWTkNVHi5bi/31+5gZ397XN1Uft5Aew/e7fvJWDUXbW4olnw84AVQBwbpf3cvmcunccmKNXxz1jkYNXrur3+bx5rfRVZDZY8pAC+Yr1dfeyV0446EsFsSeelZD4UVBhYsMw6V0WHWTWFu4b/RCCY2dt7CgH9nSgg37XFRu9vDiguLkXQheCaKFQ7XFRA4Pv9iziq6jHZvE/c0/JVefzfNH7Xj86pMWl2JpEbBdgzWsLfLQds79ZScPRet1RAD2JkZlXx/9sVMsRbxVudO/rDvlYRLmQFcBzrx1LaTc/oiZGKtmnRBrHh8ON7ejHnZPLR5WcPlEwBqSkYe11cv5sLJszHr9GzsbOGh/dt5vbEWT08vns27sJ60HI3eFFc31FlqGKuyjGvdRvSVFRgqyoDx+Y1lrxfXhg1YFixAZxvdSkzUrqqquHftRNDrMc+cNW54qpKEY8smjGXlGMrKR6+QRN6GeoID/WQsXDxmazraP+retQtRr8c8a1aK8qnbC3R3491fg3XVstidJKLbSDXEofH4ahuQevqwrBh6T2lYu2atjs9MmcXVsxYyO7eQQZ+Hh954hYd7D9GljZ+9TXeCLdDeg2dbLZlnLkHUD7Mg3egGAI3kp+eVbcw9ZQU/Pe0aluZOY+dAI7/Z+wytvq5IOZ0o897qPx1bAH771QKCQ0+HkRDusQs886ib0y6ykZuvGSqjw6AtZW7hvzFqCtna/V26PO9HzsEwhAfsAh880cmqiwvRZZljykDqvMKTLUu4svIWAB5ovJtd/dvY92wteQtKyJkaurnHEqrmCwi0PLeTvKWV6MryYz6H6J2YL688hWuqTiGoyPzj4Bs807wRZShoJnqj0YH3a9DYTFjnhzagTBW2BvEgtr+/C22ODVN1qP5I1wTEw9imNXLZtHlcNWMhlbZs+nwenjy4mwdeeZH6+nosKxZGyia1NBPA2Lv/IIrTi3nR/ITAG30xxnCdQFcX3gMHsa1aGecfDZVN3VagowNvQz22FcfF1R+rS0N2uXBs2YRt+XGRrZvGIsnpxLltM5nLV4Z87SOUrhULIavcsX4dltlz0OXmjiEZT6gPJRDE+dFaLAvmxe6hRnrQjSmvKLg3bkFXXIBhcuyvlZHvaVZOPlfMXMAFU6rJ0BvY39/Nf/Zv5eEHH0QuzsEwOcrllKCvdCIb3FsPoMoK1mWzUoIXEoeWeTYf4sYTLuDmky4mIEvcVfcaL7StRx26b8PlgGMLwIvmG9Q3Xw3BKBmEN2yW6OtRWHXm8ASLT9WhE7OZXXgvNv1sdvX+gmbns5FzEALprg8GkTU6qldmRY5Flwn1mxzCOfoCLq/4DmXmKl7rfIFHNv2bpnVtTLt42DIabfUcDLkeDvbgbOynYE11zPHIOKLqFhvy+fas81meN5399lZ+u/cF9tlbY8rJHj99r2wl+5wViPrhvtIBsTTgxLV2N5lnr0BVYy3odEAsAMcXVXHFjAWsKZ+GVhT5aN9unmo8wGvdzfhkabjsKCBWg0Ec73xIxokrh3+SHmb8r2vzVvSFxRhKE29xn7BNOfRgc6xbh3nmTHS5uWnXTSXPwQOgqJhnzhxzXdeuXWhtGRgnVY27/2jQBto78Le2krFsaYryiTngaziE7HRhmT93dPdHsgdDlKUrO1y4NmzFtuYE0I140OsNfGbyLD47Yy7z8orxyxIvHdrPIwd2sK2vjWBXL749dVhPXR7aoWWc4A1LDUrYX15H1hmL0VhCD8pU4IVhqC61VvKd6edQVVjGGx07uLP2RfoCzrhyAHqNzBsn/yUhgD++TaxGkVHQ4FNldIJIUFUwCgI+VcUgqPhVgQVzNdx/n5+V3gAms4hP1WIUgviUAXZ1Xs3M/L8yP/+nGDUFHBy8O3RO1aGVAzTXeDj18wUYhCB+VYdRDOJTdBiFUNJyn6pDJ8gEVQ0GMXTMrwyX6w90c3f9Dzin+AbOLPoMU06Zwnd3fxt/lx1biZWAokUnylEZ0eQIhPWiFIGwXiMzWNNF3qKy2DKa0JcTkDWRLyqoaOjw9/CtHf/ilIIF3Dr9XP593E282LaFvx94k8HAULJyswF9UTaB5g4sM0ojizjCF04YxBpRiYGwIKr461swTC0NzeYzNHs7VD584UaDOHyBh0GsAh92HuLDzkMUGDK4ZOocLp00i79Uz8UR8PPKoQM8U7eHzZ2tsfGZ0WAdugEC7e1oC/Ni/YEjb6iRERwjADASyIbKCny19egrSmLLpQC7qoFg/wCIKpr8HEZudzfeVW7G8goc69djmjYtoUWeTIrfj9Tbm9JlAGOL69UVFeI9cADZ5UJjtaZtQSuCir+lBfPC+ekvkAgriXtBY7Mi2iwEujrRlxWjEQROKJ3ExdNmc3rFNIxaHfv6u/jJhjd5rmEfdmk4p0egoRXD1ApELUB6roawEvp4DSKGqiJ8de1kLop92CUDb5Exi29Wn80phXNo7Gvna1vvY+vAgbhyMHyfp9JRAzCkhjBGgfJSkfZWmSnTRYyCNAxh1cP+7psI5P6KGTlfxqorZnvPLzAKQZq7FLKzBcwZobc2EsKhfoMxEAYwiMEIhAF8CjzffhcN7houKfsCD3zzUe5493d00xKBbDQ89UN/BxQNejFkCXq9IDs8ZJVbCarElIHQFxS2hqOB/m73Djb27efaqtO5rGIlpxbO5d66t3myaQOIMtbKbJwNvVhmlEYulGgQR0MYhq3hYNcAtlmVCKIacU2EL9SRIA4dC5UZCWKAbr+Tf+xdz983vM38/iDXfv5yzps8k8/NmEeLc5AXGmp4vn4fBwZ6E8JY6ulDV1Yce6OOdFOMEciaglzkHbtQgsGY0KhUwBFkAamvD11hYUI3yHiXBQtWE4LVTNBlR5cTP9GZTEHHAJqcLASjLmnKzXQU8541AtrCPIIDvYiZiaM6EgFWcXlAZXgjy9HAnQS6I8ejKy5ggTWHy1as5tzJM8g3WRnweXmydjdP1e1m90BHfAOCjNQ3gHnZ8C/JkdANHUs/qgHAXJmLa3s9EAJwMvAaNTqumXwSV1WdgIrKH1/+D0/bN6EpsMSVhVj46sXkID4qABYYvtBTQbigUMTeHYTpYXBGQxjq+r6HV2plavZXMWqL2dT1LdzdnWQXRoNUFwPh8LFoCAMRazjskggDe7f9XTp9B7ms6Bv89Ozf8Ebni7zQ/nSMpZvMGpb7HRjzLAiigJ5h2KZjDXtkP/+oe5EX2zbztRnn8s1Z53JxxTL+tP8VPnB6UbY2xPSr0SgprWHFF0CVJMShRR3hCzMZiEPHYq3imJCe8DGriY/e38TOIhM/Mlk5o2IaF06ZzZfmLuMr81dwYKCHlw8d4JVDB6gd7IvciJLDgSlrxM/zkTfwGIEsiCKazAwkpwNd3rArIZXrQtWoSE47+oryhKAeT0hbWNrMTGT72AAs2x1oMjNHLTcWPzCAJjMTaWAAA+lHUsguO5rsjLRcC+mMb25eEedUzeDsS6ZRmZmDX5Z4p6We/zbs5d3WeoIkn1STHR5Eox5Rrzsi4IXQfaJkWZEG3YhICJrhDyZ8LwoInFEyj6/OOJMCYyZvdOzgroMvse3p1ym9dGlMWUgfvJExjFriY5JB0OFXQ0BMBuG8TIGGZgXjECR9qmYEhHW02f+GJLUwPe9XzMv9Dps93yDbNvxBhkEahnD0sXAbQEqXRI+/jT9t+wanWq7kvGUXoxVUnm57MmLpJrOGg54gpgxNBNbRsB3NGg631eLt5Ns7/sWKnGpunXEOf1lyLb81PcvfXtiCqqpxEAYSgljxBdBaDGg1KqBGrOLxgBiGbwwBEE0GVJ8fr0HPc417ea5xLzk6M2dPmsF5VdV8feEqvrnoeP5bv5evv/dyaHGH3w9WA6qQxFUBqa1jSAhk0WRC9fljDicDTiT21+dPHBrF2EEX077FgOL3j6kNOehDa8s5rH7Din7fgsWI0uUf00IIxedHNEdNIqYALqT+rJ485/MsLyonqMisbT3Ebx/+Nx9liThlf1zZRL5dxRdAYzGkzFAG6YM30oZOg8YQirfXmA0xMAX48ozVXDv5VPbbW/nxrkfZ6ziE7A0gaEUMRgEYP3zhKE3CCYLQAzR94h0PKw/oHbXU/6Ym3vunV5/m93+033ulqqr5Iw8eFQAfbQmCsCXRjOSnQRPv/dP53uHT/f6P1fd++OslJzShCU1oQuPSBIAnNKEJTego6dMK4H8e7QEcRU2890+vPs3v/5h8759KH/CEJjShCR0L+rRawBOa0IQmdNQ1AeAJTWhCEzpK+lQDWBCEbwmCoAqCkDd66f8dCYLwe0EQagRB2CUIwn8FQcg62mP6uCUIwpmCIBwQBKFOEITbjvZ4PikJglAuCMK7giDsEwRhryAIXzvaY/qkJQiCRhCE7YIgvHS0xzJSn1oAC4JQDpwONI9W9n9QbwJzVFWdBxwEvn+Ux/OxShAEDXAncBZQDXxeEITq1LX+ZyQB31JVtRpYAXzlU/Tew/oasP9oDyKRPrUABu4AvsvItEqfAqmq+oaqquHckRuAsqM5nk9Ay4A6VVUbVFUNAI8D5x/lMX0iUlW1Q1XVbUN/OwmBKP18nf+fSxCEMuAc4F9HeyyJ9KkEsCAI5wNtqqruPNpjOQZ0PfDq0R7Ex6xSoCXqdSufIgiFJQjCJGAhsPEoD+WT1J8JGVrj2Cf749dRTUf5cUoQhLeAogSnfgj8gJD74X9Wqd6/qqrPD5X5IaGfqI98kmOb0CcvQRCswDPA11VVdRzt8XwSEgThXKBbVdWtgiCcfJSHk1D/swBWVXVNouOCIMwllPxz51D+1zJgmyAIy1RV7fwEh/ixKtn7D0sQhGuBc4HV6v9+MHgbEL1BW9nQsU+FBEHQEYLvI6qqPnu0x/MJahXwGUEQzgaMgE0QhIdVVb3yKI8rok/9QgxBEBqBJaqqfmqyRAmCcCbwJ+AkVVV7jvZ4Pm4JgqAlNNm4mhB4NwOXq6q696gO7BOQELIy/gP0q6r69aM8nKOmIQv426qqnnuUhxKjT6UPeEL8HcgA3hQEYYcgCHcf7QF9nBqacLwFeJ3QJNSTnwb4DmkVcBVw6tB3vWPIIpzQMaBPvQU8oQlNaEJHSxMW8IQmNKEJHSVNAHhCE5rQhI6SJgA8oQlNaEJHSRMAntCEJjSho6QJAE9oQhOa0FHSBIAnNKEJTegoaQLAE5rQhCZ0lDQB4An9z0oQhGcFQfilIAgfCILQLAhCyuXZE5rQJ60JAE/of1lzgUFVVU8klBP2iqM8nglNKEb/s8l4JvTpliAIZiCTUN5nAB0wKAjCBYTyw9qA+1RVfePojHBCE5oA8IT+d1UNbFVVVR56PQ/Yo6rqc8BzgiBkA38AJgA8oaOmCRfEhP5XNRfYEfV6HrAr6vWPCG1TNKEJHTVNAHhC/6saCeA5wB4hpP8DXg1v1TOhCR0tTWRDm9CnSoIg3ApcQygn8A5VVf+nU3FO6NjWBIAnNKEJTegoacIFMaEJTWhCR0kTAJ7QhCY0oaOkCQBPaEITmtBR0gSAJzShCU3oKGkCwBOa0IQmdJQ0AeAJTWhCEzpKmgDwhCY0oQkdJU0AeEITmtCEjpL+H3K4MCOK4pTPAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "f, ax = plt.subplots(1, 1)\n", + "f.set_size_inches(5, 5)\n", + "f.set_tight_layout(True)\n", + "plot_func(ax, func, slices=[slice(-5, 5, 101 * 1j), slice(-5, 5, 101 * 1j)])\n", + "\n", + "draw_covariances(\n", + " ax, func, slices=[slice(-5, 5, 10 * 1j), slice(-5, 5, 10 * 1j)], scale=1\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 163, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n 2020-12-22T12:07:05.657197\n image/svg+xml\n \n \n Matplotlib v3.3.0, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATsAAAE/CAYAAAA5TWTRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d5gUxff+D796ZjbnzLLknHPOSZIkySKCOSKiIKhIDgomFMUsKCpIkhwk55xzDrsssGzOYWb6+WNSd0/3zCz4/uDv+Xquq6/p6ToVuqvq7vtUnaoWRFHkP/lP/pP/5P/fRfeoC/Cf/Cf/yX/yfyH/gd1/8p/8J/9PyH9g95/8J//J/xPyH9j9J//Jf/L/hPwHdv/Jf/Kf/D8h/4Hdf/Kf/Cf/T4jhUWTqLfiKfrpAjBSBKGLQ+VgCBEHxKzlHILpkKHqDwI3rCXgZ/NHpLFgtKvRF63lwkB+REYFcv5WM2RZu/RUl5wABfj7Ehgdx/V4qRrPZngaAaDZhystF7x+AoNc50vf1ITYkmCvJKZjMZvv92dOWiCkzA3Q69EFBD/jUABUvIUFxrXRICCKQkJ5h1zdmZSIIAgZ/Sd6i9fZEKBUZgskscicl037Nnrbo0AeIiQjCy0vP7cQ0SRqiPdxsNmIyFeCt9wdEAoL8iIwOIvFmCkWFRgpNuXgJPgiCzhLH5vokdYHScofywE2qQMzDW/BFQN6WzJgpEgvwEfwcyoLgfC5tSzIdy29MXBh6g47E+BTZdXtbseoXFGYhCALe3oFOecjuQlIEvV5HuTKR5OYVcOdeplLTYynMzyQoKJCyZWK5m5RJZmaeI1CSpKyZ2utBnpbgdN1y4h/gTVRsKIk3UigqNDkUlPqipREVmCX14qoei+kKVyQWoBP06AUvADLNKcmiKEap6T4SsPPTBdLUtxu3zVcJ18cS4BsBgGCwFsf+q3f81+t5bkxXnnimNd2bjeTGnYv4eocQ4B+Jj38YBp8AMOgR9dbGbdDRrHklPpzSjzcn/MnRc/GIOgGzAUS9gNmatKgHs16gcpkoFk8YyoSFm1h15AxF+TkUZqVRkJ6EMS8b/wqV8Y2JQ9RjPypGhrP+1eF8tGUnPx05hqizpemoMNGaT9rGTQh+3oR0aOf0PEQJvxbMTsGOMJMgOZdfE8wQ5ufLnhEv8cfhk3y4eSeCyaJ3f+dG9F6+RDZqZ09fMIHODF7o2PXRq6w9cI6PFm1HMIPOJFrCTSCYRHRGEMwigklk0bwXuBmfwvjJK6xhZgSTaD3MmM1GbiXuJza4Jn76AN77aCD1mlVkSKsZZGbfIyXvBmX8ayOYrAUxGi3PwPpLkdHxXEwmx80bHdddyV3TTXwEP8J00Y6LBgP3jQmAQJQhDkGvd4R5WdqaU9sDefsD0OsZ/Ep7hr/Vhdf7zuXqlXuWctrSM1hfvgYdV+O3offypWxcK3ubtP2CpX3a71Ny/eknm/P8sNYcOHKNj77YQFp6ruz+zHrZX3QmnKRdEz/eH/cyt+JTGfP+EjIkYCeYHG1TZzQ7XbOd2+pHMNrqyaZryXDOwpcIDPWmX5tRhPqUQWe2vVmt9WS06JmLCkgquInZVEQJ7woIgvDQdSyVTHMq2WIGsbpyCF5e/J3z600t3Yc2YwVB8BUE4ZAgCCcFQTgrCMIUd3FMopFE4zUMgjf+umD7zdsbvNpNm0zsXH8Kg5eebj06US68MQE+EeQVpnM3+RQ3EnaRePsQSXdPkZx8gbTUq+zesx+j0UT9mtHk56SQn5NKYUYKBRnJFKYnk5t2h+z7N8lKvMyRfTu5n5ZBg1h/7h/aSubFExhzMvGNLkl4o9b4RcbJ79sEV5NTOZaQSP+6tSzX7ECiQu0Awax13XFoiSugs0nv6tXx1utZduKMdkKS+AB1y8fi7+vN/nM37UCnJbExIZQqGcaRo9dlHUQqerOO6MDK3Ek7TVbhLZq0q8r29Ye5m3GJ+zlXiPYpZ2nwbsRdJzAXGVWPCF0JMs2pJJkSyDFnkmPO4G7BVfLEbML00U7p2PNz1fYksub3/eRm59P/udZu70EpakCjvL5w0X4+++pv6tcpw89fPkOFcnKSojPJD6nodQJT3u3FlAkj2Lf/BG+/+6dboFMrnzugq1OvLNXqlmHZj7vJL8zlZuphknKukpmbSG5RBrn5qWQUJnEv+zI3c08hADHe5VwDnYZo1bNNAoVQzJi5a75JTmGqy7T+CWZXAHQQRTFbEAQvYI8gCBtEUTygeQOYCNKFESSEu274RpPj7QpcPZdI6v1Majcoy6a/jhLsH0uwIQ7RoMNkLqLQnEeRWIiJIoowkpGewoVLN6lULoLMpGsW81InWJiZTofg5YXg7Y3g443eN5ATl+OpV7M6UfXbI3gbMOsczEzatQWT4/rGs5d4v0s7SgQFcjcr2+kWbLqBDRsgGAwIJkHG/DwRNaCThVvbZOuKZbl8P4XL91NkeqE1GiLo5VWts8apUSYGgJNXEmV52FidVKpWtOieOWfRtbE6pQT4RlJK8KVi7VD8/H3YsmknBp0PpUPqYpBSExesTqkjFbOanlX0Rj0lxXJkGzLJEJMBAX8hiGjC0FlNHdFkcrC7IqOd3TnnbW1/RqOF3ZlM5GTls33NCTr0ro+3TkehWQU0jGZKRNZFp7PkIZhEGXtzJ6vXneD0mQRmTR/ArEn9eGv8nyQkprmMYzDoGP1aZ9q1rMqX89bxx5I9+PqFOcrkBmi1Xl5q0rprbfJzC9m+6iQlg2tQUJBJnjGD3IIMTGIRmMzodV746QMI847Fy+z8fJ2ATlHPrupYGq7zMlBSV55MMZUMMcVlnIcGO9Gy3szWy72sh8sn5yX4EKyPkF+0NjrRaHSYFDaxNTbgwqkEqtUpLQsWjGb0Bi98vXzw0QsWM9WgQ9QLJCTm0rB+eWLKNELUC06mrM2MBbh2L4uOjWri7+tLntkzSn3oVgIATeJKsfrCBQSzxSyVgppgAq8oxxu6OICnxRKVohcEGpSKY/Xp805h3uFR6iBpgiolo0hKzyY9Jx+1nHSSx1C+TCQmk5mb8fJGpdZRvA1+NG7cCIDkKzrCfUpaAsxGu4mjJa7e+O46AYBeMBBiCifMywWTkwKe7Zqt7Unam5oc3Haex59sRu3G5Tl68CqCyWQxZY1muykb4Gdp38onIwU+ndFsN2eVgHj9ZjLvTljG57MG8+MXw/jm552s2nBCtTzlykQw/u3HqVIxhgW/72XFmrOaQOdO7MMLLqRJu6oc23eZwgJLXfgYAvDBBwzW522rX9vLzOziZSbRs4kndSzV1XkZCBUiCSWSM8b9mrr/yGysIAh6QRBOAEnAZlEUD7qMIBmE1GzYGubEpZO3KFU+Cv8A66SGCh23l8skcvNWMlERQfj7eWvq2Uy3y7eT0ekEysWES9JQpik/v3gvmaz8AhqULqmZvnrZ3IOYUkeet2OsDqBqRCSBPt4cjb+tXXaVR1WxRARXEpNdl8M6Xlc2Lpw79zIoLHSuG7VOUrlaSe4lppGRmuMyfU15iE6gqq9lohYz3ZMHr1KQX0TDlpU9juMJ4Ch1rt24z/Ovzef0udu8/dpjPNW/qVOcEtHBfPPJUKIiAhk/ZQULftvrMg8t89mpLBombOnSEcSUDOPQ9guWcCeGpgA6lWf+sON0Dyr/CNiJomgSRbEeUApoIghCLaWOIAgvCYJwRBCEI4Vi/gPnlZSYDkB4lOtZTVulplg7WmiIv6qeFBCSMyy64UGWGTud+5ccZlEkPj2DuBDn8njKytTLVby4scGW/G+mpBcrXniwP/fTnM1vNQkL9ic1TRu4BMWLJ7JEMEm3JeVRa/gKE9aTcZxHLYUFRhJvJlOyTIRbXbWXQHGYVnJKNmPHL2XXvksMG9ycHp3roNNZ2kaFclFMHtcLQYBX31zI3gNXHiiv4pSnZBkLEbhx6a7HcYojxX2hFSfOP+pnJ4piOrAd6KoS9r0oio1EUWzkLfh6nqjU5DGZSEu2dMyQ8AD720Yp0srLyrIAa3Cgc57KAd70bMtgbmiAn5OuK7mbmU0JNy4l6makoApqDwKSNrC7k5nlxD5dSUiALxk5+S4nR2wSFORnf56eSGh4IGnJWeqBxXyjP0gneJh4dlEwFRuTuXc7jeiSoZrRlMCvJWoTBWryxddbuHT1Hu+80YUfvxjGtPf78OOcYZQsEcrszzdyNynTo3QeVqJLWszjJDdjiE7ysPXwD8g/MRsbJQhCqPXcD3gMuOA24gPS15wsCyAFBnkGmLl5hQBOZqza2yw3vwiAAF91k1cLOFJzcgnzLx5AytMVVM89ydsmtvxTc/Nc6knT0QkCft5e5BYUeVROP18v8qzP0xMJCPIhpxjg+H8iknbnkkW6aZ9pydmERgTYQc3+4vUQvLREi2WlpGYzcvQffPbV31QsF02b5pU5eTqep57/nu273Hc3cA+snozXhUYEAJCe8oBDEy7koV9MbuSfYHaxwHZBEE4Bh7GM2a39B9JVFS9vy8CxxZHRvRisA8BFikFxtdkxL6tuoZsBdKX4eBnIK/IMMNTEk8kKUe863Ja/j8GNokTMoojJbMag96wZGI0m+/P0RIoKTXh5eV6e/y+Jr58X+XkPXucPKk0bV6CwyMjFK3epViWWkCDPX7JmN3UnetAOCqz37O37SFx0H0oeGuxEUTwlimJ9URTriKJYSxTFqf9EwbTE28fiPlCQ71lD87a6FagNqivFywoUhcV8wwR4e5Fb+M80/OK6pdjEln+At/ZEjJoUFpnw9hAgi4pMeGm5aahIQX4R3r5exSrP/6UoZ2OLI34BPuTlFCDaHIkVjsX/tAQG+DBmZBdaNq3Edwt2MX7GSkxmMzOn9KNWjTj3CfxDkptTAOCYIPwHRVeMtvVA6f9PU3clLqb25XqSBqnXExZlWX6TkZbjaGAKkbK24GCLuZuTW+Ckp/RGDwuyTGJk5jnrWtJVL2LJkGDuZzvTerWVFMpwNXB7EMCz5V8yJFiWlzJf5f/M3HxCA/1kqzi0JDungOBgz5lERloO4dHB6oEa9a8FQA/aEZziedzuVFbxAFjLF1smguR72uNkogvQ01pJoQyzSUiIH5/PGkz3LnVY9/cplq85yv3kLKZ/us4S9tFgWjWv5MldPbQk38sAoETpcDeaCvkfA5kn8v+5jQBKV4jGZDRxN8H1AKmtEcVEhwCQpDFQLu38cZGWjnk7xVKhZg+ejkGno0JkOBeTXLtvFFeKC3i2/KtERxYr3u2UTOKiQjzSvZucSYwWeOHcwW/fSKZUOUl5VIDG7lOp1hk8Bab/Y/EP8KF0hSgunU5wq+uJaehKwsMCmDP7ScqUCmfs5GXMnrvJ7rl14Mg1nnrpRy5dvcfk8X1o36aaSv4erFYphsOz7Z6r1injkb6TzyyKF5oi/EFeap7GeTRgJ1k1oWlKaDT00hWjuZOQhtE2rubmDRobE0JKajaFRS4cVa2VHRdp6fR3Uh1vbFfMSNRDhcgwvPV6Lt0vHth5Nk4nKv47h9kYWXxWBjmFhVSLiVTVl+pKJTE1037fmuXQWRy17yZlEhkeqDoOp9ap428mExoRSFCouttPcaW4HcFjVlfMdKvVK4NOp+PCqXiP4zwI6JQrE8HXnw8lJiqYsZOXc/j4Dac42TkFjJ64hDPnb/PB2B4M7NvYZR5aa3KdymLTU5jpqem53EtMo0bDsuoRlUz4XyT/HmanXJAtFes1QRCo1bAcFxWNzJXJUKliNFdvuQciUQfVykZz414qBS6AUSmtKpQD4PDt2/Z0wLUJWxzW5qmuCByNT6RVxXIa6ahfu3T7PiXCgghTGei2rERx/L926z46nUCF8lFOes5x9VywsoBaDcvZzT9APjShIq7G0jx+i7vRU8tDdTMAFWnTvQ65OQWcOXULUN8IQEs82QwAoEa1WL78ZAheBj1vjf+TE2e0gTUvr4ixk5ex+8BlXnuxPS8/11YzT3fl8oSJHtl1icZtquIX4O2oV0/ATatOHpDd6bwMxXoBPlKwcztArOgU5aqUIDQikOOHrjmpqlWSj4+B8uWiuHD5jn2pmCupXS6W0zecnSWVjEgKHO2rVOD8vSQSMzX8yZzKWfzxOHdjfzbZdvkq5SPCKB8R5nb21main7pxB4Da5WNleSjHMwHOX7Y8m2qVS1jSsC7J05KLpxLIzy2kXguN8SSD4gXnoSnrqoFrdgBJOmq7nqiXz3m8zsfXi9Zda7Nn02n7zKSW2NpkccxEgEYNyvHph4PIzMpnxLg/uHDZvQNvQYGRKbPXsHL9cZ4c0JR33uqKXtLePQVZT2TLqmP4+nnTqkttj/TdmrIq4g7I3NWxahyXof9X4mqbHZvo9TRuWxWAEwevqk5OiNZ1sTapXiUWg17HuUt37Nds62KVUioyhMiQAM7cvKvJgpT/o4MCaFi6JFsvWcBXzUxUMz3VxJMJAue05abs1quWcnSrUUWzDMr/F+KTKDKZqFepJKLOYdKryb37maSkZlOrVinNTiIadHaGYzSaOHX4Go3bSsaSPDRvXI3rgKMzKA9V8SBPT1ld+5718A/0Zcuq427TVIongNOudVU+nNyPhMR03hi3iDvWCQGpmDVeRmazyOffbGHBon083rkOk8b3xvsBXH/sIK1hyp4/e5uE6/fpMaS5JVzJ7lyZsl4aLx2N5+5xPXtQx48M7Dye9pfcRMc+DTh79IZjFkzDXLAxjqaNK1BUZOLY6VvOOopNAFrWLg/A3vM3LOE61yABMKhBHQRBYMWZcwo90UlfddZV5ziU/53ZpHt2dzcrmz3XbjKwQW30to0i3Yzb5RcZOX71Ni1rlVdPVFYGgUMnbtCkQXn7kiV5uHN97Pz7DLGlw6nRoKy6KesJu5PoFVsU8R6G1Xl56Rn8WgcunLzFqeOWbdO0TFhXrE4L6Pr0qM/Ed3tx/tIdRr2/mNR0ywy7DdyUIKd1ff4fe/ny+620aVGFWTMGEODv7ZSXWhmKw/KW/rSLKrVL0bR9dY/0VYenlGIwPFg9exjn0TM7LVancDmpVDOOMhWj2bL2hCy6aNBpjjM0b1qRE2fjyXPjkyfqoHWd8ly7m0JCcoZTmOy/tVheOh0DG9Rm19XrxGdkSMLdu5KogZlWubTSsW89pWB3vx0/QWxwEB2qVnQL1jZA33XmOpXjIomNcJ5ptY3b2YYA9h+9RkiwHzWqlZTpaI3b7d1yjvzcQjr2buAIeBB2Z4tXHNcRD4HOU1bXdWATYkqGsXDuFs/KIBH15yPftHPU64+x79AVRk9cSnZOgSaD0xKp/vI1x5j2yVpqV49jzuwnCbG6DLlye5GGu2N3W9afJPFWCk+PesyyTds/we5sUhzAK4buowU7d4OLkhvpObQ5+XmF7P77jKYJK5XyZSMpVyaSvYev2sfrVLbVAiA0wJfGVUuz68x1j03YvvVqEh0YwK9HT1iuaYCiGtAVR5TA6A5Mt1+5TnxaBi+3aiIriyvg23XGYv52amDZxcOsFzTH7Q4dv05hkZF2rati20rLqTwSUzY/r5Ddm8/Qrmc9ApU+eh6wO83OoNXINcLcAp2LcqHXExYZyNNvdubkwWsctY4Ze8rq1ADGdk0Q4NUX2vP8sNZs2naWiR+uorDQWCyQU4oN9LbsPM9701ZQpnQEX34yhGjr5hmuyuOpmIxmfv1yMxWrleTxJ513YwG06xec6ljzxVaMenY7Dugy9H8prt6sClYXUyqMDj3rs2nFUbJtay0NOqdZL+k+do91rInRZGbrngvOOgoTtkuTanjp9aw9ZDFHtUxY2zW9IPBiy8acuH2H3ddvOs3AqgGdKpvTi9qHQtQAT81ENYsi8/YfpHZsDK0qlFW/D0U5bt1P59T1O/RoXsMtGGcXFLHv8FU6tquOXoVRK1m2qNez4te9+Af40Gd4S7ezd1qA5xL0XHQMp7haQOfGifi1iX3w8TUwd8Zq+31Z9IpvvtrC9Hod7455nEH9GrNizTE+nLOeIkFUBTobe9Y61MSsh0PHbvDOpKVEhAfy1adPUda6U4srpukpu9vx9xmO7rnEs2O6WTZFcFW3bgAP3LiheVDP7uTR+9m5+u6EVYaM6ITZbObPn3c5sTo1E1avE3isQw0OHrtGWrbrhfGiDno2r8H5+HtcuZPiFKYGFo/Xqkrp0BC+PXDIOT21hqoFcq5ERccV4EnN2VVnznM3M4tXWjeRx1cb1Lbe45pD56gcF0n1MvINLy0vBrkpu2H7WcJCA2jaqIIkbZVOZ+0c1y/fY8/fZ+gzvBXBYQqfOw/NHSj+8i4nfU+BTiGtutamVZda/D5vGwk3iutP6fgmiqwoXnomvNeTLh1q8uPC3Xzx/VZMTtaBazDzRNesh+PnE3jzvcXoDXq+mP0kFa2uQ2plKy7gfTl9NYIAb07v59qclYg7wCtOPRdH/9G6nrizt/V6qtQuRafe9Vm9+CCp963uHSqMTmpStWxemaiIINZtOW0JV/nQjk1qly9BjbIxrNx/1sL23LA6L72eke1acOHefbZdvqbqVyf9LwM6T0DO6RnI43gCeEVmM98dOEzjMqVoW6m8uhmruM+NRy+SV1DEgPZ17bOyWhMhB49d535KFn161Vc1ZUW9nHWLej0Lv9mGr58Xw97q4nZ8x6kzqLA8tUbuKqxYQCdhdXHlI3lrRj8unopn2cK99vux6HlmvirBxM/Xiw+n9KNdy6rM/WEbvyw/IGuXngKclqjFv3QriTfG/UFhkYk5s5+kds04zTJK05Hdl4rOvcR0fpi9gQYtKzP41fbyQBcExlUdA9r16CrMzbDYo5uN9cCEEASBVyf2Jj0lmz++3S5jdVoTE6JeoP8TjUi8l87ew1dV87aZsKIOBnesT1ZeAasPKmZUNUBvaOO6lA4N4aPtuxxfi3PBsuyiBnI60fWBenx3pqaogz9PnOZGahrvdGptn5m1lVFtoiKzsIA1h87RrXE1QgPV17/a2J0RkZUbT9CkQXnKSTawdMXubl5NYtWiA3Qb0JhKNeOKB3ig2ZBddQp7PHdAJyuvA+j8AryZ+PUwigpNTB+zGJPR/NBAFxToy6cfDaJenTJ8OGc9S9YdlWWval7qBI8Op3iK+ohPSmfE2D9IS8/lkxkDadq4gmpZ3QKtgt2tX3GELauOMfSNTjRuU1U+626P4wbwQBX0wM1LzEU8pTwSsDNSiNFs3RfNxVhJ98FNqFanND99/rd9twUtVmeTGtVKUqdmKRb/tZfMjETSk6+QfO8sKYlnSLl1ktSbJ0m7eZr0m2cJKLhPp/qVWbnnONmFeaprYaXgEO7vx6utmrLr6g323rilYFm2X3WgM2VkYsrO0QYzNVHqSVieu3HCIrOZT3buoXJUBP1rVsZYkOOW3S3edQIfLwP92licRaUTFcoOsGrjSQoKihg0oIkmu8s1ZpCUdp6kjIvkm3P57ZttZKTm8saUJ9C72h1EAnjuGICW5OsLSBITSCq8SaE53zkt2blz29PpdbzzyWDiykUyc+yf3L+bUSygKyjIosDsGEIR9QKhIf58+tEgKpaPZsLMlazfcVYWrnzGWiCmJTb9gsIsigocG1NI072TmsmIcX9w/VYK0yb0oVWLyjIdJeB5as5+NnUpV87H884nAwmIzSOt8I6lj2s9Z606Bs/rWaJXaM4nqfCmS/VHxOwE4gsuUChYXUJUGlu5qiV48d0eHNt7ma1rT7hkdSZTIRm5idy9d4LB/WqQkprO/AW/k5eTDIIOb78QfALC8QmNxic0Gq+QCLwCg3n+iU4IAnz90y/cP7qd5GM7Sb98nLzkRMtXkiQi6mFUh5b4e3sxc9tOGdh4wuiydh8g5+Bhpydh2/lEejiJGujhGvBEHWy6eIV9N27xVsc2CJfP23XU2B3A1fup7D57jSEdG+DjYr8yUSeQnpvPqr9P8lj7msTFhkrux9JpU9Iuk5R2Hh+vILx9AriTdprb967y9YdrqFK7FMNdmbPSa7hgABpHppDBnYIreAt+GARvbhddJseY7khXmp/GhMSIyX1o3qEG385cy0m1FTtuGN3txIPcTTxqvxYTHcyXnwyhTKlwPpjxF3uOOqwOKRi5Ympmg/YhlbtX93Mv/ogsDSmYpuXk8dbkJVy6co8p7/em62O1ZOUoDuCZzSbuZl3iSuJB3nrpYwoKivjqj4mExwRwK+sk93OuyS0wF3Vc3Hq2SZ4pi9tFl/EyuN6R55GAnUHnQ7hPHPfzb6g2Nr8Ab8Z/8RTZmXnMGr9M9kaVjhvkGTO5l3KGW4kHyMtLpUXz5rRp1YDFq08QEteAiNJ1CYqtSGB4KQLC4/APi8U/PBb/iDjiKlRhULfWrD9ygbwSVYhs2pGwGo3xCY+mIPkuqYd3kXn1DEX5lnHCqjGRDKhXi4VHT3A1xfJ9Si1HYbvYwnUiCFIfORfA5iq8GIBnC5uxdQfBAf6MffpJ9bFIK7uzsdqfNh0mLNCPvq3V2Z20Y/2x4hAmo4mhQ5rL2F1O7n1y8pKJK9mU4NAyhAaWoVREQ9LzE9myfj9rlxxkwAttadKuWrEAT7VDKMRoLiS5KJ5SATUI84sjwq80sb6VSCq4IV8dojFGB/D82G50G9iExd9tZ83SQ9ZnJWd17sQGNKJeIC42lLmfDCEs1J/RE5Zy4OQNe5gS6KTiCtCUoqWnBE5bftk5Bbw1eSlHT97k3be780SvBrJwTwDPbDZxJ/M0AgJlo1tgygplwmu/ERjoz/dLZ1CvUjuKKOJuziUZWdGqY9AAPVei13PfdJton3KEe7v+6NUjG7ML9oqmkAIKTfmyxiYIAmNmDyK2TAQfjVvi+DKVpJGZdQKp2Te5d/80Pj4hlCrTkqiSdRnxeh9S03NYqfjknNLdRNTB8M6N8DEY+HmzhW0Jgg5dgD8+JeIIrt2A8Iat0Pv4kXniMPlJt5nYtQMZefl8vfegFSC03Uws9yIBOls5BIeer95Al7KVGVmvBR+16sL8zv34sl0P3mvclqHV6lEqMNierixtDwBPen7pfgq/rN/Asz26UdW6I4oWswM4fiuRI5fjGd6lMT4+rtldcmYuKzeepHP7mnaXBoD0rJuER1RGr7N+p9Wgw+DjR1hgWdLyEvlu9gaunLvNOx8PIq5cpDrgqZg8NpECn/LIJI1g7yi8dY63vJ9PGL5eIWQVpTjSt4kC6J57pxv9n2/L6t/3s+Drrdbn9WDjdKJOoHzZSL74eAjePgbe+GAxpy7dluna9KSA5Am4uRKbm5M0DTXAyy8oYtzMFezad4k3X+3EkAFN1e9DA/DS8xPRCV5ERVRHp9Mj6vVcv3SXCa//SmR0MB//9ho1KzbBiJGswvuuWXUx6lh65JuzERAI8InU9smzyiNyPQHBy4CfIZh8ci3X7G/V7rToVJPvP9nA6aM3VM3XlPTL5OYmUTKuMUER5dDrvWjetCL1a5dh/p/7yDMaXToRR4YEMLBdPdYdOc/15DTVGVjBzwe/ChUJbtiEPlXL06hMHLN37CajyLGxp6b5qgA6US9aPtANNClRirnte3DsqRF83+kJRjdsRacylYjxD6ReVCzP1mzIjJad2TvoFVb1GsozNRrgozfIQU9q1qqYzkpzdvrPC0jLymJK947gAbv7et1+okICGNS+HuCa3S1cdoC8/CJefr4tol6gSDBRWJSDn1+4lbk4ChYQEEVeYRqFBUVMe3sRJqOZKd8/Q1hkoLqPlhKUPHjj55my8NeHOsUJMISSJ2ardzC9Hp1OYMSUJxjwQlvW/HGAb2avtz6fB5yQEARq16rMnNlPAvDG+MVcvXFfHscDkHPnX+fO506apjQ/m67RaGbip2vYuvM8Lz3XlpeebaN6P073qYPMnNuEhVWwuJxIxvDOn4zng9d/JbJECJ/+8Sq1qtUno/Ceo1Du6rgYzC6PXPy8Qy1lcCOP1PXExzuYAlOOvaEPfaMT/Z5rzarf97Pq9/2q5mthUQ7ZeUmUKNkQg8GyC7HeR89rL7bnZkIKa/4+JctDjdW90L0Jer3At+sPyHV1zqwnMjKSSS8+x/7TZ1h65Jg1TWcG5QroAKqXKcfvYz9g6eNDaFWyHKuunWPIpsVUXfgJjf/8isfXLKDtiu+ptvBT2i7/jg+PbEcv6JjSvBPb+79Av0o10QmKj2urAJ6aOZuencXEH+dTv1RJBjao7XLczqyDYzdus+fcdYZ3aWRfV+mkZ3CM3S1cdoAWTSrRsH5ZCgsy8fILlpkiNlcUg94HvcGHQgq4l5jO5JG/ER4VxIz5L1j877QAT6tDKDuFwUAB+fj6hDil4eNjbWvK9PV6fPy8GP/V0zw+uClLftjJ1x+tRRTFB2d0eoEG9auzcMEMcnILeO39P7hh/bC4FOikz1LGworhX6cqOsFySMQVyzOZzEz9Yh2rNpxgyMBmjHi5g+Z92X4Li3IQ9AZ8vINUJy3OHL3Bey/Nxz/Il2+Xv0/1euUxCibP6tgWrlbPiuuF5jx89QGOdFw9Fpeh/ysRBDAYEAQdohWRh77RiadGdGLT8iN8O3u96hiJqNdRaM7FxycYnc5gXy0xsG9jSseFM/fn7RgRZX51SikdHcoTrWvz174zJKRnqLI6S16WY3Sn1gT6eDPux58x5ufJwMQToPPW6fmgSXv2ffkdrWrUZtbRHTRf+g3vH9zIvns3KBCNshlaUSdyMyeN784dpOf6BTy5cREp+Tl81vZx1vYeRqWQcGeWJ80bVMu4dPsODtyM5+0OrQiXfAnNDnyK5/D12n2EBvoxvEsjmd+d2szssrVHSbiTxsjXOqH31qETDNa0FWNSBh2CoMMsWlw4zp+KZ/LI3ylZJoKPfnmRkLAAeWdw1yGkelZdUTSjszVrSRwdOks9KYAuOi6Mj39/habtqjFv+mp+nrvZWvaHALp6ZVi4YBYpKemMGG/ZuUT6LJRA56gLdafg4hxSUabniuWZzSKffLeZJauO0L9PI8aM6oJOJ6jeH4BJMKHXeeFqlvbi6QTeHvY9ebmFLFw5hw696tufu6zubKJVx2q6tnsUzQgGL7dAB4+Y2ZkFEW9vb0ZO62sHujlTV2HWKR6cZPbVxzuE/MIMCqwf2o6JDmbYkBbs2H/JPvAry0PB6t54ohVFRSa+26DN6mydvmHpOAbUq8WPu/dx7soV9IGW718oJwEAVaCrEBLOX72e4sXajZm/aR3133yeb84eoED0/OM8+5Nu0mv9L7y+YxUlAoJY22c4g6vWsechzROr2SoLA4sJLcDkv7fh7+3F2MfaaDI7mzl7LjGJDUcu8FSnhkSHBqroOVZVFJjNzPlhK2VLRTD0yfaYxCIn/zJb/ZkEE3ov61ieXs/JQ9eY9MZCYstE8NmS1yhdIUqxO4pGh1BlA3p0egMmvejEBk160AnWa3o96PU061iDr/4aSckyEUwZ+Rurl6hPRhQH6Jo3rchHU/tzK/4OA4aN5X5KthzwdbY4EuBRgpIGeHkiZr2lvkUJZqqBnrI8tvC587fzy+J99OhSl/fHPo5er1O9T73OmyJzgZUBawPe7ZspjHxqHqeOn+e9T59m5LS+ePsYHqqOpYfO4IVZNDrScSGPzPUEvR7/UD3f/DnJPvM1Z+oqRNsG+yq7vop6Ab2PL2Hhlbhz+wh5hem88WpHzGaRuT9ts+i4WC1Rp0IsnRpUZsHWIyTn5tpZnZqTrsFLx+TuHYhPTePDOV/gX60G+OhRjocBqkDXqUwl1vUeRsmAYF7YupzR339BWnaW4wnoRY8Om6y7dZ6ua37iSNJtZrXqyuftuuOl0zkDHqDmFgNwJS2VHw8e4Yk6NWhStpRVR87upDJ3zV50Arzap4UTu1PKgZM32LHvIs8N60B0dAAmU5HT5p6F5nxEUcSg95N1iBMHr/Hei/Px9ffm8yWvW7YNsgKSo0I0xnIUncJXH0S+McspTr4xE1/vUPts/6sf9GLSvGHciU9hxKB5HNp9yV4eS9ziA13rFpWZOr4PV6/fZ+DwMSSnpMvYnBTo7HWlAnJSkdWPh4dWelLQU7I8aVl+XLyXb37ZSae2NZj4fi8MBmfAM/gGoNMZyC1Kkz8fNcC7c52Xn5rK4u930G1gE+YsG0HFGiUfuI6l4qMPIF/M82ic75Exu2Ydq/Hn5s+oVrscH41bwoKvtzrGSVQamrRRBIaVJqJETRrWDaJVs8r88NtW7qZmaXiRWxf862HMoHYkpWfz686jqnq2w6wTebZ+TapERzLuy6/Q1aiJV8loia7zjKgU6IZVr8/3HftwKT2Zbmt+Zsvty3YdJYi5E6n+/bwchm1ZzKfHdtO3Yi1+7TqAYG8fOeCp+frpQLS6vnyz7xC30tKZ+ngnvH2cG490suJ2RiZ/7DxBz6Y1PFoz++VP2zCZRD6aMZqcvCTJ87J0sqzcu/j7R4KXAlCsJu3IJ7/l9s1kJn87nFfG93Rs+63WIZTjOdZzf99wss3pssYv6nRkG9Pw8wqhxWM1+X79aHo93YKVC/cxevgP3ElIRdTrHwroOrWvwaT3e3Pxyl3emryEjIws+7iZOzbnDErOwFUcUW46oQZ69jAVwBP1An/8dYgvftxK2xZVmDbxCby9DbL7FgSB4LCypKZdxWT98roa4BlNhaTm3SbIO5YFX21h/Ku/EBIewBfLRvDy+z0sn2T0tI5Vwvx8wsktSreQpH/jriexZcKZNO8Z0lKyeOvp79mx4ZS8seHc0CznDl+uuLgyzJg6ijPnb/L1199z5+oe0u9dIjvnLoVF2ZgEk6yxdG9SnVrlSjB3zV7yCo0yVmfGRFFeJgVJd8i+fJ6w6xd5vVMb1hw9zkFvXwyhodb8HUAn6lAFunGN2jCtxWNsS7jKk5sXcS8v2wJWEj87nV70+LCJDfREYO6Zvby1Zw2NY0qxrMcQYvwDNQFPOZmSZzbywcYtlI8I4+WWTTRZgU1+3HSQ9Jw8Rg9q53LNrKgTSErPYd4vO2jZvA5dO1WmwJhjr6/8/HQyc24TGlJOVr9SwEu+l8GYZ39k9e/76Tm0Od+vH02LTjUtesoOIRVJZwj2iSbPmEVOYao9TmbBPeo0qsIXv7/LhK+eJjM9l7eGfse3H6+nqMgkB7kHALrunWvz/pjHOXUmnrenLCUnt9C+2YUrNqcFclIx64ViH8r0bGlK81OyPGlZbeHL1h5j9rxNNG1YgQ+n9sPXx0t2/4EBJfDxC+bOvePkm7Jlz8usF8grSCcx4yRBvjH4+Vvcno7uvcyLvb9g/Z+H6PV0C77fOJpeQ1s4TFutetZgfT4+wXh5+ZNedNftB9kFu9n4fyj16tUXh/Z9nc0rriCYDR69UaUPWdQLTJ3Qh2aNK/D8W79yLTGFwsJscnKTKMrPoqgoB6MxH52PL3q/AAJDQtj843TupabT991ZmEQTotmMyZiPMT8Hs7EQnb8fuoAA9CHB/DZuFA3Llqbz97+QlJcjMwft5qsK0L3buC2v1mnKbxeOM+nw35hEBytLW74FQ5AfId1aPNAzM5skDdF63qJEWb5r15ekvGwGrl1Ecn4ugkkAs1XXJCCYIW39JvS+/oS2amMJBz57vCtdq1amx3cLuXU/HcEE1he05dxs+dWZoX/T2kx4shPv/rCOzYcuoTOJdj2dCQSTiM4IgllEMIl8NnkANaqUoFvPV0lNMSGKZgpzUokKr4a/XySCSUQwmS1pGC2/WH8Fk6UQ1eqU4s0JvSlfNZYr526z4ufd7NpwCpNN34XkFWVyN+sCwQERtGxfj0HPd6dZq/qkp2Tz5/c7WLXkEGZr/qoTYcUAut6P1+OtEZ05ePQa78+y7EUn6gVunfsbvY8/JSu3lrE5e30qQE5W1w86C2uVxKMbMfj4E12rjb2uwFG/YKk3x3WLjk7ybXjBLNrDurSrwXtvdOP0+du8N3E5eXmF9jhCkYnMzHgy02+i1/vg6xUMokh+XhoiZsL8SxPsH2uvX0ualsyr1Irjxbe7UrtReVKTs1i5YA/bVx93+T1eNSlVKYzuw+rTtGU94krHHBVFsZGa3iMBuyC/aLF5pRfQCboHArrH2tdg/NgefD1/B4vWHrHoKcbqzIKZQmMexsIcRg7syCv9H2PA+59x/MoNS9oGHYKvD7qAAHSBjjGkLrUq80X/HkzbvJ1fjp9AObMpG6eTAN2o+i15q0FLFl48xoSDfwPYgU7K0Cz/3XdYm5gV+/4oQa9RdCl+7TiQW9kZDF63mLSCPFXAs4GcBdQEovz82fTicE4l3uP531fYwc5+mB2dwyAKLHp7CCEBvvSb+AsFBUZ0JtEOdpZ0HYAXExbIr18+y8Urd3jxlc/AJBLkG4Ve72UFOltHcg14eoOOzj3q8cTwVpSpGE1qchZHdl7k6O5LnDt+k9SkTMxmCWPWCZQqH0XlWqWo1aQcLTvXIijYn+R7GSyfv4f1fx2xfyRH7tGvNj7sHuj692nEiJc7sPfgFSZ8vJoio0k2RmfRRxYfpOxKUdcKkHuQ75KApe6U4g70BEm4DfSkgNexVTU+eOtxLl6+y7gPLDspO0DSjCiayc9JoagoF8EM3l4B+BlCEATBqX4taToKUad+WZ58pT31m1fCbDZz9uhNDm47x6XTCVw5d5u8nELZvQQE+VK2cgwNW1WhUZuqVKldivzcQtYs3cXAZx77d4FdiH+s2LzS88UaI7E1sujYEH78+hmu30rmjQ8WYxKcgc4Sx9J4SkaHsGzyMDYfv8z4PzY6TUpIqb6/nzcbXhvO/Zwc+i1chEm0LdtSMV8lQPdy7Sa836QdS66cYty+9TI3EJ3sXB3kBOnkgln9ra4FeqJJoEWJsszvOIDL6ckMWreYHNs29GYBbCBnBTwHexMYWq8ukzt34O0V61l/6qL1ujPg6czQoFwc80cN5Ls1+/lu7QEEMzLAs4GdJS+Rx9vW5L2R3fjmx+38ufywNdwGZu4BzxJmKawgCDRpUYkOverToEUlgkIse+KZjCaSkzIxm0T8/L0JCPLFy9uCLjlZ+ezfeo7t605y/Mh1O5Oz1Jk20CmHTaS/UqB7ckATXn6uHTv2XGTKnLUYjWa3QKfF5lyBXJC/DzXKxlCjbAwVS0YQGuhHkL8PXgY9mbn5ZOUUkJiSyfmb9zh38x63ktJlaSmBTw30XLE8KeC1blqZKWN6cvXGfd55fwlZ2fkywJPG16xf0AS9uLgw2narQ7vH61KmomWM2Gw2k5NVQH5uAUVFJkIjAi3jfIDJZObCyXgObDvHhpXHyM7MY9PpGf82sCspNqv6ouVPMYBO563ni4+fpHzZSJ596xcSkzNlKyXUHIg/frUHzauVpc/0BdzLzpGBnXK86r3H2jKsaX0G/LqIk/fuuTVfRb1I93JV+KZjH9ZcP8ebe9Yg6hwVqbMzO3mLk4KbJyIFQCnoSQGvXckK/NChH3sSb/Dc3yuwzcZrAZ5gEtAJAsuGDqZEUBDd5i0gJ7fQCezAAXiznu5Ou9oV6TdpAXeTs+xgB+rm7LRxvWnZqCIjxvzOxUt3HwrwHM9UR9VqsZSvGkt0bAiRMSEgQH5uIXk5Bdy8ksTls7eJj0+RsT5QBznQbnvScynQDRvSgueebsXmHeeY8eV6jFI3DzdApwVyUoALD/KnY4NKdGpUhQaV4tBbXbHupGSSkpVLZm4+RSYzQX4+hAb4UjIiBF8ryCemZLDl6GU2H73E2RuOVQtS0HsYwGvesALT3+3NzfhUxrz3JxmZeR4DHqjXsUVHXs+hwX5UrhlHpRpxhIQH4OfvjY+vF+kp2dy/m8Hd+FROHblOVk6BLN6/E+xqvmz/78kYiagXeH54a54e3JzJn6xhy34LE1GyOsdgrECTmmX4ZlQ/vly9h5+2HXYCOkselqNSiQhWvjSUpSfPMGHzVrfmq6gXqRURw7IeQziXmsSQv/+gULC0Di02pwVyep284k1qe02hDnpSwBtSuR4zm3flxzOHmXZwu6o5C3LAqx0dw/LhT7LgwDFmbdmlac7qzBAbHMRfHwxn9+nrvPv9OlV2B9gBL8jXm/mfD8dkEnlxxALysgqs4eaHYgDFFXcgZ9HxDOiefboVw4e0YMPWM3z09Ubbe8TtRITlvyNMDegqxEbwdJeGdG9cDS+Dnmt3U9h67DJHLidw/lYSmYXyjm0TL1FHhdhwapWLpV3dCjSrVhYvg55zt+6x8O+jbDl6CZMNsFRAz5VZqwZ4TeqVY+Z7fUhITGf0e3+SnpH7YIAHbkHPU7HV8d8npv7LwC6gpNishgXsPAW6+nXL8OnMQazfeppZX2+yjOUpVkpIWZ3eoGPxpKEY9Hr6fvQrRSaTS1a34Ol+VIuJovN3C0grzJeZr2rjdFFBAazp9TRG0Uyf9b+QUmRZiqTG5pQgpwQ3dyIFP3eAN6lxJ56t3ohxuzey+NIpzfE7qTk7vXMn+tepSa/vFnLtXqrLyYqXOjXl9R4teOnTpRy9kKA5WQGWDlKnckm+nDGY7bsvMGPWWlmn+F92CLWPMnkKdEqQs1176bm2DBnQlLWbTzF73ibMKq4l0vjgDHRqIBcXGcKo/q3pWL8yeYVFrNp3hmW7T3MlSf6ZAE8lyM+HznWrMLRjA8qXCCchOYMvl+9myzGLC5SnLM8V4DWsU4aPxvfl7r0M3n73T1LTctwCnuVc5aUG/1gduwK7R+ZnJ0rWu7prbOFhAYx/pwfxial88eM2O9BJRfkRnQHt6lKhRASfrNipCXQ2eaxaJZqXK8OcXftkQCcTCdDpDPBV+54Ee/vwwrZlHgOdXmd2AjqD3ux0KEUaT9CJ9jRt+djyFfQi049sZVfiNaa1eIxaETEWhqpwOFbe3+c795JTWMh7ndvKXgBq8svOIySmZDBmUDsEhasD2IYdHP9PX7jNgj/38Vi7GjzepY4qc3L8qoOR84atereHTBQuJXL/Tc+A7tUX2jFkQFP+2nD8HwM6Xy8Dr/ZqzrLJw2hevSzfrN1P1wk/8tHyHapA54kjMUBWXgHLD5ym78xfGPXNKnLyCpj9cg++G92fiiUjZH54SlcVebnVXVNEvcDRU7cYM2UZ0VHBzJn9JBHhgapMWPlMpL54TnUse+YPXsda8kjAThRUbl6jsem89Ux6vxcBAd5M+ngNeUbH/LjWSomQIF9e7tmM/edvsvP8NdUdiC15gZe3nnGPteFC0n0WnzqtCFeM01mvvVGvBU1LlGb8wU1cSLfsZKEEOikoScHKHbC50pECpRbgmXVmRu5eTUp+LnPb98TfYFmaJfW/k96/qBdJKcjjqz0HaF2xHO0ql1eEO14QZh0UFJn4fOVuqpSK4olWlk0f1VZW2JyNRb3AwmUHOHTiBm++3omqVUogHYdVAzzVDmFrzG4atOMhOuursTm1MkjLJuoFXn+pA4P6NWH5umN89t0Wt0An92fD/owscSxHrXIlWDRhKC8+3ozNxy7Te9oCvtt0gIzcfOfn74GDsZquKMKOc9d48uM/mLFoK5VLRvLH+Kd4tmtjy6YSEsCzl68YgHfyXAJjpi4jMjyQObMHExXpGvC0XmquQM+lFLNNPDpm58FbVdQLvPRsW+rWKs2srzdxJcHyZSe17ZukkxIv9WxGgK83n6zYKQtXW/86vGl9SoeGMGPrTtXZV7tYx+kaRccxsl5zll89w1/XziJInH+lQGcTKUCpsja9WfWQihT0lCxPmq+tHBnGPEbtWU3ZoFCmtOgovxcrgCvvb+GJk1xNSWXcY23Qe+k0O5dZB3+fvszRKwm81ruF064oyo0CRJ2ASYCpn64lNS2HqR/0ITjI1yXgWc496BCuDom4YnOu2h7AmyMeY8ATjViy5ghzftjq0PdgIkIN6HSCwPPdmvDz2EF4e+l5cc5SPvhtI/czc2Tx1J6/Wad9KEWWvyiydN8pek9bwPaTV3njiVZ8P7o/MWGBipUWxQe80+dvM3rKUsLDAvjiY8u3abVeGtK0pPUA/2wda8kjAzubuGpsLZtVYlC/xixfd4ytuy3ff1V6eZsVDaN8iXD6t6nL8r2nuXI/RXNXE4DgAB9eatmYbVeusT8+3gkAlG4mAV7efN7ucRKyM5h48G/Zsi8l0KmxOZtogZpU1HTUWJ4W4B28F8+8M/sZWLkOXcpWRmnOWp6fA9iNZjOzt++mQkQ4/erVtIY7szubfLx8JyEBfjzXvYnqygqlOZuem88Hs1YRHhrAu2O627+m6Y4BuOwQLsSm647NSc/VgO6Jx+uzaPkh5v603aH/ADOuog4CfL357PVevN6nJZuPXWLAhws5fDXBHsfJ784NoHmiK003IzefsQvW8cGCjVQtHc3v45+iXsWSqmZtcQDvzMVERk1cQlCgL5/PelIV8KRpKF9q/2Qdu5JHyOxcv1UrlIti/Ds9uHD5Dl/P3yF7QGrbN9lY3agBrckrKOSb9fvl+SlYnaiHl1s2IdDHh0927JGUywoCiicj6kXea9KGUoEhvL13LbmidWZRL6oCnU3UQE4qXjqT06EUaTwly5PmKwU8QS/y5am9nE65y8yWnQn1sez9ZzNn1RxWt167xuH424xo2xxfF9+gMOvg/J0k1h4+x5AO9YmLDJE9P6fF7NaOcfHqPb6av50WTSrxwvA2miDjfK7+Fnd1yPRdsDm1MggCjHrDCnQrDjFv4U6nMhUX6OIiQ1gwbjAtapTjw8XbeO/XDWTnFzrH8YCteWLeugK9tUfPM+TjP8jMzee7t/vTu0VNezll5S4G4F24cpfRU5YSHOTLnNlPUiI62C3geQJ6D1LHWvLQYCcIQmlBELYLgnBOEISzgiC86T6StJDOjS04yJcZk58gO7eAd2f+RaFoXdqjMF+VkxKNqpSida0K/Pj3IVLz8lyyuujAAIY2qcfKM+e4lJribLaCjNXVjSzB09UasOD8EY7et2ytLVu76gLolCDnCtiU4VIdNZanBXgARsHE2H3rCfXxY1zjNqrMVWm2f7xjt+XZNK5n0XHB7uau3ovJLPKaZFcUWfoSdmcbv1ux/jirNp3kqUHN6NC2WrEAz5MG7UpfK20l0L09sgt9utfnj2UHmferHOhUP4SjZnJKgK5yXCQLxg0iMiSA1+at4M+9J61pSgBFBeA8HbNzpacGegA3k9J4+tPFHLmcwKThnXmhe1N7eWXlLwbgnb98l7cnLyUwwIc5HzsDnlYduwI9d1Ic/X+C2RmB0aIo1gCaAa8LglDDk4hqDV2nE/jg3Z5EhAfywayVpKRZxzJUzFdZWjoY0bcVd9OyWLTzhFOYskG82NIySPvVnoOSdNVZnWCAaS0f415uFp+d3K06TgfaQGcTKXj5673pEluXEVW7MK3uIL5v+gKfNniasTV68VS5VpQNiJTFs+fhAeBZymU5P5+WxIILRxhcpS51IktYA50nKyz3L3Lszh12Xr3Oc80a4ufr5aRje05mHSTl5PDHzuN0a1yNyqUs5dWarHDEFZjzwxZOnUvgnVFdKV8uUrUdaDEAyzWd20Our+xQ6kAHMGpEZ3p2rcvCJfv55rddsjBXM6+252J7BhZ9qFY6mu/e7o/RZGb454s5dClepgvaIKclyl1NnMJVgE8N8LLyChjx7V+sOXCO13q34LXeLezpy+6jmAzvrUlLCPD34fPZg4mRAJ4ljnMdS9N0/Hdfx8oXmTINpTw02ImieEcUxWPW8yzgPBDnMpKgvQPqK8+3o0mD8nz+3RbOX76reFDKt4KjQtrWrUCd8rF8t+EABaLJLasb1KA2f505x62sDFy5moh6kYFValM3MpaZR7eTY3Y4dqpNSIAz0ElBrlZoaT6sP4i/O45ner1BPFmuJbVC40AQKOEXQpeSdRhVvTvL2rzNby1fZ0CZZugFnSwNpVkLcsBTmrNzTu4hOS+HaS06Oc/IStidTebuOUB4gD9PabA7qSzYcoTM3HxGPNHSKUxtsgKwfPfg49Xk5hYyY1JfwkL9ndqDJV9tBuCJqHUoLaYhCDD6zS707l6P35cd5Ps/9sjK4Ok4nRToqpeN4du3+5FbUMhzXyzlxr00ua4LU9N+Ted8uApzHn5Rz8923WQWmfjHJlbsOc0L3Zsysm8re9qy+ykG4F26lsSoSUsIDLCYtLElQlQBT5qO7by49Vwc/X90zE4QhHJAfeCgG1VAftMAPbvVZWDfxixbfZS1W07LGprSfJWJHl7t1YKbSWmsPnhWFqTG6oY3bYBBp+PbffLvuKq5mvgbvBjTsBWH7sWz6vo5wLX5qgZ0AAEGH96t2ZOfmr1Mo/BKrLl9mJcOzqPdlgkM2PMJrx3+juEHvqTL9qn03DmDORfWYBLNjK3Zi4UtX6dGSClZetI8lIBnKaPjPMdcwEfHdlAvqiQ9K1S3KmizuxP37rLr2g2GN62Pl7c2xTDrILOwgPlbjtC6VgVql7cwR1eTFTZzNiUth/c+/IvwsADLfmleek3A0+oQao1cK8xVZxMEeGtkFzuj+9ZDRucK6EpHhfDVG33Iyi3g+S+WcjslQ67rAuS0gMtT0QI9mzjlLcK0JVtYsuskz3RpzLDODe3pyO7LBdtUyqWr9xg1aQn+ft58Pkub4VnSVa+vh6ljNfnHwE4QhEBgOTBKFMVMlfCXBEE4IgjCkcLCHKebrVenDG++1okDR64xd4HzzJdNz3HuqIT29SpRpVQU3204gFEQXbK6AG9vBjWozYYLl+2sTlWsrG5YjfpE+QXy0dHtqrOv4B7oGoSXZ0nrUTxRuilLb+2j3+5ZzLm0knNZN9DpTPaZW9uRVpTBsoTdPH/wa8Yd/5VQL3/mN3+FEVW7oEPQHOuzP2sVc/ava2c4n5rEqAYt0CnddlTY3Q8HjxAVGECv2tUcehpjd4t3niAtK5eXejZXZXf2c4U5e/7yXWbMWU+t6nGMHtXVft2iq9NkALKyewh+jjI4p/nGa53o1bUuvy058I8wutAAX+aOfAIEgVfnreBOWpZcV8WktP8vxsSEuzE9JyboBvA+XLaNTUcvMqpfGx5rWMU5QVtcD9gdWADv7clWk3bWYKIigzTZtS2eO3DzpI615B8BO0EQvLAA3e+iKK5Q0xFF8XtRFBuJotjIyztAVtCSsaFMGd+bhMQ0Jn+2BrNZVDRQRzpKVxNRBy8+3pTr91LZePSiPE+dc2PoX78mQb4+/HTIsVux1lidn8GLl2s3YXvCVY4lJwLqs6+gDXRto6szt/Gz5JkKePHgPOZeXm3/foY70evM7E05w5P7PmP17cMMr9CWmfUH2c1aaX7u2B1Wc7ZiSAS9KrpmdwD74+M5e/cezzZrqNmZwNJpck1FLNh6hJY1y7lkd/ZzSafYsf8SP/++hy4davLkgCZOumqdwV3DVtPTAs+3Rnamb48GLP7rMN/9sVsW9iBAZ9Dp+OS1XsSEBTHq+1Xcup8u19UAHzVgcjd253zf6nHU0lUriyjChN82cfzKbaY+24Wa5WIeypwFuHQtiTETlxIc5MeXnwwhJjpYFm6J63qMVft+i2fy/hOzsQLwE3BeFMXPihNX1AuEhPgxe/oARETenfkXObmFTo3NpisV28NvUq0MVUtHM3/zYUw60aU/kqiHwQ3rcCwhkdNJ99SVpGN1lWsR7uvP3NP7nLZSV5t9VQJdu5gafFR/CJcyE3nx4DdczL6lmqW72dl8cx6fXFjOlxfX0bFEHbeAJy0fONjdpvhLXEy7z8u1m6gyWuXM7K9HT1ApKoJGZeIUes7sbsnuU2Tm5vPUYw09Znc2mb90P1t3nefl59rRrnVVax7ancEWrnUoRa0zAbzxWkd6d7OM0X39yw6nfB9ERjzRkgaV4pi88G9OXr9jTdNaDhdAJy+fdvrFnaGV5qHG8pRlKjSaGPXDalIyc5j9Ug+C/H0eGvDOXbvLW+P/JDDAh88+GkxkRKAs3BK3eHXshAeKl5ma/BPMriXwNNBBEIQT1qO7yxiC5UZ8fAzMnNyPqIhA3p/2F7fvpttV1HaRUGN1Qx9rQHJGDhskrE6tMwI0LhNHhYhwFp84bdXTWC2BxdP9uVqNOHb/NsckriauzFepNAqvwIf1nuR8ZgJvHv2JXHOOLFwL4Fz53C2J38mcC2voEFObSXX62vVBPkurNlkBlrWzP54/TPXwaFrGlrHeqLbf3frzl8jMz3f7rVmwsLvle0/TsX4lYsODAM/ZHcDMuRs4dTaB9995nNo1Sznpe9KYleLKTHrl+Xb069mQP/86bB+jk8qDsLoWNcsxrHMjluw6yYbjF+V6HgCdKitzZ6p6EC6/L+cwJUHIyM3nnZ/XERkawMRhj8niaQGeTbQA78KNe4yZuJTQED8++2gwEeHqgFfcOrbF80T+idnYPaIoCqIo1hFFsZ71WO9J3NFvdqF6lVimfbqO05ctZqKWTS4V2wMvHRVCq1rlWbLnJIWiOiuSNoR+9WuRlV/AhguXnPVsExNWRtSuVAXKBYfx07nDmqwO1M3XUO8AZtQbxK3cZN469jMFYp5d3xWDUxOl7rKE3Xx/5W+6lWxAr1INnfTVzFlwsLtV185yPy+bZ2s1VAV5m9i+V7H67AW6Vq9MoI/6x7JtbigAi3edQBQtmzB4wu6kzL2wyMS7H/7FnXsZTJvYh6jIIGv6xX+Dq+lI03n9pQ4M7t+EFWuP8ZWV0Ul1HgToAv18mDy8M5du3+fTlTtlevJySM5djd0V04R1FU+N5SlFOksLcPbWPeau2kvH+pV5vFl1D/LVZsRShjd28nIiIwL54uMnVQEPHPXnqp7VdP7PJiiKK88Pb03n9jVZsGgvOw9Ztp7Ramzg/AYRddC7ZS2MJjMr95+x6LiYmPDS6+lUpSKbLl0mz2x029EHVKlFcl4Om25ZgFG5tbraNk02YHq3Zk+CvPyYeOoP8s15TuFK8dab7Idq2RUAufDGVo6mXuXt6o8T4xuiyu6kImV3hWYTy6+eoX2pikT6+svvW2WiYtXZC/gYDHSsWtGhJ5mokMq99Gx2n71Oj2Y1MOh0Mn3HufbLLCs7n/en/YWXQc/HMwYQEuKnGUfa2JWHVvpgaXcDnmjEstVH+fzHrU46ak7DnsiIvi0JC/Jj4i+bKCiS16MSSCz5SMunLK92Pp5MTEj1tNIVVcqkLOfCHUc5eS2Rt/u3IfghzFmpnLp0m9ETlhAeGsCnHw6U1XFx6tn5fv+PJiiKK+FhATw9uDmrN55k/tL9qjpqjpvSijHodfRuWZPdZ6+TlCE3EdW2cWpdsSxBvj6sP+9gdVoTEyHevnQqXYlV189hFOUD/q5YHUCnErXpWKIOP17dwo3cO/brSqDTAjhXwGdLQ0RkxtllCAhMVJiz0nKB89idoBdZevU0Bp2O3hWtvt8uJipOJN7hdkYm3WpUcdm5bC+aFftOExkSQJu6FZxWVbhid7Z6vnUvjXenriA2JoTZ0wfgb91ooLiD0Wpxhg9pYW93c3/YJtNzup9isLpa5UrQv1UdFm0/wYU79+V6xQC6BzFjlTpqYa7+a10DEEWY/udWgvx9GdmvtbqShmjVL8CZK3d4d9pySsSE8MnMQXbAU+p5Kp7GeSRgFxUZxNZd5/n8m832a67erLJOIpmYiAgOYOX+Mx69CTtWqUhGXj77b8arK0pM2E5lKuKt17PyunxXE1diYV963qrenfMZCSy+tUMWZhNXDE4prnSTClL4+vIGmkRUpm20w8xQG7sDObu7mpHCmZS7dCtfxS3DFXWw6eJlWpYvg5+X+npZ6fPfe+4GSenZdFeYPu7YnVROXEhgwoerqFg+mnfe6qpIx7OGrdR7enBznn26FRu2nuGzeX+rLvF6EPMVLKwuJSuXeRv2yfRUy+UC6JzvQTsdzfTdMDp3ZVGC8+XEZBbvOE6fFrUoEx3qMbtTL5sj7OSZBMbPWEnpuDA+mTmIoEBfmd6DzMYKbqI8ErDLys5n1pcbMQquQUSL1Yk66FC/Etl5Bey7cBNwbcICtKxYlv034ynC9S7Bol6kfZkKJOVmczrlrv261rIwKbh0ia1LtG8I317ZhEmUz8w+jEgBT5re2sQDJOSmMKxCa6cwLXZnk60JV2kQVZJgbx/ZdTVTdve1G3gbDDQuU0quq2LKmkWRbaeu0LxGWXyt4Fhcdgdw8Oh1fly4m/atqjHi5Q6KfLU7g1rYwL6NeX54azZtO8usLzZg0sn1pWUortSpEEuTqmX4ZfNhcguKZGFqrM6Rr/q57f+DAJ1W+q7y88Rx+acthykwGnmmW+NilcGVOWvWw5HjNxg//S/Klg5n9gwHi3eU03O/uprVS/L9V8+4LM8jAbvEu+myTThdjdVJxdZpBMGyPGzv2RsUGeVgolZ5FSLCiA0OYu+Nm9b8VJaHWUUnCLQpWZ4didecwtRMWHCAzFPlW3Il6w5H0y46xQVUWZq3zqR6uIpry88kmvnz5l7qhJWjVmhpe7gWuwOHKbvz9lX0Oh1t4spbA7RN2cMJtykwGmlRoYxHJtW2k1fw8/aiec2ymp3J3ZvbrIdFyw+xdNUR+vdpxOuvdHDS8cTtpE+P+rz2Ynu277mgCXSyfIvJ6p7t1pi07DyW7T8t11NzDvagtxV3vM5dXWj9dwXASpBOy87jr71neLxpdUqEBT0Qu1N7oZn1cOTETSZ9uJrKFaL5aFp/1fXY7uq4WpUSfDxjIL4+2jv1ALgO/R9JYX4mNy9Yvq1asnwLDP5Bmrpq5kZw2gUiggNYt241dw9usbARAYtLiwDY/mM579TVMn2+ecliUuPjJTqiYwcWHSCIVC9XjpDnfNmydh3pu7YAIOhAEEQiB7fXLGfFwBgqBcUy+9xf9mtK81UqaoCmDC9U3Ly33kShSX5t491DvF6lK11j63EmXcNEV5ETKXfIKSqkUUwca69fsH9XVk0KjCZOJd6lbqlYl2madZbvVKz/42dyX+hB9TAzfxzZCCLYSLxghtK1uzjiGCzfOBB1AoLVmdz2zQKzHr76cTuCIDCgdyPOn7/Dtp3nXZYh4cZujEUWp+3Bg7ox6vXH+HvLPl57cxpePmFElqnvFOdBWV1EsD+tapVn/t+HyS80quoUl9V5moaajqDSpLSuy3R0qH5rViq/bT3GkPb16d6sGj9vsCyzTDy6UVav4KhnJF92s4WVrd7ZWiZ5He87fJWpH69l4tiezJzSj3cnLqOgQP15KkVHBuPfGUZKcgp9B49yqftIwM7gE0CJspYtZfR+ltUU7naUsImog/ZdewFwKceb8DrNLfFskxKC5G1nNbOatGpNdkEBSbGlCS5ZClEn+ZiOgGy8rkXdhgCcD/MmqEMTdDbnYR9LebRM2I4lamESzexIkq/NheIDnVRPCXg28dKZKDLryTMVsj/5Eh1K1OTT82vt18HCPo0SKqPTmx0f6RFFzqTcpV60awADyzM8ey+JQfVqW7bzRs0h2dGpQmo04/T1OzRv1oTI6ifADDpr49eLxW9y837eQZVKMYx9qytFRUZ277usqVuiVBNMxgK6da7HB+P6su/QRaZ9tonIkg3R+bgeCNeyKLTksYZV0Ot0bDh0wa2u1jIwV/+1rmnmYdVVgpu0brTOlbq2F5ftf2JGJsev3KZLYwvYiTqIrtkKs8lkr1unD/aYHR/sEfTqO+jYZOe+S8z8bB0fjO7B9El9GT9pOYVFrvtJeFgA0ycNpURMJC+N+gG9f2WX+o/EjNUJenz8QvDxC0EQ3BdBWeH1q5UnOSOHu3lmvAJD0AeH4BVoPYIchyEoBENwCDXKlOLCvWT0QcEYgkMwhEiOUMehjwimXplyZBbmkyAUYQgLxhAejHdUIPrgAPXCWaV9iRqcTLtBpjETcOFmUswxPE/0d9w7TZRvMDVCtDebURu3O5lyhxrh0eg1RnZtLwSwgJ2flxflI8Kc9RRV6OUfxMlb96hWpgRBYRF4B4RgCArF2z8Eg2+AKluX5ys3dUwmMxNmruLq9ftMm/AEbVtV1YxrMPjQrm19xo/ty7GTt5g0az06fSA+viHoDeq+glr5uzNhOzWqwqWE+1y9nyrXc7OKx9PrDzpu90ATGx4gwcYjF6kcF0n5EuEAGHwD8Q4Iwdtf4/BzHF7e/poM2vact+66wKwvN9C4fjneH9cDvQvGHRjgw9xPn6JcmUgmzVrDtVvZ+PiGaOrDI96W/UGX5pQrEcaVxGRFWtr6pcNCuJ6W5lHaZYNDuZaRqsJdHKIcr/PTe1MhMIZjac7jfP+0qI372fLVGrdTE0EvcjUjBR+9gRIBzsMIylnaG6mW51cqNEShp57+lcQU9DodpaNCNctQnPpPz8hl1PuLOXshkTFvdqGEdY2lUpo3rcjU8X24fC2JD2aupNBqXmoB7IOasAa9jpplY9h//qamzsNMMjzsBIWr9B407QPWycC6FUsWK54aY9aq+41bz/L1j9tp17KqS8AbPaoLMVFBjJm4lL0Hr3hUjkcKdu5EzeUEoFRUKPHWBdZSUXs7eel0RAUGkJiZZZ9pdCWlg0JIyM5wuq71gWuAKsGx6AQdFzNvO4V56mbiSrTYnY09phVlkFyQSbVgdWan9Z3ahBzLfZYOVACYynO8nZEFQFyIAxhdsRTbAvjSEncFLXE1ayeVwiITUz9ZiyAIfPrRYJo2riALb9msElPH9+HK9SRGT1hCXn6RajoPu/4VoHKpKHy8DJy5cdetrjsTtjhOxZ6Kp2kUJ69bSelk5ORTy7rZg/u0PX/O0r6+ZNURvvl5Bx3bVGfCe71kgBceFsCEd3vSvlU1fvxtD2cvJKqmoSb/CrBTNnJXD8nX20BYoB+30zI9SjsqKACdIHA3K8sj/Vj/IBJzPUvbJhUCYwC4nJXoUq+4Jmxx5ErWHSoFR3uka/MbTMy23GeslNlpvAySc3Iwms1EB9uW+LjOw7Z/W2yEnIE9SEeWNuK79zJ4b9oKjEYTH07uR9XKlo4XHRXE+LE9uHrjPqMnLCE7p0A1vmYexRyvqxJn2Zn5QnxS8SL+f0iUs7Ki3nK/tl2ptV5irp63p0x68V+HmffzDtq1qsqgfpbdcAQBpk96glbNKvHL4n0sXnHIo7Rs8kgmKB5GAv0sfmFZeQVuNC3i720Zp8kpdLzlXbmd+Bq8yC4qLFaZQrwsA9+pBdmy72v8X0paYQ5lAzwDO5tkGy336e/lfixLBHILC/H3cj3QbJMc68dkAn09Gydzyk8yY6eUU2cTeHXMbyz89gXefL0TK9cc541XOgLw6dd/k5NbvPp7EAkNtNR5cmaOG02H/NOm6f9KXM3gpmTmEFtOPqll1gvoTKJHM7/yfLTrGODPvw7ToklFXnquLeXKR3L1ahI1qpZk+qfr2LzjnOcZWeVfBXaevF0DrJ0nN1+9QSsblJ/Bkmh+kbpJIxXbB6Vzje51pWNiwV5+5JsKKRJN/AMW0gNJZlEeQQY/94oSybPep+xD2mbtG8grMuLrIdiZRZHc/EL8HxDs3ElObiHfzd/J+293p0bVkpw6l8CHn28gUbJzzv9SQgJ9KSwyWlxO/qUgVlzw8UQyc/MJCfB1r/gPydsfLGHYoOYMHdiMzu1rcvpsgirQecLe/1Vg54norDTYJLpfwlVcfZ11VtIsunE6UohBp7evmHgYSb+obRIZJVN8RZKatV3Pi8hEX1Ig5/IdjFbEN5sETNZwk1mHKIJocz0xCwg6C0sW0zMpuGn5filmAcwCghnHYRJABJOxCCE/l/xEiz+fYAZMyHVt/lZmMJlNiAU55N6PRxCxv8UFs8M9wbagRemu4HSu0mnPngVR7IbZLLJrzwmuXD6HyeRcD05jYtJ9EnXymVdLYZBdcyyat87GCkBBDkUmE7n34x3hHv4CMoAszn52NvEtWdq90v9AjCYRQzG+/vWwYjKZOXj0Gl071qREdAh37xdviEkq/4oxu+KIbdDZ31udYSg7RX6RZTZOa12nLG0r0/EzuGcvJon/WmZRHgEGX3SPyoYFgn0CyCzILVYcm/maW2hlyS5YHYCflze5BZ6biP6+PuR4ONxQXBEEgXffHkBqWjZbd55kxEs9+OmrkYSFBv5P8lNKenYuAb4+eBn+pbSOf57VAQT7+5CZ49lO2/+EDB3QlK9mDQFg38ErdGhdjcoVnIdrPBkO/1eBnc4Dp+kca2cL9PPMPMq1mq9+EvNLqxEUmc0UmU0Os85DySqybOMU5FU8M/KflBDfADILPB8/AvC3rovN83CM0s/H26PhAJuuXqcjJ//BwE7K6pQSFOjHe28PoHbNcnz59Sre+2A+4yf9Qp1a5Xnj5Z4PlF9xJSnVwjDCgz0HV3erFP4t4gokQwL9yMz9Z8DO1XgdQM2qJXlxWBsOHLnGc6/OZ+bH68jMyuOD0Y9Ts2rx3F/gXwJ2yobt6iFk5xWQV1hETLD2EjOppOZYgCgqwLVTsE2S83KJ9iseO0jItTiVlivmBME/KRXCShKf4dnMoNnK4GICLTOl97PdmwbBfr74enmRnGmZ1XbXcWMjQgFISnV243kY8fH24sevRvJEz+YsXr6LdRstS5c2bj7K70t20KdHM956vY8szv+C4dxJtvgdViwV888n/i+WSrER3EpKBxxtQGdSX0GhJq5eYlKpXiWW2VP6k3g3nU/mbCQ3t5DsnAJmfLyOwABf5s56kvp1yhSr7P8KsPNEbA9UFCHhfoaqs6paB8wpLCQjL59YKzi6WgMKkJCdQelA57RFFybehQyLf52an5t0LavW0q8HFdt4nY/Bn7KhMZy5d0NVz6Th0l8mLAKA+PRUx0WN+4wLt3jN305LlySsXi7BDGVKWNwTbt1JRrq5zYOwGylYjXqtF5UrluTtcd/z8afLECVjsZ/NWcHi5bt4enB7Rr/xRLHyKK5X0JkrlnHLOpWK1+HsIslP+Uz+F+CsJa7ysrln2nTC/fyIiwzhzHX3voWWeJ4BG8iff82qJfl02gCLI/nYRaSlO4Znjhy7wbCXfiQhMY0P3n6ckGDPralHCnbuHoZWA4xPSqdsjHzZkqtKu52RSenQEI86WnxWBmWDnJdEaUmRWU9KYTb38zOoFfqADd+NGF2tPwJqx5RHJ+g4l+Tw5je7AXXRJFA2zAJICVKwQz7RYJMyEVawS/FsJUqFklEA3LybrK3kYnJCKYIg8Orz3RnUrw2/LdrGnn3qrgcff7qMP/7cwVMD2/Hc04+pp6UxCVIcycrN52rCPRpVr+BW92EB/kFEGV/6/0HTblDJ8jL3FOxs4snwlE3Klo5g5oQnSEvP5a1xi0i67+wfm5tbyNQPVxMc7MvHU/oTZf2Aj7sX1v9nmJ1Uzt28S/kS4QT7+7hXBi4lJVM9OsqtnmASOJeSRGxAkGzLcrNJ/piMJufHtvf+JZpHVsPb+lHWIg0WV1x2pwQ6tXQ7lm9IXlEBh29rL0hXm4yuE1uaK8n3yNMYh5N20pql4jCZzVy6c1dTRyr1KpcjISmFNKsfWnHe8mqzsKNe682Lz3Rh5doDzP1mjcv4n335F+s2HWbESz14alA7WToeiRMI28piNdesxdt2+CzNalUm3DpEIp2Jlv5KRet5/ZPjeQ8CZp7k37lhVVKzcjl1zbXzvHYe0nqV7KBtLW+pkmF8Pn0gJpOZcROWcT85WzOtq9fvM2HaSkqVDOOr2UMIDnLvDvOvATvpDglOYQrKf+KK5WHXLW8ZpNRYDYVgshxn7yQRExToetzOar6duG/ZSr1OhMVxUsmQtEzCrXfPEGDwoVFYNacw5bZMngKeK0ZnCxMQ6FSxEXtunSbPWGh3O3FVVpvUjyvL8QTttZ3gcDupVaoUV+8mkVfoPJmhxgQbVC3PsfM3VNMsrsnYvnUdnh7cnj+X72LazD8wGl0nIIoiU6b/zt/bjjN6xBMM6tvaei/SMqt8Ua6Y5Vq7+xheBj1dmtUpXkSbuMnvgUBLJY5WOq50lSZsgMGLNrUrsOXoJUxm0e14XXFebgCxMSF8PmMQOp3A2+/9ye1E9xbEwcPXePu9PwkPC+C9t7rb3cy05JGDndZDcfWwzt24R0GRkWZVy3hUkWcSLd+IbaCyH5vFV0yyP37KPYrMJprElEZ0YwpK3U8Op1zlfn4GT5Ru6jKOTdwBnhrQqbG65mXqERUQyoZLh93mKUrKWzYskpigEI7F33TrciIIAg3KleXkzVuu9awdoFKpGKLDgjly7qpquFRcmbCCCVo2q8HMScM4c+4mn3+50mX+UjGZzEyY9Avbd59i3Fv9eaJncxflfjBT9uKNRC7eusOQLi1dpC3/dSWqTNDkGehp6bkyZ13lq5RezWvi621g/UH321lJRZ28yFlddFQQc2YOwsfbwOj3lnDzVorH6V+8dJevv9tGi8YVeW9UN9dl8TjVf1CCg/xU36Lu3ra2t0h+kZEDF27RoU4llTScK/RU4l2yCwppUdYxpmZpHM6dPM9YxOF7CbQt6TwWI52kkJqyRWaLU/GqhKM0jahMrG+U/bpNlOwOLIAnPYxmnf1QipojMcDwel24m5XClqtH7dekbFTJ7mwzsR0qWT62s+OKdTNMqzOxmtSMK0lEUCB7L1y2PDcXnUMww2NNalvSPnIOzZ33Nc05R4SG9Srx2cznuXbjLiPf/oaiIvXBHy2wMprMvPfBAvbsP8f4MQPp3rmR5+zOQ1P255XbqVq2JB3q15DruXlGdlGCkRsrRevQiqP1vzgM0KDXMfyxRhy7cptT1+6oK7kRrWcdHhbA59MHEeDvw5j3l3Dtxn31+CZRkwCtWneCHxbsokNrZ6tKll/xi/3wEhsTQq+udTUpr+1tIL2urIgdx64QGxFM9dLRmjo2MZrNHLwZT6vyZR0rAjREMAnsiL9O9fBo4gIci9iV43Y2kbK7pTcPUGQ28VyFjvZr7gDPE9Ea/6tToipNS9Xgt5NbMJpNmiascrxONAl0rFyDqylJ3EiVTyComaStq1n2j9sr/d6uC9B7rHFtjl+6QZJ1swa18Rl5nqLsFyAmPISZk4eRkJjCK298RUZmrlMc26H23yZFRUbGvvcTR49fYcr7T9GlYwMNdvNg7G7d7mMkJKXwaj/1yRBL2vJf5bmngFcc8YTRaeWlNGF7NapBibAgfl5/UBbHnQnrjtWFhwXw2fSBhIcGMG7CUi5fveekqwQ5tWsAv/95gOEv/aR+k7b7chn6P5Kc3AJGvdKJdi2rOIV5MpYimGHHyasUFhnp2aQGgsn9uN2uyzcoExZK1ahI7YJZmc3GG5cwiyLdylreFJ6M2xWZ9aQWZrPoxl66lWxAozD1DSaLC3hKoLO7m+i9mNL+ORKzkll0aptaVJlITdgwP39aV6jK3+dPa+pLl4l1rVOb07cSSMp0nhlTgmPVMrHUqlCajXtOOOnZRcGalBIWFMA3n7+Or483747/mexsx7d31QDNuUxynYLCIt4a+z0nTl9j+oSn6dSunkxXKcVhd0aTmXlL/qZu5bL0bdNYrleMCQo1wHtQ0HNn9noyVmeTID8fRvRuyalriew763p8VzM/+07GEqAL9Ofz6QOJiQzmvcnLOXdBzhg9GfNT6ty+k+5S/9F8cCcxnbMXE/lgdA8a1yoLaLM7pdjeJhk5+Ww9cYUeTarj4+UMIEp6//eFy5jMZrpXr6LQE5zG7W5mpXMq+Q79KtRyGrfTMmVt8sOVbVzPvsd7NfsRoLfMECkBq9Ckdwt6RWa9JtABvNZ0AOXDYpmwZb5sYsITE7ZPrUZ46w0sP3nEpfkKUCo8jAbly7L26AmXncjWOQd2bEZhkZFVO444mbCesDpfX2++/vRVSsSEMeqd77giMZuKy76k+nl5hYx8+1tOnb3BjEnDaNu0pmYZiit/bT/CsQvXGfd0T0ID5R8ed8XqnMBMYzzNo/E+DZNWeU052ae8ptR7s2crgv19mfn7NlkcT1md2jMN8fPlk6kDKBETwruTlnHytOPbKa7MVTUpjv4jATuzKPLehGXE305l4js9KGV1EHYsFFefolZW1F+7ThPs78tj9avIdNQaR2puHgduxPN49ap21qI91iGw9NIZqodHUyfCsVGh1JSVAonNlC0y6yk0G5l8ahkR3kGMrtbXrqMGXjbQsx02HTWzVQp0jeJq8nTdziw+vZX98Q5/MxvQuTNhn6zfjNN34jl7V7LZqGTxv1R6NrB8oGbd0ROWZyNZ/K8UX28verZqyN8HT5GebTE7nRqiC1YnCAKTxgymaqU4xo3/mRMnr1nzVGdzUpNGq9FL4+bnF/Lm299y8VICs6c9R7vmtWR60t/isDtRFJn87TKCAvwYP7yPTE9eFg+uuTA35ZszaAOcPY6rMTsPzNdGFeLo27I2i7Yd51LC/X/EfA319+Wz6QMpWzqc8VNWcOpMgpOOU7mMZtmhfq8ebPThVuN/JDm5hUycvhJBEJg9uR8hQc6e0NKHpjZRcfRyAtfupjCkbX2PTNlVp85TNiyUporvn9rF5GA5q66eI6uwgOeqN0Y0CTLGpMbupGN35zJu8/2VrXSOrcdLFbvLstAaf9MS5YRF1cjyfNZlBNfS7vDJnqUWHZVtMmSAZ9LZWV3zspWoHVuaXw/t1cxTasI+2bwph65cIz4lVV1P8sx7t2lEaKA/izbsdVo14Qmre+P5HnTt1JCvvl3L3v3nZGGyeC7e5q5ADyAnN5833vqGi1cSmD31WVo1rqGpWxzAu3TrDt8u20LvNo3o06qhXM8Nq3N6yZhw65biSrQYnrIM0uvKvhPi78uMZ7oRfz+db9fsf7ByKMzXYF8fPp02kLKlI/hg6l8cPX7THu5s2WmDm1aY20UKD3QXDyvWMiXcTmP8lBVERwUza3xfvL0NxWJ3ogiLthynRpkYGlSUL9WSvv1ssvH8JTLy8hlcr7YsPbspK5GsokL+vHSKx8tVI1byqUctdmcTG5jNv7qDFfEHGFa+HS+rAJ470FObla0aWYEfeo0lszCXV1Z9Tm5RgZP56o7Vvdy8Ayk5WSw7cdhhwmqYsc0rV6J8dBR/7N7vchZWMINOFHi2exvOXI3n6PnrlusesDpbPffv0ZJnh3Zi6co9/PLbFlmYXbcYJouari29zKxcRoz6hivX7vDJ9OdoVr+qan7FlW+WbubQuatMerE/FeOirWki+5WXx/V/O+gVw/XErRnrBugEE5YdgZ/uQligH+/+sI68gqIHNl9t1/39vJk9uT/ly0QyYdpfHDqi3kZcsTc1KY7+I2N2tps8c+42M2avpWa1kox7tYssDOQzs0p2J5hh3YHzpGXn8exjjezsTovWFxhNrDp1ns5VKxPtF6A9K2sWEEwC888eRUDghRpNisXubED20Zk1rIg/wNPl2zG22gAMyFd8SM3WIjeuJ63LNuDnPuPILMzlmeWzSMxKcWJ00r3r7OWUgHPVqFi6VK3NgkN7yFdsUKrcjw5geOuWpOfksv74KUkmKkwE6NCwBhXiYliwZqdLVqfmV9ekQRXGjerH7n1n+fjTZU7hqsClYsKqMjrlbJ413ezsPF5/82tuJdxnzkcv0rJhNVn4g7A7k9nMmM9+Iy+/kG/eeZ6wILkTuxT41M7V/tvFJD8eyIxVATo1/ZE9WtG6VgU+XbqTi/HFN1+VQBcY4MOcKQOpWimGyTNXqQKdFmh5Ws+eAN6/Ym3srr2X+PGXXXRuX4OhTzRxhGusqpBWVH6Rkd82H6V1zQrUKuu8A4WyUSw8fByDTsfQhnUVes4TFQnZmay4eoanqtST7YSixu7UAE9E5MMzq/npynZ6lWrMby1G0SC0ituVDVIJ9Q1lZqfXmPv4KG5lJDF06UwSs1JkOmqTElJWZzYLiCaB0W27kVWQx4/7d7pkdIJJoGxEBF3r1ua33fsocLGczHa80b8LN+7cZ4N1FlaL1VniOQClTFwUsyc/w41bSYyf+Asmk1mT1dv+u2J3Wh1CCXiCWSQjM5dXRszl2s27fDrzBZrWq+JUPige4CWlZvDGrPnERoTyzZjn8PHyUjVjXZ3b/j/omlo1NqcFdMpxugEt6vBs58Ys3XWSpTslLzk3ojWh6O/nzScT+lOpfDQTp69i74Er1vzkQCe/B21Qc6XjDvAeCdgJOApmK+xviw+wZec5Xny6Da2bVtI0Z9XY3Z/bT5CWnccr3Sxe8jZ2p9ZYbqVlsPniFYbUr0uA3gvNiQoru/vy+H50go5RdVtqsjsleCkZ3reXN/PywR8wiWa+bPQCM+o+ReOwaiAaMJl1DkYm6uxHXHAsLzZ6glVDZtKpYkO+OrCSwUumk5STjlHUe2S+Ssfq6saWpmfN+ny/bwfpeRKfNY2JiRfat8VkNvPL9t2OZ6nB6jo1qkWN8qX4ZulmzJKdgrVYnSVMJCjQjzkzX8RsFnnrne/Iyc13MXxRvFk6tThqLC89I4cRb87jVsJ9Pv/oRRrVq2QPk/4WB/COX7zB2C9+p16Vsnz6xlMY9DqPAU8L9JSHJU/3DE8JclLTVQl07WtV5N1B7dl1+hqzF22Xxfd0WZiU1fn7efPxB/3sjG7fQddA9yB1rFYGLXmk27LrjGbMBh2CSUTUC8z+bCOxMaFMersHr733B5euJdm3wtYZHd+o0Jksbc5mxeUWFPHr30d4s29r6pcpyfFbzguVpQ3hp31H6FKtMkPq1+GHI0flemYQEexf2YrPyuC3C8cZXr0Bv108zvnMe1aA0aHTmxHNgv0zi0aTTvZNWbAAnpfOxLHU6wzZM5dnK7ZjYNnmdIipTWphNqfSbnAvP537BZl4hxopERhBpYg4akSVwyya2XfrLB/tWsS1NIsLhtR0VQKdlvmKSce0bv1Jzsni273bNVmdbWIiOiiIwc2asuLQUZIys1T3X7Z1Or0oMGpwN64nJrF21zHrsxblnVaF1en1Oj6d+jxxsRG8NuprEu+kqgKdq8kGVyLdet2Whq0t2dqbLa30jBxeHfkV3331Bl/NeoU33/+Bg0cvIphFRJ1g/9WZrFu1m3FLEzbtP8XMn1fywQt9mfPmMN76YiFFJpN9C3bBjOq57b/lHrTTd+cG5EpfOUYH8Fidysx8rhtnb97jvR/WF2v9q5r5GuDvzacTB1C1cgmmfbTGidG5m1zwBMCkXyH8987Gis7ILphECguNvD95OemZeUwf18e+k4Ers8bO7rad4H5GDm/0sqxTlLI7ZcM4efsuu67e4MVmjWTszmkMz8ruPj+2l7SCPKY27Szzu3NnzioZXqHZyHeXt9B120xGH13IkZQrlAmIokdcY0ZU6c5zDR6nUVxVcgrzmbV7ER1+Hs1Lqz4rFtApzVeAAXWb0Lh0BaZtWkV2gWSXWQ1W92qnjhj0Or7asNmJ1SmlZ6sGVCkdyxd/bJCxOnBmdVK29OZLvWjcoDLTPlrE8RNXZR1FC+g8cShW6rpiilLdtLRsXnz1C27cusecmS/QpIGzw7tS3C0l+239Hmb8+Bedm9Zh7tvP4O1lcBqvc5TBNatzf78aaSgYnxrQdatflQ+f687ZG/d4fc6Kh56Q8PezAl2lGCZNX8nOPRcVcbTZ3INMQv2f+tkJgvCzIAhJgiCc8TiOpJBSwMvIyGPi9JVEhAcw5e2eGKz3IZhFJ1cU5djdj+sO0LBSKdpUK6+Rp+P4aud+wv39GdqwnkLHeewus7CAWYd30Si6FP0qWHyzbGBjNumczFmps7EU8GygV2Q2sSvpPONPLGHQ7i9ot3kK7TZPod7XL9Jp/jsMXz6LX47/TVJOuiU9idkqzVsL6KTma7CXPx906sXh+GssdTEDa2N1JYJDGNqyOcsOHiE+OdX5GUo6lbdOz8gBXTl7LYFN+09Zn58zq1Oar107NuTpQe1ZvHwX6zcedhrQdjpXATmtgWt3TFALTG1jeK+N/Jr4hGTmzHyRpg2rPJQ5C7Bw/W4mfbuUDo1q8vP7L9snLYo7QaFlzmrqq4CcGtANbVufGc904+S1RF7/YgU5+YUPzeg+mdDfYrp+uJq9B66o9nVpOrZzZ3ZndnnIdd2DniB6+JUul4kIQhsgG/hVFMVa7vR9vIPFuFjL0prScS0wWPeOMxusnVYv0LVTLd4d3Z0V64/z+fdbEPWC3TS5eX4T6ATLV56w0H1RAC8vA9uXfIfJZKLDU69SJJosOoL1i1A6+e+iD6fSpGYNGgx7lvTsLEmYCNZz61MCncCW73+mYkgEnVf/SHKRZa8tnV5EZzVdbeas3tqqpCatXu/cIr0Uzmc5l+VLZpSzrWoTEWpAB45Jic96DWFA3SZ0+/ZTzty2OhErviAGDrD7aNAABjRtTIfJH5GQlOrE6qQd7IXH2zNuaE+em/It+09Y1s0KJpH7F/Zb9G0vKtHR+evXrcHKP7/jzPmbvDbya0yFRns8m6iN1yp1tCQl/Qp5BWn2/1JzNiigBMEhZRxhEjPI/uUwnUBYWCDzvnidsqWjeeuDH9l/+II9HaevkXnyJTLg8Vb1mTliMElpmbzy8U9cjr8r03eUV/2+lNf9SpR20tEybdVAzsugZ/yADvRpUYutxy8z4aeN5BcZiwV0t85ucsy8iyLBQQEs/PFDalavxMi3ZrJx0x57w9TrvChXuo0sDeW55X/xZmVy81NJTDlp/389fvtRURQbqen+I2N2oijuEgShnKf6er0XwQElEXWWc9sYinQMb+OWM5QrG8ng/k04feE2W3ZZducQdQLB0RUxGwsQdYIF6HRgtjbC2fNX8t3kETw37CkWbthuITB65MCoA3Qwe+UG/m7SmDEvvMC0pcsQdaK98Yo60a6HIKIPDGDs7o2s7zOcj1p04/ltyxCs43pmk3z8zmTWodeZ7QzPoDfbGZ4U9JyWg2l8Q09rba4roAPoUrU2T9Zvzpc7/+bMnQTANaurGB3N4OZNWbBjD/EpqU5jdVKgiwgM5LW+ndhx7Bz7Tl5CwMHqgsJKYzIWWlid2VHAsKBAfvpmNvdTMnjn3R8xGk32ePY8NCamlKLVKQK8w9HpnJu1qBPw9Qm1pyvqBPnYnfXcZtK+MmIu874cwefTX5ABntb4ne2/bfzNnp616Ov2HOfW3RS+fvdZlkwbycTvl7Fm3zGn8Tmt8To189SVqDnY2+KUDA/mo+HdqFOhJN+vPcB3a/cjihSb0YVFV8ZYmAfWyaYf5oymetWyjHrnK/YcuE5QkOOjOL6GIFkazufq9SlozLCKVmLkZfAnxN+ydZuoc22oPpIJCoPel6hw63YsooUAqAHeD/N3UqNGSd55tTNXriVx3TqIHRZRCbPB8fY06y2TFWa9wOE7RRy6eIu3nu7L9usZZBYWYNZZwkXbr/WI18OqMxd4vksn/ryZwO3sLES9aA0XHQ1OL4JO5GpGKh8e3smU5p0YWrU+v108bmnrelET8EA+cSFdaaHG9qTiagMCd0AX7RfCpz2f5PSdeD7ZvsEJ5NRMoPd79SCvsFB1rE7Z2d7o3xk/H29mz18t+yYsQEB4KZn5KphFdCJ8MfNFoiJDefblz8nIzNVkbmpmreW/+7e+n08ofj6h9v+i4hunthTtkw+SyQsp4FlM2q/sgDdm0s/sOXDugQAPLMz29JVb9B87h8/HPM2nbw6lbf3qTJm/nKzcfE3Qk15zJ65WENmkZ6PqjB3YHoB3vlvL1mOXZfkVx3QNjiiPYBIJCvTls0n9qVgumokzVnL2YiFREdWt+s5mqzuQ0wI4NR1vvIlS2TBXTf7PJigEQXhJEIQjgiAcKSrKkd2k8iHYHpDJLDJ15mry84uY8W4fAiTfitUZnTuDbbLi86W7CPH35aWuzhtpKqfq52zfi1kUGdu+tUJHsarCOlnxy7lj7Ei4xoRGHakWatm3Tjp+B3KXFOk4nnLjANskhu0wW11bzAoXF2k6tv+gDXSCWcfcJ4bh5+XN60t/pahIciNm59UigkmgVZXKdK5Ti682bCE1W/2TjDbQqxJXgsGPteDPTfu5djtJFq4z4TT7KphFXhrehdbNa/LpFys4fyHeCdBcAZ3aGA0ms/YhuzezaluT5qVVDhvgXb1+h8+mPU/bFrUeeAwPsPvhDftgHl8u2kj3lvVY98lYHm9Wz+kZy+5BZYxOp3LI79txAJSODOHLl3ozbXhXLt9O5slpv7H12GVZfg8yRhcc5MsXUwZSoVwUE6evZP/Bqy7H57SATjCa7YdMjGb1Q3qvavFU5P8M7ERR/F4UxUaiKDbyNljG6KQNUQ3wBJNIcko2Uz5cTcnYUMaN6GI1leSNVDlZcTH+Piv3nWFw23qUiwhz6Xd3NzObH/Yd4fHqVWkSF4dyRlY5WYFJYPTO9WQW5vNVmz4E6CyrIrQAD+SMzAZ6ajumKEUN5NwBnWgSeLN1F1pXqMoH65Zz+b51jzAtZmcS0Ot0TO7bh1vJKfy8bZcqq5MxwGG9ycrNZ+7ijXZWp3y20tnX5o2r8coz3Vi94SBLV+yRdRbZhIETACpATgPQVB6ck56yrUnzdAW8GZm5vDryay5evs3HU56lXavaDwR40okLk9nMvKV/M/jdL0jOyOLzt4bx+6TXqVXOsWa7ODOxjnuUAxxYtmga2aMly98fRsPKpfhs6U5e+mQpiSmZsrQfBOhCgvyYM2UQZUpH8MGUv9h/yBno1CaEZHXhDuC0REXHHeA9uuViRnlDtPyqA97J0/H89MsuOrSsRo9OtS06itlZSzwHu5u3ch/5hUbG9G0j1zHLG4VgsvjdJWZkMqFTO3SChcE5uaJINglIzs/lje1rKRccxheteyFYAUgN8NRYnk2kwGc06ew6rkAOXAPd49XrMrb94yw7eYhFxw5ogpxUnm7ZgqolY5mxfDWFBUbNDiaY4bEGtWhZpypfLd5IRpZ8Q00bq5POu0SEBDL13ae4cu0OH81aos7cVAFHBeSkYjZrH1JxA3rSMsjzdwBadnYer4+ax4VLCcye/Cyd2tYrFuCpzdQKIpy5msDAsXOYMG8JFUvFsGLW2ywY/wqta8v3QlSdgXXjUBwbHMTo3m3YOPUFnuvShE1HL/HEhAX8tuUYZlHuQ/cgQBcW4s+X0wZRJi6M8VNWcOjodVWgczx353qVgZMWazOZVA+ZuANGq/xTrieLgP1AVUEQEgRBeN5lBNssnQTVtQDPdr542SGOHL/Bmy92pHxsuOMGjA52J5W0jFy+X3uA1jUr0KZaeddrZguMzNq8i+ox0TxZp7b83jTM2f13bjFp/xY6lqrEuw3a2f3vlIAHzixPDfjURA3kXAFd7RKlmPvEMI7EX2fMysXyiQiF+WpjdeEBAYx+vCu7z19k4wnJZp4m5w7m4+XFe8N7c+nWHRZt3Gd9PqLDfJU+N+s43bT3niIw0Jf3JsynoLDIHscRV87yLOdm2wOQg5wWoClFTU8F9JzydQd4b87jzLmbfDhhGF07NPAY8GzPW5omWADPbBZZuuUAnV+byce/rqFiqRh++uBlts0dz9ghPahToQx6VbduZ4kKCGBAizp893o/1k57jifb12fnqasMnvYbk+ZvIjkzR9VstZRLXmZXQBcRFsDc6YOJLRHCu5OWc+TYDU2gU6tXGZtTsjNXoCYRVR03gPePuJ4UV0L8S4rNqr5o+WNzN7G7nTjcT2y/NpeUsMhAfpr3DKkZubz0zm8UmEyIOkFzskJv0LF44lAMeh19Z1k82LUmK0Q9LBjajxoloun8wwJS8vNkkxVgHSi2TlZYyiYyuXkHnq3RiHf3b2Dx5ZP2GVqd3vFcdZKJCJt7iprkX1X/RJ3z7iXOQFciKIR1L4xGFEW6fvMpyTlZTj51StNIMAl88uQg+jZpRNfpH3P1dpLdfFXqC2Z4rU8n3hrUneET53Ho9BUJGMhZna1jDB/Qnrde7c2MWYtZsWqfhcGpAIkmm7OJAtwEQSAyPIgSJSOIig1DJ+jIy80nOyuPG1cSyZDsbGwX5UydXt7eLOdy9xJpG7Rd9/PzZs4nL1O/TkUmffQ76zYfceuWIr0mnWyQub5YT70Merq1rMfjrRvQok4VvAx6cvMLOH/jNudvJJKakU1mTh6CXzBBfj4E+ftQNjqMGmVjKBFmmfG8fjeVLUcvsXLPGe6kZlmfs+JxKNic5Zr1+boAuqiIQL6YOoiI8EDenbiMU2cSXAKdTaRAZxcFyCnFSxAoUzGa0PAAfP198PE1kJaSzf07Gdy/k06BynDGptMz/reuJ8UXSe81msGgQzCaEQ06BJMZUe9YQgaOZWWpaTl8+Ml6Zk8fwKvD2jBn/narOStgRpQ1Hp1JxISZT5fs5Os3+zK0dX3m7zjiVBJpZU/duJ1VLw1lXPs2jN2wyWrGioBgBzz7+J1ORDAJTDuwnfLB4cxo2oWcokLW3DiPoBcxmwQ74NlmakHO8lwBn9o7SLoETAp0UQFBLB32BkE+vvT58Qs50NnyUpivgkmgSYXyDGrelHmbtnLlbpKMPyiBrkRoCC/37simA6c4eOaKXVdtUgKgesU4RrzYg83bjz840ElAzj/Qlzbt6tKsbW2atK5FWESQ5rO7fSuJcyeusWPTUfbuPE1BQZEjLRvomcyg19nzlbY56UytcpY2L6+QN0d/x2ezX2Tqe0/h5WVg5foD2rO0oDpTa3sO0tlagCKjidU7j7J651GCA/xo07A6dSqVoVal0vRq3ZDgAPm+jwVFRu6mZnH88m3O37zHgXM3uZKYIqtHqaixOct1R5lAHehiooL5YuogQkP8GPvBUs6cu+0W6FTNVhcgV6lyDG271aF2kwpUqFoCbx8v1MRkNHHuxC2O7L7EgW3nuXnTxcfYbXk9GmYXKzavZLF0Rb31leeC4dlZm0GHqBcY8XIH+vdpxJsT/uTouXjHG9XK8KTsTtTB56/3olGV0vSaOp/k3FyX7G5U+xa82qopT/2xlIMJCXZ2ZymL6GB3YGd4Pt56fu3an4bRpXh950o2xV+yMzzQZnlKyb92W/W6qJjMkAJduF8Ay58ZSZnQCJ785RsO3bomBzqJ+SqdlDAIOjaOG42/jw+dpsyiIL/IaVJCGufT15+iS5M6dB85i8R7qXbzFZxZnY9Bz+/fjSE40I+BQz8kO8Oxa7FLoFNhc9Elwhg0rBO9BrUhMNiftORMDuw8zZljV7h7O4WkO6mYTGb8/H0IDg2kUrVSVK1djvrNqhERFUJOVh7b1h/mt582cuu65IMuUqan17AqXDA8H28vZn/4PK2a1+DDOUtZsnKPNsMDJ+dji57kXC991VivqVivep2OoAA/gmNKk5WbT0GRuqlXXJCzXNcGurgSocyZOpAAfx/eGb+EC5fuegx07ticj68X3fo05PHBTSldIQpjkYmzx25y6XQ8V87cJvleBnk5hRQVGQmLCCQyNoSylWJo2LoKlWpY9rE8tvcyy+fvZuZPz2syu0cCdlUr1xQ71HmF65ctjc8V4KmZs97+Xvzw1TN4e+sZ/uYCcgqLZOas3WSwAl6pmBCWThrGhqMXmbj4bxnY2fRsh4+PgbWvDKPQZKTnz79RiFnbnAXQiYh6kQAvb37rOoBaESV4fddKNsdb/ZdUzFqbKIFPCnZKgAMHyFnCBSL8A1k09DUqRcbw9MLv2Hv9sgzkXJmvr3Roz/g+PXn26x/ZfvKcXU9trK5h5XIsnjqSeUv/5stF8hlYNfP1zRd68OyQTox46xv2HzxvBza1sTEnoLOCnK+fN8+/3pPBz3UGQWD7+sMsnb+Zs8ev4Umb1ekE6jerRuc+zXmsV1O8fbzYtv4IP361mptX79iUHBEeAPC8vAx8NP1Z2rWuzSdf/cXvy3Y4AR64NmstupJzFdADZ+Dzj5KvoNCaVJKCHLhmc6AOdKVLhvHFtEF4eekZ8/4SrlxNeiigs4Gct4+B3oOa0u/Z1oRGBHL22E22/nWUPX+fIStdPvmlJWFRQTz2REN6Pd2C4FB/vH28/l1gV79eA/Hw4cOsWLCH377fTmGBsdiAV71mSeZ+8hTrtp5m9nebLeEKwJOyu5F9W/FMl8YMmf0HZxPvabI7gNZVy/HDk0/wyY49fHvosAPk3ABesLcPC7sOoHZECSYd2sxvl44DaLI8pRRoMDslyAGUC4vk96deJTY4lBcW/cS2y+ddAp393CRQMjSUbe+PY8/FS7z07XxcuZroRIHl094kKjSYbiM+Ij+/0AnowAF2daqVYf7cUaxaf4AZHy52Ml89AbqmrWoydurTlCwdxZo/dzH/i1Xcve0wzTC7WT4AoHOgSVhEEIOe70K/4R3x8fFi0Y+b+PmbteTnFVp1rWijAXhgaVtqgGfQ65g+dTiPta/P3B/W8vPvm2VA58k4nkXP+Ra0gA/AP9J5uZhUPAE5y3XXQFehbCSfTR6IAIx+70+u30wuPtCpsLkmLSrx6vhexJYO5+ieSyyat42zR284CuZicsIuescD9PLSU7l2KT5b/Jom2D0S15Obl++xbc1xBr7Yls9/fYmYuDCH7W6UPyiLq4DjYdoe8LkLd/hzxWF6da5Lo5plZOlLfe9srig/rT9ESmYO7/RrK9GzAYDjANh15QYbz19mRMtmlA0OQeqC4uSOIrmeWVjA4PV/sv32NaY368K4+u0QsACUdLZWzXFYKmazIDtsYkujQVw51j7/NiG+fvT/+StnoLOVSTpGZ3aUfeag/gBMWbJSBnRKEczQp2VDalcsw6cL19mBTik2oPPW65g8bghJ99OZ88XKYgOdTifw2tt9mTP/bQoLinhtwEw+HPuzBejMJsfhiUj001Ky+Hb2Mga0HsvGv/bz9KuP88f6aTRpVdOet7Qsmv54Kn6BRpOZ8RN/Yd2mw7zxYg9GvNBD7kqjNlMreUGouajYn7/JOU8tsbmQSF1JLGl4ZraqAV3VijF8OW0wZrOZUWMXPRTQ2WZOQ8L8Gf/xIKZ++wxFhUbGDfueD57/2QF0JpNnQCfVNZkoKjJx7thN18/Is1T/WTGZzHz+3jImvjifmLgwvvzjFWo3LKcJeKB8A1kAcMHCPdxKSGXMq4/ho9Oh5ntnk9zcQuat2kf9inE8Vruy24/zzNi4nSKTialdO9mBwtZoZO4oEv87wSSQZyzipc1/8duF47xauxm/dBxElK9lpwsp6NlEBn4KcLOJNN6LTdux4pmRZBbk0/P7ORxLuOEMdCrjdDbpUa8uHWvW4JM1G7idmia/d4X56uvtxegnH+fk5Zus3X1MpqfmU/fM4I5UKFuCGbP+JFf6rVcVfyvLs3MAXUCgHx9/O5KnX32cv37fzvBuEzlx6JI6wBlN7g/5QwazifTULGa+8xOv9p9Jfl4BX8x/m1dGPYFer1MFPCd3KDU3GbOIyWRm0tTfWL5qL88PfYy3X+kj11cCHsgmdJQuKlrOxFLg0wI3i546yEnNVrXxOen91agcy+dTBpKbV8DIMX9wKyH1oYAOoFbDcny95HWata/OL59v4vXeX3Dq4DXrc1eAnNHo/pCKByD5iJyKRTCZOLzrIm/2/4rMtFw+/P5ZWneupQp4am9agKJ8I198vZlSsWEM6etYGib1vbOxO4BVe89yJTGZkT1bYtDrnPa8kzaOpOwcPtu2h5blytCjuvWDLIpdjbUAzySKjN+7mff3/k2TmFKs7/kc7WIrOu7eCl5q4KcVHhkQxG9DXmFq135sv3KeHt99xvXU+x4DnWASCPTxYXK/Ppy+Fc8ClR2IlfJst7bEhIcwa/5qsDEbtU5oFildIpznh3bm763H2H/wvFN9OU1ISIAuLCKY7xe/S5NWNZj13gI+fv8XigqNcpDTAjItUdO3gt7Jw5d4rscUVi3awfDXe/DVwneIiAqRA54Ky7Pdh9q9iaLIzFl/snj5Lp4e3J7xowYiCIIq4LljeY7n6nyoiSvnYmW6rsxWW3j9WqX5fOpAMjLzePOdRdy5m/HQQDfwmVbM+vE58vOKGDXgaxZ/ux1jkUkb5DwRLeDTkEe2ggIAk4nEmymMGvAV50/e4t2PBtCmizPggeNhWs4d5uzREzfZuus8Q/s1pVRUiKzipKIziYgmkS+W76ZMdBgDmtVR1ZM2msXHTnM68S7vd2xLsJePQscxJmYXCeAB/H7hBD1W/UpyXg4LHhvAgg4DqR4S7ZSnK/AL8PZhTNvu7H9jIi3KVWbc6iU8+/uPpObmqAKdvYxSE9aa5pjHuxEVFMT7fyxDNDo/J2mniggM5KVeHdh86DTHLlxXPEucJiXGjeyP0WTisy/+kgGbJV1nfytLeS1AN++3d4gtHcVbwz9l1R87rGG2NqACcK7WxaqttlABvYL8Qma9u4DJb35H1Zpl+WnZB1SqVsrZEVlSZneAB/Dxp8uY/+tm+vdpyfT3hqLX65wAz/4M7eWRP1s14LM/P1sdaYCbVhpKNqdmtgomkWYNy/PxhH7cTcpg5Jg/SLqf9VBA5+WlZ+yMfjz3dlf2bDrDm33ncu3CHfcg5wl7N7qIryKPBuxE0VEwk4nc7AImvjifc8dvMe7DATRrV00GeGrjd+AwZ+d9tx2T0czrz7az6FnNWSm7s8neMzc4eOEWL3Vtir/ey+WOxqJRZNK6rUQE+PNWmxaycS9LeSSAZ5IDjoUFClxOT6H36oXMPLSDelGxrOv1LHNb96ZjyUp4Y5CvcrBnDFUiSzCmbXf2vTGR0e26sePqeR6bN5tfD++R5aP8VZuQAKgVF8czbVrx2579nLoZLym3Omt4uU9H/Hy9+WzhOufZV4W0blKdVs1q8P1PG7ifnCF5Pi7G6cxmgkMDmLtgNDElIxg9/FOO7j0vN1uljdnTdbGu9KUdxJrH3yv380q/GQgCfPvHuzRsVk2++sIN4Kld++rbNXz17Rq6d27EzPefxmDQywDPHcuziRS0tMDPnZ7SGpIO8yhXjLRuWokZ7/bhRnwKb41dTGpazkMBnX+gD9PnDadDz/r88vkmPnrrD3JzCjwDOU+lGPqPxs/OJ0ZsETvE8sdg9WvW6/EL8Gbm/BeoWL0kY5/7ifOn4i2ztJIZWqX/nc33bsiAprz0XFtGfrCYY+cTXLqi1KpYgl/efZIvV+/hp22HXbqiiHr4oEs7nmpcjwG/LuLkPZu7jIr/HTj54NnCAYK9fRhRtzmDqtYm1MePzMICTtxP5E5OFndzswjIL6JkSBhVokpQKTIGs2hm97VLzNqyjuMJ1sFXxRIw6a+W+apDYPXoN4kNDaXjlI/IynZsKaTmahIbFsrmOe+xds8xxn/1p0tXE4MgsOTncegEgUFDP8JUaJR1CC3z1cug46tfxlC1djnGPPuZA+hsYmvAauBWzJk6xzXJu90gCdfpiY4N57Nf3qZ0+RKMH/kNu7ee0HRN8cQtBWDok+15640n2LP/HO9M/pn8giLVmVpQ+OTZy6V9ewERpTXDVCeRVEBOqtulXU3efaMrFy/fZdyEpWRnFzwU0AWH+jPz2+GUq1yCz95fyvbVJyw6dhKjYGFKwPLENDU4r4nYeHvuv2s2VrqAQsrw8nIKmfjSApLvZjDh8ycJj7R+vtCNOSuYRJatOsq9+5m8Otwy26pkd1I5ff0uO09d5ZlOjQj29tHcFcW+DdSOfdzPzmFql47oRUEWbj+Xjt+B3P3DyvIyCwuYeXgHjf74muGblrLh+kWCvX1oX6oCb9RtwaD6TakYEc2N1GTeW7OUerMnMHjBvGIDnaN81k7Xqjl1y5Zh2rJVZOZJvkGhwepe6/sYgiDw9Z9/u2V1vbs1pULZEsydt9q+67Alb+XuNPJxurcnDKFOo8pMHfW9HOikb2qnbZ3cD0I76Ur1lSzPJmYTSXdSebX/TC6du8nMua/SplN9p2Vq0nsDZ2akvP7bou1M/2gRLZpW46tZr+Dn5+00U6vK8uzlUhwuRGvWVmqySssmLW+fx+rywajunDgdz5j3/nxooAsK8WPWD89SukI0k1/9xTXQPYA56qT7rx+zk96kBPCy0nOZ8tqv+Af4Mu7DgehtyOjCnAUoyiti/sI9VK8cS6sGFVSzlLqifLt6P8H+vgxqXVeuozJZkV1QyEebd1KzRAx9a9eQmYeq43cmFVDCoVdkNrMj4Tpj92yk9+rfaLxoHhXnf0KV6eNoN/dDnl74HQsO7eZ+dpYjjWIAnbR8Ib5+jOnejb0XL7P6yHHZpITTfVtZXd92jVm65QCJ9+WztZY85a4mLw7rwsnT19mx67T1HtU+oCIfp+vauzl9Brfll6/WsH39YW2z1X4uBy3RZHR7yEQJeLa0FWZtVmYubz71MRfO3GTanJdp3LKGx+asFuD9tXo/H0z5lXq1K/DN7NcIDvKXhSvPXZqtEuBz55aiBnJqY42DezZi9Oud2Xf4Ku9PXEZeftFDAZ2fvzfTvx5GXLlIJr/yC0d3X5LXnxLo7OfOoCUajS4Pmfyrx+xsogJ4Ny/f46vJK6nbtAJDX2mPdP2ccs8q6WTF5q1nSUhM47nBLe3MQovdXYy/z+4z13iqfQP89AbNXVFswLf+7CWOxifydpuWBHp7W8M0xu/AJeDZDqmY1YYT1EDOA6CziwijunUh2N+PqUtXOt2f2izfcz3aISDw08rtblldn+7NKREdxnc/rneaGFJOUtjAomzFWMZOfZpjBy7w42d/uQY6DZDzRJx0PWF5ZhO52fmMHv4ZN6/d4aOvX6darbIPDXibNh9j3Ac/U71qaX6c8waR4cGycNu58hl6Ml4n0zc6g5xTPpI6eWlIK15/vj3b91xg0rSVFBaZHgroDAY9Ez8fQqUaJZn55h+c2H/FeXwOnImOBKQ0wUxFPNWzySNkdioILwG8rauO8feKIwx6oS2Vqpe0AJ7CnFW+0cxFZhYu2keVijG0aFwRNZE5Gq87RFigH080l38jSI3dCSaYuWkHEQH+vNGqmcJctP2qAJ6KWeuIJ8jBz6w4ZDfnDJ5OZrdknA6gamwJnm3bij/27OfC7TsOHTVQN0OYvz+DOjZjzZ6jblmdlyDw3FOdOH7qGgcPOz6V58p8FUSRDz58lvy8Qia/8S0m1fE4CdBZRRXkPPGvU4vrAeBlZeTw9rBPyUjL5pPv3yQyOvShAW/7zlOMHP0tcbER/PTFSGLCQ+zh7kAPnCchpMCmBnCqaUv6y8hn2/P0wOas3niSaR+uoeghgQ5gxPs9qN+8EnPGL+fg9vPaQKe8hgvgKjKqHxLxFPQeLbNzBXjAdzPWkJmWy2vvPo4gWDu7ys6mUna3Zft57t3PZHBvyxilK3Z36todTl1LZHCbevatrZ3YjwT0zty5x/KTZxnasB6lQ6yNVWLOyv5Li6hkeWozsGqiBnwqQKc2TocI7/fqSXZ+AZ+s3qDJ6qTSr31T/Hy8WbByp1tW16ldfUpEh7Hg179VO6eTaWU2071vC2rVr8jc6YtITkp3ZnUaQCcTd7NvGsAnAz0py9MAvJSkDMY88xl+/j7M/PJVDF76hwa8w0cv8dqorwkLC2T+vFGUK+lwQ1JlxhpuVK7EFk8Jcray6HUC77/RjQG9G7Fk1RE++2ITZgkLV9t4U1UUQNf9iYZ07d+Yxd9sY8vKYwpd90AnEw1Qc6fjDvAeGbOzF0yrgFaXlJ8/2UCN+mXp2LMeyu1g1NidyWRmxaqj1K9VhsplojTzt7G7RdtOUDY6jJbVy8nT1gC+L3fsw2Q283bblk5MymPAA3UW547ZuQA6pfnaskplOtSqztcbt5Cek+vQ0QA9AzqGdmnJwTNXuHRL/klHS/4OVieYRYb0a8ONW/fYu1/uQKzF6gKD/Hh9TH9OHr7ExhX7ig90xXVJ0IijyvI0AO/65URmjPmJ2g0rMeq9QdbrDwd4p8/c4OURc/H29uLneW9So1Jpe9ZqACcFLyWQaV2XxZf0D1+dnulje9OtYy3mL9zDvG+3yXR0ChIhvw8Fq5NIlZpxvDq+J0d2X2Lhl5utz0dBXjwBOncApyUexnmkTsVOgKdmzq48xoWTt3hmRCe8vK1TzS7YnWASWbfpFPkFRfTu7Jh80PK723r0MvfTs+nfqo5Fz8XYHUBSVg7zDxylR42qVImKcGJHTvGUgKexHtYl23Ox3lX2K0l7TPeuJKSk2ldKKMukLHebetWIiwpn4brdTl8LU0rVSnHUrlGOP5fuUnUNUWN1Q1/sRkh4IJ9P+s1xvThAJ5WHdCp2C3gS2b7+MIt+2Ei/pzvSrEUNVR0t0QK8i5cSeO7lz8nNLeCbz1+jrtOL1j2rcxuumLjwN3gxffwTtGpWmTlfb+aXPxw7Tbsttwvz1dvHwNgPB5CanMWs0Yswm0WPgM7J9FSapiaT20MmHgDlI5+gcAd4oijyy2ebiCwRQte+DT1id9nZBezef5kOrariLehcNgyj2cy6g+dpWaMc4X5+TuH/P+reOsyJq3/cvmei6+677GKLuzsUirUFWqhQKtTd6NP2qXv71JW60ZbS4lCKFXd3hwV2l3X3ZCPz/pFkd5LMZLPQ76+8n+uaK8k5ZyQj93zsnKPku5u1cz819fXc27ePrFxZuwNvsPiEnlwUBuD0/O4FOgn6tm5J79Yt+frv9Zid59GXVgcwaVhvSiqq2LDnqFu9Uh/Yq8f0pb7eysrVe537Vp7N3QWQsIhgptx6Bev+2s2po1nefV09pAFGnprZxSQVy8Vf4HkkHn/93gLOn8nlmbduJzDI2KyEY5d41l3IKebehz+lrLyaLz96iCF9Oyq8lJpnyqpFZ8MDjXz4xg307p7KOx+tYPGy/W7HBBfvp5t273CS06L5+LkFVFfU+Q26BlHywfmZXqQIPR/y72l2ShRWMmltNg7syODI3vNMmT4YUZYYqqRSu7S71X8fITQkwK9AxbLtx9FpNIzr1d6tXinvDqC8zsQfew9zdad2pEWEN2nOggLwoBF6rsWHGavmo1OSJ8aOobiqirnbdilqdZ4SFhDAyF6dWbZ5P1YfMHEFJsaN7MWmbUeo9JhwxysCC2C3M3naFQQFB/DDJ0say1W0OjfQyUXtuJrKvfMXeJ7tZcCrN1t4+5kfiE2I5L7HJjX8L3n7psxZubjq8vPLuOv+jzl3Pp8P37qbsaN6KVsVSqaszXvxFNEG0aFBfP7OzbRpFctLbyxmxerGFKGGdv766TykVbt4ptwxhFUL9jgir75ELfggE5/w8pFa4i/0/hXY1Usmyq2FSPWO8cS8c2a8gxWLfthMXGIEPQe0xjMyC2CvN1NXXUxVVS7lZedY/fcqSkor6dslkryz28k/vZWCE1soOL6ZouNbKTy5jeLTuyg7d5ADu7Zw/NwFhndMob6sBJwTw8jFU7v7dtturHY703v18PlfXcAzZ1/AklfYJKgUt6EWjFDQ6jokJTK4fTpfr16PyeL4H/WFBdSXl7qtJ9/O8B4d0eu0/LV5n+rUiC7p1qUVUZEhrFq9VxluOB58i7WOsupsCipPcNWU/mxet5szJ8+5a3VqoPMUteRit8hqY5nNaqbcVkS+NZMCayYV9UXYrbJrqgQ8Xw+L3cbhPWdYPHsD190ygiQfvmCX1NQWYap1nHNPbQkagVdWVs19D3/GgcNneePFW5gyaZCXNdFcqS6/gKmikMT4cD5/52ZiokN4+oV5bN1xxus4muWn89Dq7nx0NNVVJj5//XdKarPIKTtIZsV+ssr2klt9nNKaLMy2WmUfXVPanNoIJwpldslGqS2fLNMxn+flX4GdFh219kryrecbRp31GbCw2di18QQVZTWMuqq7o71kp6q2gMLSY2Rd2EJW3nbKKzIxmcqx261oNEa27zzJsMG9iEvoTFRSV6JTuhPVojuRLboSntKZkPjWGMNi0OgDWLfzED3bpaGtyKN430ZK9m+iKuMo9UUFHikvjs/S2jpWHDvFxC4dCdbrVbU7V1nt4aPUHZWNCOyH+BzpQqV8+uBB1NXX8/u2nQ3HUJt1lrrMc6rbH96zA0XllRw+k+1Wr2TCDunfEYvFyo5dJ2T/z93cqjOXU1R2Ao0gMnrkOBKT4lg0ZzUF1acxW2uaDjT4mVysuKpkodCejWS3EamJI1wTiw0LhbZsbCrAc9u+fJ8ebX78dAlWq427HrrGUeBDuyurPE95ZabXLpSAV1tr5rEZX7Fl+zGee/IG7rtjrLNt86En2qA09xjxkWZmvnszQUF6Zvz3dw4ezvZuqzCEmr+g69w1hd5D0vnhs7mcyd2PZLMSbkwi3tiauMC2hGqisUlWcmtPUGA6h12yqUZLFUHnj1it2C315FrPUi+ZiNEk+2z+r8BOFDQk6FphkczU1ZcrN/LQ7qwWGxv/OsiAkR2xiZVkFe2iqjoXoyaEhOhupCUNJTG+JzExHYkOa01YSAv27M8lLDSQ7l3boTcGozMEozMGozOGoA8MxRgYRVBYAsExaezOrESr0TB+4nXE9LmCsPQeaA3B1Oaco2z/NurLir0OcfbugwQb9FzTob1XHXgAT/I2S1XHLfNR7r2PRq0uyGBgUp+eLN69j8raOq91lNYXBYEh3dqzae9xn8Odu8ynQX07svdABrW1ZoVjkZAkO2XVWUSFtCY0IIGrJg6lurKWfRvPE2FIoMyU49iPP+arJ+j8kEqplEAhlAgxBr1dh8GuJ1ITj0EIoNqukDuID41SfjzOdJQFP69j9MQBTWp3niOdePYq8WxnMlv4z3+/Y+nyndx35ziefnxyQ7pVU9DzTD7u27sLv/30NvUWK48++RsnTuUr7ttXWVMy9YErKC4sY/6sv0kN70V0YCpB+ggMmkAMmkCCdZHEGFNJNXbCjo2iuvONK8vTRS4WdE6pkSoQ7BJxmlSMYpDPtv+ez84uESJGUGuvbPjzTaWjbP/7KAajjrROwcSFpJMY2Y2woCT0uiDH2GEevov9h7IA6NQusaFMLefu6Pl86swWurVMRLSL6ANCCExIJbxLP4LS2lF1/CD2GvmAlHAoN5+zJaVcme7wCypFReUiqERc/RqzzJf56pRh6e0INBhYtHOv8kbw3kfr5DjCggMdM4Y1EYUNCQ6gTasE9uw9peo4rzdVotXoMeiCAeg/rAs7Nh2h3mwhQBuGZLNglbxB6SV+gM5utXotdVI1wUKYx7ZsBIlh1EnVqv1jvcxZFR/hH9+vAmD8xAHOg1DW7pRE7dy6zqXNZufVN2bzy29ruWnyUF5/wTENaOP6jYta74qBfVvzyw9vU1BYyiNPzibrgsx98Q+Zr3GxofQa1JY5Py4hRJPceC8oBCVEQUOcoSXVtjKsUv1Fgc5usXotLqmRqggRZCOd+5B/N/WkqcmO3d7yjhmHzKZ6Bg3p6dVU6SarqKgjr6CcjukJXqaWp9jsEseyCuiSGt/kccvfsutPnqVfWkpDFzJfbS9WmjR7nX/ryq6dKK+pZU/GOff9+tASu7VJBeDw6Sy3OqVE4o7tWgBw7LijrSoYnec5tXUCMfER7N58RLldU0EJFXGBTUkkux27oolqV/7ezNy94oJy9mw9xthrBzYmujchfiVdy+Tjz5fw2ZdLGT+6Nx++fQ+BAQbVtnIZP6ozrz83iROnznHTtGcoKq5W3J+S+docueKa7gAsnvu374ZK0dcm2srFE2yedf5sQy7/XlKxZKfKXkagGOpernTAzjJLvZXjB7IZMLgPBZUnyS09SEVNDpa6KlUT7OSpfNq29B4wU0mOnsunXXIMoiBhqamiNu885Yd3UnPuJKHp3dAYvVNT1p8+i16joW+yw1/QpHbnT8qJvL1nRNgH+Ia0T2fDsRPYFF4igsLpEezQuVUylTV1nMst8m7gAb32bR3T1h07IQOjx0vEoAvGajNjNlfSo086APu2OUY1qbNWIAgatHbluUAbxIdWpwY5lxgJooYKr3Y1UgUBQrDv/XruUyUVZdXCbSSmxNChQwtnuYrvTumcN6HdueSnX9bw+ttzGNC3Pd/PfJTwcN8m2u03DeSZx8Zx4FAW0259mrLySp/t1Y7Ll2bqksGjO3N4zzmKcyspqjmLJKmvY5dsFNafJ1gTgdYqm5BcqSuZfD0/EoXtFitBQghVUpl/M8412eL/QOySlTzrOXSCAaPdCRDPP6dyU58/mUdqqwTSovsQEhCPua6CvNJDnM/dTG7BPoqKj1FaeoaK8ixqKvLIysonLiYEi7m6Yak3VVFfV4m5qoTa0jxq885RlXWSE8eOoNdpEbMOUXH6ANbaGoISWhLZfSD6iGjAOyp7LL8QgHax0ar/17snhr8agY86j21EBQQRFx7GofPuGlpTkhIbRWaeAujcjsNxIyUlRFFeUUNVVZ13G9fDIohEBKdSUn2WxJQQamtMnD17nnJTHmWmHCIMiX5rRJ7SFOgAQomghirKpWJMlmrMUh2l9gLMUh3BkuzFqvBQ+zvIwF5nr5FOPZRH11GS5mp3AIv/3M5j//maFimxfPvpI0RHhSq2u/f2odw5bRAr1hzmmRfnU1Pjfn0uRqtTM2ED9FrS0uM5tCODuOB0bFYzmRX7Ka7KoMZShtlchdlWS7WpiCJzFpm1hxEEDdE638EDufgDOpcEWIOQkCiwZ2OSany29R797v+BWCULgWIoYWJUs2/87LNFGAP1RMeFIxVrCQmIA62IVbBistdilcxYpXps5hrM5nIyMk6h0w1HY71Afl4pkuAcZFEUEXRaRJ0BUW9ANBjIr3D4kroMHYMly+HUtYuOOTvVbouaegvZ5RW0i1GHHUBgp04I+kaNRrAJDYN6Kom/AQrXgbVPTADgRK53V6/AFq0QRZ3i+smxkZw4l+vz2B37lkiIjSSvoLTJtgH6MLQhbUltncTZM5mU1V3AqAkiztAKrah3A41PE7YZCaMu0Qo6YqUkqqmgjGJEu0iAEEy4GI0oKI2Q6dy3VqVOQYryyyjKL6NT99bMm71esU1EaBqiqHUEbXxMiSgXwS65DegJsH3ncR6d8RWfvH8fP335OB99sYS1Gw4CEBcTyiP3XMGQAW1ZvHw/n3z+N5IEUbEd0Wgc99rFmKm+pG3HJDQakZOHstGIOhJC2mOyVlFjKqbcnIfVakYAtJKWAE0ICbpWGMRA59pOs9aHVtcc0AGIgki8LZlKbQVFdt/38b8CO71gJFzTdK4S4H4j2mwU5DgiajHxoRQXVDTMN6vR6AnUG73mmLVKDgi17zIUIbPIbQRjwG1+2QrJCEBsRChk5eOvnCsppUVEmFe5HGjGxOSGkY2V6t3KLyIXL9UJ23MF3lqaISrOsU2F7caEh7Kp7ISiyeUpkRHBlBSrm0dyE0inDSApKZEL5wuID2nnMAE9fLCKomJG+aPVuUQjaAkjijAACUTNJdzmNrtjlGLXfWi3gagh4+QFWrRU9+8G66MaRtX2FDkA/YHhvgNneOCxmbzx8q3875Xp3PvoZ2Tm2njj+UmktYjip1+38tPsrQ3tQ8KSmvUXmwPEpLQoAM7LIrxGbQhGl4vHsweUSl7dPymioCFSjCWSWI5bd6u3+z87gqakmSFml5jrHLlSBmMTfh+n1DtHz9Xpmr7hzc62BpW2asGGalM9gXr/jsd7m+o9JZojgQZHgKSqzuR+nE30oNDrtZjN3knUSqLX6/xuC2AM0GOq8yPy+v9S1IZ48tVOQaorawkMNjaaex5+u4sVtSDakaPnuXn6u+Tml/LGS7fxwF3DSW8dx6tvLXUD3f+1BAY7FIKaKlMTLZsvzdXqmiv/7uxiFyH1zodNb/APLhaL46bV69zVKqW3Wb2rrcLY9r6kzmIhUCUa64/448NrCoJBBkfErtbZK8Wv/QoCeq2Wej9fPHqdFkszbki9UYfZ5D8c//8ktTUmRz/Z/5f7rDXzwUcLSIiLYPLVPdm680xDrwh/RCndRC7+BCeMgY773FTr/312ucj/72DngpzF7N9Dp3NCzgU9lyiZDi4gWpqpdQbq9dRZLv6hlpuyksoVUSt3iatrWHOgK0kSFqsNnZ/+KovV6peG3NC+3uq3Bv6viIqZ6Y8EBhkx1ckeePH/9lHSaESm3zqKN169HavVRkVVHYP6teHNV64jId7bhaIkdq3vY1Qzu+Xienm5oPdPitiMe+uitv9/unVf0kztCQCNhvAoRwi+rLS6wV/nKXKQhYQ4fAmV1d5qt+eMTmHBjrblNcoquqfPzSXxocEUVFYrVzYhSj67psCmJLmlDl9mYmSE+3F6HLPntiuqawkPCULyw4deWVlLaGhg0w2dUlpcSUS0cgRRcfYvHyJezP1yKft1tXMBwPVCEB2f8cnR5OUUI3kCRDYL2cWIZ4DCJXfeNppHHpjAnn2nmXLb20y5/Uu++mkj3buk8P5bN3pZLv9XUphbDkBsUkTzVvw/Bpk/cvlrdh5aR2Ss4+EpL/EPLmFh6rDzlAgn7CqcsLP7eXYSw0LJr/I+HjeNTeFe9BWNba7kl1cAkBQZ3qz1yqpqiAj1ncPlkoqqWsLD1XPVPB/wsuJKx5DmzZFL0LaU5B+DpEwEQSA5NZb8C95dCD1FyYKQlzUVnBAEgZuuH8qdt49m9dp9zHjuO7Kyi6i32JizYBcvvrWEpIRwXnvpWiIjvK+jP5Fgf6PFQEOAMLFFlN/r/F+Lvxrhvw47Qe1Nq3KTtumYRHlJNeWlzpwaFdXcNZ9si6RIqmvMlFfUKrZzRWIBWiZEApCpNP+CrL38e0JoCHEhwRzJK1BdR3k7vkGnpN0panzO+/RYfh5Wm40eLVObtc3zeUW0To7zeSyOdQWyc4pJSY5GVNA+lB6YM6dzaNE6AYPRafIomMuCK1KqZEp73BvNBZff7ZuRdgKQ3qkF4ZEhHNh9yu911DQ2X20CAw189tEDPPXEFHbuPcnbH87zWmfvwUw++nINPbqk8MNXd9CjWwuf+2jKlPUS15zNzmuRcbqA2hozPQe3bWI9x7kXFK6B2zPvUf9/acr+I7ATBGGsIAgnBUE4IwjCf/1YwbtMp35y5CekXbcUTh5yH8HBy5SQSVpaNJnZJU0ekiRC26RoiipqKKtuTMpUM11d0jfVkSy5O+tCw3a8tu1pSvqp0fkyZz23UWM2cyQ7h35tG8fva8oclkQ4mZVLWmIMBpVosl3T+BBmnM/DaNCTmOD+Vld7kI8dPItWq6FdZw8AX4L25i/AFNvJHzKFYxD8TFEZNLI7drudHRsO+9VeTXxpVDqdlnfevJM+Pdvy5nt/8NjT31BRqfzCXrx8P/c8/jNl5bW8+dJ1pLdxf3mp7UdZ62yckF5JrFYb+7acpt/wDo4C1znV+nhpNVOaA7xmtb2Yg5GLIAgaYCYwDugITBUEwa/xq1W1OhWJjA2hRetYjh2+4FWn5CPRiAJtWsWSkVXkl6reKS2ekzmF3tv22LQcXsPTW1JWW8eJkmKPNspAa67p6rVvH1ds28nT9GiZSkRQkDdgVbZz/HwuGlGkYyv33Cy7Bq+74/hpx3nv0jmtcTtq51UUOXrgLAC9BnZo8HW5idr1l19LhTZNAa9J0MnFl0ap4K8TRYEx1w7k0N4zlFU6rQtXcMLDX9eUCetWLnthtEyLZ9Z3MxjYrwNvvj+XBUu3KR+7TDIvlPKfF+dRVWPis/dvZoJzKDSl/Sppd80xZbevO0Z0fBjdB7Txq32DAiMDky/tDhwQ8wWypuoV12lWa2XpC5yRJOmsJEn1wO/AxGZtwVOrU3pLaDQMGdsVgK1rjioGJzwvWLv0eEKCjew96BhXzDOhWC6x4cG0Toxi18lsFf+a9+/wACOj0luz9MgJ1R4W7mbvxfnoVCO0ru05/87CvXvRa7Vc16+Xe0Mf4Nt1LAOb3c6gbu2c2xRU93fmbC6VVbX07tkWSRTUHxDnw15WWsWBXScZeXXfxjp/TVk/gKe2eB+Px/qXoNWNGN+HlJZxzP1htV/toRFkar46Oei6d23FrO9mEBMdxmPPfMOSv3b4vZ/i0mruf/JXDh69wIyHR/Pog6OaPjZ/tDsPU3bTmqOUFFZy4/0jHPVq2p3StWgG8KARap6Ll2i1TQY9/wnYJQFyu/KCs8yn+K3Vyf7A0PFdyTiRy4XzTi1K5Q3lenP17tkSu11izyHvQRRdPSdc0r+jw9ex7fh5R72oDDi5TOzSAb1Wy7zDjlE9XJBwQagp0Emi+qLUVum7XE7m5bPvXCZTB/dXbesVja2p5fCZbAb1aNdkRNYG7Nx7kgH9OijWSxrBS8Nes3w3rdolk+6vKatmBjXTClBdT77fZmp1giBw60NXc/5MLhvWHnCW+9bqlEx8NdANHtiRzz96gMKiCqbe+R6btx2VreO+2BUWgNKyGp5+ZT6/L9rNddf05KknxjZEatW0O3mvI3/EYrGx8KctdO/fmvbdffsIXaLonvKUiw0m+evauLitN18EQbhXEIQ9giDsqZdkkVE/tbq2nZPo2COVtcsOum1X0oqKJqykERgxrD1HT+ZS6SPb2+7UZK7s3Y68kkrO5Ln799RMWKNWy10De7M3O4eTRcVeoHNfx71MDWhKbdQg57U/5306a/MW2ibEM75HV68UFCXwSSKs33+UHulpJMUopBOI7n67zduPEhcbTrcuLWX/T1D224kif/+1i9oaE5OmjWg0ZT2uLahoVp7XVaNpXuqIn6Br2Lcn6Dzk+umjSO/Ygh8/XerXKBtyUQKK65wJgsBjD03kk/fvJ+tCEfc++hlFxRVucPNHXNCTJPjyhw3M+n0bV43uypef3EacM4vBX3O2Ke3urwV7KC2q5OFXJ6HRin5pd02as672zYFeM9r+E7DLAVJkv5OdZW4iSdI3kiT1liSpt15wZp43ZXPL/sgN942gurKOlQv2qJqw8gvZLj2eli2iWbHuSMPD6MuEHdAhlaW7jjnemgqA84zC3tKnO3EhwXywSbmrjqu9Z8LwxeTQNQd4i/fs41RuPv+ZOB5RELzWUdrOkk17sdvtTBrRp2GgBEn0zkMEWLPpILW1Zq65qp+qKStpxAZgVJbXsHLJdsZPHuRIQ5H77lxQ8QSepzmrBj0l8KmW+wk6uci0uqTUWO5/Zgpb1x5g9Qpn/0s/tTrFc+Ss0+m0vPXa7dw2bSRzF23h9vs/oriiym/AKYkLej/M3srTr8wnNiaEmR/eQuuWMV7HY9eKXmUNx6gCPABTXT2fvrKY1u0TufG+EcoH0gxzVhV6agFLhbqmrMV/Ana7gbaCILQUBEEP3AQsbXItnQLxVbS69C7JDB7dmaVzdlBb4+xrqRUVI0aulJOrRnfFZLawbusJ7zYNpoDjob5mYEdEUWDpzsYJOyQlTch5WEF6PXcO6MXmjPPszs5RNV+b7BmhkdwX0WOR79sPMxbALkm8v3wlreNimdinp2KgwnP9nNIydhw9w7VX9EXjoyeAJArUmi2s2XSAK0f2JDDQ4FXv9dCIIrO/W4moEbnjcZkrV8VcVU1FUTN75eBTg1xToFPajwx0Or2Wlz66F4vFxjsv/9Lwv+Tt/QGdZ118XARfff4wo0f25KOZi/nfh/MwqwwzJYmC+6LxXjzFroHtB87x8DO/Ybfb+fT9mxkxtL3XcXkCrylz1qVs7Nh8ivXLDjD1gSto3y3FW7uTi1Iqis5PWMnhppLK4o9b7JJhJ0mSFXgYWAUcB+ZKknTU50qy1BNV0Dl/a3UaHn9zMsUFFcyftcVLq5M0otfFiYwIYsyVnfl74zGqzRafOU5GnZapV/Rgy7FzXHAm5rpv31ure3TYACICA/ho8zZZuZ+gk8OtKfGAnhxUXp8y7W7locMczMziueuuIcRobGznA3yzV20lOTaScYO6u9W7orJyLe+PRVsIDjIyedIgtwfPbdsyyORmFzPv57VcO20E3fum+9TuwAN4TWl5aqIEOTXQNdFb4um3p9OlVxveeWEWRQXl/wjounRO4+fv/0ObVon89+Wf+HneeoUXUyPc/BE18J3NKeHBp2ZzLrOYl5+dwD3ThyII/gGvKXN25v/+oiivnBe/uI3YxHDfqSgy4LmZtApanj/w8redS/4Rn50kScslSUqXJKm1JElv+rteU6BDo+GGe4fTsl0Cn72xlNpqda3OFZiQNAJTru2NViMye+GuhnqXCSvX6gAmDe5MZEgg361ytHUFJtS0unZx0dzStzu/7z/E4fwCd43LH9ApiQ+Nzq3eY5tqwJMkief+mE90SDBPXDNW0Xfn+f/W7DnCqew87pk8EnxFWoGjp7PZseckt0y9wis/T027++bjReRkFvLsu3d5Jxn7Ap68XcN/EJte5OKxvpvpqgY6p0x/dAJXTRnMdx8tZu2KPV7nojkBCVfd+LF9+ObzR6mpMXHbvR+wauP+xrY+AOel3fkAoSf0CsqrefiF31m68iDTbuzPay9dS4BRd8nAq66s4+VHf0Wv1/LqN3cQFGL0C3igoOUpaHq+FjdRWN9T/p8FKNxEEPwCXfvuLbjpgRGsX36QnRtPOt4mblEk0euiRkcFM+nqHqzbeoILRRU+34oGo5bpY/uwLyOH/ZneA/95anVancib14ymss7Eh5u2KgYlFEHnqcn5CzfPOn+BJ8Ch7Av8unU704cPpnfrlu7HI9uGa7ELEt8sXke7FgmM7t/FrY1cu3Odz+9+XU10VCg3TBnil3Znqqvn7RdmkdIyjsdfudk7WOEP8Dw1PV+i0F7QaJV9dEqgEzXcdPcY7n3yOpYv2Mr3X/zpLHfX6tTECxiigFYj8p8Zk3n9pVs5ePgstz74IedkeZ2e96o/UGuqnfy62Gx23vtqNZ9+s5aBfVrzxSe3kpIUecnAyzpbxOsz5pCUFsUb39+pDjxfQQuX+AGti23/78DOJT5Al9Aiipe/uI2ivApmvvmnm/mqFIF1aXX33zMcjSjw7a9bZHXeWp0kwq1X9iI2PJhPlzrayrU6T9NV0sDDwwbQJSGOF1atobze7KyTZG2c3+WakxLkPETSSI51/QGf7Lsa8AAQ4O2ly8guLuXjO6a5+9cUNFeAP7fv40RmLk/eejVanUZVu5NEgT2HMti47Qj33DmWaFlnf1cwyG1djQiiyN4dJ/j5q7+YOHU4U+8Z6xt4sqCFl29NDjK1RX4qPLfhC3SiBkQNdz0+iUdfnMrav3bx9ouznHXNM1/l5dFRoXz1+SNMnTKM2XM38ODTX1JZVdtQL4eUL7g1pJpoHYuSKIFPDr15y/fx5KvziAgL5KtPb2XwgDZu9RcDvIO7zvLWf/6gdYdE3vnlXsKjgpV9ePJnXcmsdYkLYk0tTlHchof8a5qdL9CFRQbx+nd3IIgCLz70M1W1zuGTPMxX1wVyXZyunZMZNawjsxftIreksiECqyTRYUFMH9OHv/efYn9mrmKnf7lm1yUxjnsG9mbewSP8fSrDWa8MugbReAPKtZ58cRNPrU/0gKXHdyXgubZZbTbzxK+/kRQRznOTr/Eyzz1z++ySxP9+WUqL+GhuvWpo4zlW8d29//lCdFotjz08SdF8dcu7cwLvqw8XsXb5bh554SaunNBPHXjgpeUpgk9FFNt7mq0KoNNoNTz99nTuemISf83bzMtPfovVYrsk0HXs0IJff3yK9unJPPvaLN7/YhFWm90NSEqAUsulk4sLevJFLkrQA9h7KIu7nvyZ7JxS3njpOqZPG+Tmx7sY4G1ff5xXHv2VpNRoPvz9AZLSot2Bp2bWekDPr5w8pzSn/UVm8f0DomTHazRExobw9k/3EBUbyrP3/khOZonjhMlApxSUMATqefqJceQWlLv56hztvbW6Z24egSgKfLxki6xdo1Yn1+xCgwx8NPkqCqqqeWvdRjegKILOU5tr2L7je2xgMIMTUxmcmErLsAiiA4KIMARQazZRVFNFQVUFu86fZWPGSQ7nZmN3bcMuNG7P9d3u+D+CHbdPkBBsAnvOn+ebdRu5f9QItp04zV/7HHmKAriNYuw69q1HT7F+71EeunE0q7YdILfQY1AE0TG6u4hAdn4pP81Zw723j2XV6j1s3XLU7boIdteQ42LDwJCSIPDaU98RGR3Kix/dC4LA30t2OIY712ocw3q7IGSzu2thztGD/QVeg6j1ifUwW6Njw3ntiwfp3iedWV/+xVcfLnRAThQvCnIAN04ZyhOPTKK4pJLbH/qY02dz3eo9vysBrfEYG7963v/ywWjlwBOt7vtovCZQWFzFQ8/N4an7RzP9lkF06JDIW+8to6KiDsEmYdeKiFY7kkZoGD7e8em4npJWdIzUrBXBakfSaNi77QxP3/09r39+G5/Mf5gPn53Htr+d8UqbzfGsW62N5941jLuLAc6xJJsDPLf1fYjQ3OTIf0LCDHHSwISbHT9koGvdIZFXvrqdoFAjLz30C4f3nnfz07nMV/mN5TJfn3h0NNeM6cZjL/7O/hM5DVqdHHTggN0Vvdvy3n1X8/GSzfy4fo9XUMItmVMDX02dyMCWqdz861wOFOT7BzoPyImCwJjUttzVuTd94hyDBxTX1XCirIjiuhpKzXUY6uqJDg6hRXgUHeIcE3sXVVcya9dWZu3aQnFNlfNPCIqfDdM4yj4Fm4BO1DD30QfpkJjIhHc+IsPpJxLsgA2vSbqTIiNY9v5T7D95nnte+6Zh8uyG+WSdn4JdQqfTMHvmDCIjQrjptv9RXlIlm5bPMc2i2zR9TugFBuh57+tH6NmvPV+/t4BZn//ZMFUh4DFfhcIIur6GTW8qzw68Iq5DR/fk2XfvRKfX8r8XZvH3sl2XpM0FBhp46fmbuXJEDzZvO8qL//uVispa/yHXhM0VFJXis95zJG7RI6PFNfy7q93EMd145K4rqKyq4+U3lnDsRG5Dndgww5jk8ak+mXZMfBjPv38T7bumsHzuLr5560/HlApqk+0oTbjU1CC6CoBbmfPZXkmSeis1//dgl3JbY4FGw9BxXXnirSlUVtTy8iO/cu5UviLowNt8HTK0Ha+9MInfFu3ii183uZmvnlpdWIiRea/cRkF5Nbd8PAcLMnCJ7qCTNHDPwD78Z+RgXlm9jl8PHHS2lZBHXtVAJ2kkNILA9W278FD3/rQICSerqpw5pw6wMfcsx8sK3frUms815mJHB4UwpGU613bpzZXpnTFZLcw7sJMP160iv6qiEXTg+K4APPkctvGhYax4ZgbFldVMevcTTHX1DbCTt3ctt4waxMt3Tea5z39n0dpdzu0oA69tajy/fvUke/af5vH/fI1ktTvauh4KFeDptSLPvjWdsRMH8PfSHfzvmR+pqzU3D3pNia/IrKghPDKE+/97PRNuHMrxQ+d4+clvyT5fcEmga90qgbdfn05aizg+/eZPfpm7HkmS3ExWl/gDOSVtTwl2ShObgzv45NCTz3ch2CTatIzljacnEhsdwsxv1rF42f5LAp5Wq+G2h0cyZfpgcs6X8NlLCzm8+5yjna95Y5s5cbn8mq7M/Pjygp1RGyJ1jR1HRHAqsfER3Pf8BAaP6czR/Zm8MWMOpeXOIZb8AF1aqxhmfnQLZzMLufOJzzDV1WC11WO1m7DazVhtZux2K5IgISEx68OXGdqvJ+PvnsGJrBwEgwHRaEAwGBGMBsSgALThYYgGI0PS0/h66iRWnDjFY38ud+7ff9CNTGnNs32H0TY8mr1ZZ/li2xrWW8qwq5xzOezk0joqlnv6DWdqzwHY7Ha+3baBzzavodpsUtTyPIFnzs5GFPWMGjaUnx+4lxX7D/HQdz8j2Ly1O9d6oiTw8/MP0KV1CpOf/JDM3CJ32IEb8K6/eiDPz7iB72et4ouv/8JiqqKmIpf6ukoQBIz6UEKN8ei0AW7Aw27ntvvGc+8T11KYV8oHL/7CtnUHnXUq0GtCrPZ6KusLqbM69h2ojyDUEItGdKbJOBOFp0wfxfRHJhAQaOC371fx7SeLL9k/d/11Q3jikUlUVdfw5POfcehEcdOQ8wCcT1PWKb40u8r8M4haPaER7v1Wm4KeYJMICTbywmPjGdinNdt2Z/DOB8sbzFrHeu7Qw2qnzlRKbU0hdeZybBZH10ydYCBAH06wLor+g7sz47VriUuMYOvfR/n+3eXkZTm7ZTYxWbY/YrNbKTVnU2Ut41TppssLdqHGOKl9whCuv20sDz19KxqNyG/fbGD+T5uxunqj+wAdgE0DWn0tP3z9CAa9hgk3PkF5jQ2NIQjRaEDUO+FlNCLptAiCyNTRvXh66kje/mMNv23ag9VuwWY1OxabGZvVhK22Fkt1OW3SWrDyk/e5UF7OjX/Mx2S1+QadDHIRhgDeGjya8WntyKgo4d19G/nj0y8QjQbCrh6sel7UYCc5J+RJCY/ivyOu4rqufcipKOOJhbPZfPZUk8Cr2rodQa8ntHtv7hsxnBeuncD7S5fz2Yo1isBzLfGRYSz933/ILSrjpv9+gtViU9TuHPuReGnGDVx39UBmPP0Zc//4g5CQRAL0EQg2O7V1JdRU5xEV2gaDLtgLeF17tuGZ126lVbtkNqzcy8w3fycnyzktpN0DdD7AZ7XXU1iXQZAh2jGdIRJV9cWYLJXEhrQjICCA8VMGc8sD40lMiWHr2gN89t58MjPyLglywcEBvPjcVEYN787m7Ud54OEnKSuvISa1l9u6apBTApyvnjJB0eqwy9m/Cq3GQHyn4Y27cpvcvWnoTb6qBw/cPpzKqjpe/9+fHDpywQt49vp6ikqOYa2vJSQokUBdGFqtY8Y1i7WW2tpSqmrzCNCGkBzbkcm3DeHGu4ai1Wn4e8Fe5n27kfwLznmIldwSfpixkmTnQtURDJpAIozJrD3/+eUFu5Yp6dLefXuIjAll5+ZjfPX2SvIulNKQXtIE6Gos5dTWZfLjt6/QuWNrHvzvLE5kloFGdPPTOdZzmK+dW8fz7ZPXs/V4Jo//sNSnny40yMAfd9xIiEHP6Cef5kJpKQGdOqCJcHWmVgfdxFYdeKn/FYToDXx0YDPfHtuFTZIoX/w3YoCBsPFDABAVEozNZ91hZ5ebqk6RbAI9klL5dNKttImOY/a+bby2YgmVtc7BDhSAV7VlO6JOT0ivXgg2gY9vuZnJfXvzwLezWLHbGbBQAd4V3Tvy9TN389uqrbz29YIm/XffvPcgHdKTuf+RDzly2OGMd5m0DuDlExfewVnuPv2gViMw9Y7R3PnwNej0Otav2MPc71dxZF+G8z81rd2V1l1wzBtrdM7p6vTJRbUQuXrylUyZNp6omDCO7M/gm08Ws3vrMdwmy7kI0PXq0YZXXphGTEw4n337J7/O3UDu+R2IGj0xab0ar6cLaCqQUx/Ky/s+CFSBnWiTyNm/Co3OQHzn4QBuU2s2BT058Nq0jOW1/1xDYnw4v83byazZW7GZbc72dgoLDyNKItFR7RFdbhQPs9Zut1FQchSdJoCYoDQiooK5+f4RjJnUE41Ww/a1x1i7eB97N51snBSrGZOjV9UXU1FfQFJoF/QGHX8eefPygl2vXr2krz7+jR++WsCe7UeJDGvjqJBBDlAEndleR3HJQX7+6X16dW/NS+8tZePuM24BCXDv/xoVEcTs527GbLVx84e/UWYyNWpoHn46rV7Dj7dcR9fEeG6bs4A9uTmYCy5Qe+Y0oYMGIgTqHTelh9kaaNTx5qArubZ1J/YX5fDf7Ss5WV6E4GxXtmANmkAD4Qqanahx3BimszlINvXXuRx+BkHPf4aP574BI8itKOf+uT+x/0Kmm//OBbyqrU7Y9XTAzqDVMufhB+iSnMxNH3/BgTOZjVM1KgDv6alXc8+EK3jxi7nM/9sxvpoa8AINdn78dAbJSfE88MjnHDua2dAeq52CwoPERLRDJxic5R7zrdrtRMWEcdMdVzLxxmGEhAaSk1nIhpV72bpmPycOn3ef1ctDciqPEBecTnBQMF16taXngPYMHtWD1u2Tsdls7NhwmDk//c3eHc4+0yranOO7b9DpjDoevPcqpt00guycYl5461eOHM9EEgXyz+1A1OqJSe3VbMj56r3iMnwCYxywU5piM3fvSjQ6I3FdhyN6BCqUwOcLeoE6LY/dPZKrRnXhVEYBb767jMysEix1VRTk7ScloT+iqPHpy7Pa6snK30FqTD80og7BZiMyOpiJ0wYy9tpehEUGUVVRx851xzi4I4ODOzMoyqtQPQcN/0UQ0EdXMnhEP0ZdNYiUVjFEx4VdXrCLCk2W+qRNp8yUh8VWR0xoW0XQed5cdq1Iva2CV1+YxKgRfXnj4+Ws3HzMZ0BCp9fwzX+up01iFLd+/Dtn8kq8kofly7uTxjKxSwceX/IXy06eQtJI2GwWqrZuIahfL8SwEDfQSRqJDpExzLxiAmkhEXxyaCufH96GJDbehaJGonT+WkSjgciJA1XPi+msshkLuEHQBT3JJtAzKY2vpkwnPiScN1cv5ett693NWrtA9WaHGRvSq1dDhDYyOIilTzxGoMHAte9+woXCUtWAhUYS+Papu+nfpS23v/QFB46flwUf3IFXX11KsN7MwjmfExoSwH0Pf8aZU47/JdgkivIPExHeCr0moKHM8ekNvcAgIyPH9Wb46F70GdQRnV6LzWbn/Olczp/Jpby0ivKSKux2OwajnoAgI5EJBtq0aUNSixi0Oi1Wq40j+zNYvWwbc+fNRWdJUNTkXPec/H7zpc2lt03itZdupW3rRP5YtJmPv15KXb2loT7/rOMFE53Wyy/IeeUoyn5GhAaREhdFQnQ4QQFGgowGAsIiqTNbqDHVU1pVR05xBQWlVVjtdvL2rETUGxs0O5fIwecLekpa3pB+bXj6wTEEBOj59seNzP59LaUFJ0hM7tdk8EKSJLJytpIU3QMdjcntgs2GRivSo39rho/pQt9h7QkNd8xeV1pcRc75YnLPF1NZXovFbMVisREcGkBYZBAxCeG06Zjo6K0BZGUUsnXtMW6+b8TlBbuwwESpf7t7yCs7QlBQDKGBCYranOvTFYwICDHw6guT6NMjjZfe+JKl608REB4Pem1jWxno0MCbd41jbJ/2zPjuT9YeOeMTdP8ZOZh7Bvbhw41b+WLnLmz2eswFuZjPnkWXkoSxQ1sv0F3XphNvDxpNRb2Jxzb/yc7izIb/6TJVRY2dkrnrEAMMRFwzCEGppwRgyvDusgYgv0RK0AvVBfLhhGmM79CN5ccP8tiC2VTXOfsR2wWqNu1A1OsJ7t2rEWI2gVaxMSx54jFKq6uZ8sHnlJZXqwYswgICmP/aY4QFB3LTfz8lO6+4QbuDRuBRb6E4az/de17BjzNnEBRg4IlnvmX/gQxs9XUU5x8lLq4bGkn0Sn/wAp7jTwIQHBJA9z7ptO+cRodOqSSlxhIeGUJYhGO2M0u9FZOpngtZuVw4X8iFrFIO7TnNoX1nqK0xUW0qwmyrJSqkpWO7fkDOrUymzd01fQy33zKK8opqXn1nDlt3HfcKQuSd245Gqye6lcOMtcssCc9tQyPc9DotfTu1pmeHlnRrl0qX1i0IDQrAH7Ha7JzNK2Hnzl3sO57BsSojReWOoePlGqAS9JTMW0/oRQYH8MzDYxjUpw2Hjmbzn6feorw6hCBjlLO9MvSqKi9QWZ1LUmyvxn17TNgt2GwIgkBam1i69m1FqzZxJKZGkdgiiqAQI8YA5+TcdfVUlNVQWlhFxvFcDhw4wv49R6kpcsysturwZWbGhgUmSl1aT6ao/CQpiQMQRResvM1WF+jCo4J4543raZUWw7szV7JoxVbKS85hNpWjDwxDFxyBLiQMMSAAwRiAoNPy+OQh3Da6t2I+nduor6LE7X268fy4kfy8ZTv/nfUzlspSbNVVaKOiMLRrhSY81A10Wp3Ai/1HcHuHXmzPz+ThTUsotThuLDnkXFI6b60DdhMGAaARve0PT9jZFLp1uC6XEvTu6XMFL145kXMlRdz523ecKXQ4+Ks27kTU6Qnq28vdRLUJ9EpLY87D93MyN5+pH39BXW29F/BcD0rL2BjmvvoIlbUmpj77KWXl1YoR2uqCc9jrTXTo1Icv3n+IpPgonn3pexbMn4fREE5oUAIgeyjUoOc4CY3f7d7nTKMRkSQJu3MbdfXllNfmEBPSBq3OAQmLtY6iytNEhbTCYAxtPJcKc0X40ua6d23FC/+9iZZp8fy5chcffLGIcufkTJ4BiIIMB+wi27gCFLJr6AE5o17HqP5dGD2gK4O6tSPIaMBmt3MyM5dDp7M4k1tAdkEJeSXlVNbUUVNnRh+VQKBeR6BRT3RoIMlRYaTEhNMhOY5OKVGEh4YAcCyrgI0HMli+8wQ5xRXO8+3Yty/o+dLyxgzvxKN3jcBo0PHZF7/x+/zdBBji0Gh0bsCz2sxUVl6gqjKHhNgeGDWNcw4LctgpgE9JtFoNVo/glMVmIrvsAAkRXTDqQ1l94LXLC3YBhnCpRUJ/4iI7YzSEKWpz0NjftVVaDG+8fC0R4YG89N5Sth8432C62m1WTKZyzKZy6k0VWKwmbBYT9067llcev4cfF6/ila9nO7apERyDUwoSkiBht1mw15uYMKgf377wX/7cup17Z36BEBaCJiocbUQE6MVGH51TIwsNMPD1qIkMSEjlm6M7effgemySpAg5lxZXumAjuvBAwq9sdFgDaGVt6840wk4JdPIyT+i5gDcgJZ2vp9yBXqPlnt9/YFPGSao370EMDCSwi6ODvyfwruzUiW/vuYONx05y71c/YK23qQYsurVuwS8vPsiZ7Hymv/QltXVmL+BJNjs1hZmYqoqIjUvixy9eoXvX9rz34S/8sWBPQ761Zy6eq6zh3Hnm1fmZZ1dVV0hlXR4GbRASEhZ7HWFBKQQZoxR9cuAbcqEhgTz0wDVMmTSInLwS3vxwLtv2nnRbz9MvV3BuF1p9IBEtOsuCYO6Q69q2BVNG9WfcoG6EBAaQX1LOur1HWb/3GLuOZ1BndvdNyoEZGOceoJCbpYV719KpQ3uunjiJYZ1a0bVlAqIosPf0Bf7cdpRVu09ittguCXqRwQE8ds9IRg5uz6kz2Tz/wsccPHIencZhVlpN1VitZoKN0USEt3JEaRVeZoIH6DzB54/UmEoorD6FQRfMkXOLLi/YBQfGSf27PoCgdeQ9KUHO9XvsqM488fCVVFabeP5/izl2tsCnjw5g4pBOvHTbaFbtOcYTX8zBYrMgiRISdkdgQiuCICAYdFzRoxNf3HI9B3LzuH3uQsxYvdNLZKBrHRnBd6OvIzEolGe2rWBJ1hHAW5tzQU6uwcnBpiRy2HmKHHRNQS8hKIJfbr6f9Jh4Xlq+kB93bm4MXMiSj+XAmzqgP+9OvYFlew/wyPe/IFklVeCN6N6RL/5zB3uPn+O+N77FbLYoaniSuR5rXSVGg4F3X32Q0SN6sm7jQV59YzY1VQ6NyMvP45Ho2vi9eQ+B3W7FZKlCQEBvDEOUjaHnC3Ly76JOw7UTBnL/PeMJDQlkzoKNzPxhuZtvDrxB52myNtzfAui0Gq4e0pNp4wfTuXUKNSYzq3ceYsGGXew+ftaZfNz0//OEnZK4wBUbHsw1fTswoW8nUuMiqKgxsWTrEf7YcJC8kspLgt6gnq2Ycd8o4qJDWbFmP5/PXEphUQVa0YjBEIJGIQiidl29wNcMsdut1Ngq2H7wMutBERqcJPXr/qDiDeYCXWCIgUceHMXYkZ3ZeyiTVz9YRml1XZOgu2pgR165fTTbTpzn8e//xCzZ3ExXx3qOpXfLJL67+TpOF5dw6x/zqbKZfYJuYHIKX426FrPNyn0bFrK/9EKTkPMEnMYH8GrP5KnW2W2N58oFO0/oyYEXpDfw2YTbGdu+K7N2b+b5ZQuwWSWfwHPl4M3ZuoP//jrXZw7eNQN68v7DN7Pt8GkefOt7LPVWn0nHALdOHsZj900gL7+UF1/7hcNHziuYsL6h11imfB6V5iNxlCt301K6ByVRoG/vdGY8dh1tWyeye/9p3vtsIafO57mt3xzIBRr13HDlAO6YOJy4yDBOZ+fz66otLN28lxqT2Tsi2wTwAvyAnaenRLBBrzZJ3DikO1d0c2RArNxzgh9X7OZcXqkX9PwFXoBWyy2T+3HTpD7Y7XZ+m7uTuQt3U+8awAOFZGS8r6vSNVUDoNIo5ZJGZM3WFy4z2IUkSX17PgQoa3N9e7fkyUfHEB0ZzC/zd/DD/O3Y7VKToBs/oAOvTB/N7lPZPPr9EupsjaBzrNO4dE6J46dbJpNfVc3UOXMpra9TBZ2kkZjUuiPvDRnH2coS7lo3n1xThRvofEFODjid884REEgKjCDGEEqwzkiQ1kDlhSKq6+soN1VzviyfOqvDjLF6DGHrAp8n9ORant0uICDw7IgJPDzoSlaeOMSDc3+mzmzxCbynxo/j0bFX8t2aDby+YKlP4F03pA/vPDiVTfuP88g7P1Ev0/BAOfG4e8c03nrhVuJiIpj9+3q++nY59SbH/1R9+9s9H4qm71mv6KbCOG+e310jlDx431UM6NuBnLwSPvpyCWu2HHLbRnMhd/O4wdw1cTgRocFsP3KarxevZdvhU14j0Hj9Bx/AC4hvqm+s+285+ASbQ9u7dURPpgzqSoBBx9/7TvHtnzs4k1ty0dBLjArlwenDGD6wHcUl1fw8ZxvLVx1qyM1zrCPT5HyAz1HmW9NTerFdfrALTZb69HbATg65hPgw7rtrOMMHt+N8djFvf7qSo2fzG28ylTw6SYRrB3fm+Wmj2H06m0e/W0KtzaoKug5Jsfx0y2QqzWam/jaXvLoqn6B7tPtAnuw1mO35mdy3aQFVFjOiRlLU5pQgpxNtaASR7hFpDIltR7eIVFoFxxGodZ/DQS52yU5WRSHHCjPZfP4wmzMPUVpX5QY+X9CTa3nTew7j9bGTOZyXzW2/fkNRZbVXLp4ceK9edy13Dh/C5yvX8N6S5T6Bd/2wfrxx7/XsPHqGh97+gbq6+iaBFxRoYMZ9E5l8zUAu5Bbz6cylrF1/QMVvp/AQ2P2AnY8Rg72+iwJdOqdx1/QxDBnYibLyan78bQ1/LN6M2ekQby7oDAYd08YP5u5JI4gIDWbT/uN8vmA1+zMao/VNaXMXCzul3Du3VBNZfYTRyLThPZk6rDvBAQZW7z3FV0u2cb6g7KKh1zU9kftvHUrXjsnkFVTw+7ydrPj7CPVO7d+xjjL0fJUpiedLbe2m5y8v2IWEJku9+z8COA42PCyQm6b05bqJPbHZ7Py2cBe/LtmNxWrzAp1nzwhJhNtH9+axyUPYcvQcM37606dG1zYhip9vvZ5ai4Wpc+aSU1OpCjpBC28MGsW0dj1YkHGYZ3ctx+a84r60OTnk2obEM7lFP0YndCVEF0C93cqR8izOVOeQUZ1PgamMKouJWpsZa3Y5IfpAIgJCaB2ZRNuoFLrFtyU2KAK7ZGdv7in+OLyBvzP2YrFZG8Anh56aljeqdRe+nDydoupKbvzpC7JKSn0C7+0brueWwQP44M+VfLp8tU/gTRrUi7cfuIkjGRe4741vqayqVczDA3eztk/X1jz96GTatkpk/6GzfP7FUg4cOuvThPX3IXDdW75+C1qRIYM6c/NNw+ndoy1l5dXMnr+BOQs2UeMMDjQXcqJG5Nor+vDITWOJiwxj0/7jfDp/FQfPZjUeh4pG1xztLiBBGXaeGh14w08JfGEGA7eM6Mm04T0x6rUs3X6Ur5fuoNCVjoRv6Cl1O+vfLY3bbxhAl/ZJlJTVsGjpXpatOER5Ra3bdRS9orHNY5L8uq5b/9zlB7tegx6lRXIkU67tzZhRndFpNaxYd4RvZ2+muLJxBFdPs9XxvTGP7rHrHOklK/ee5PnfVlIv2VVB1yY+ilm3TsFit3PznLlkVpWrgk6vF/l4+NWMT2vHzMPbeP/QRlWzVQlyw2I7cEebYXQKa4HZZmF94SE2Fh5hT+lp6mz1DeasXKpOFbj9tjrB1T46lWFpPbi63SBSwuIoratk7uGNzNq/igpzDVZJo6jleQKve2Iqv970AFa7nVt+/orDOTmqwBPtIu9PvZEb+vflvSXL+Xyl7360o3p24pPHbyeroJh7XvuG/KJyb+CBl5anEUUmjunLQ3ddRVRkCIeOnOOX39axcfNhbDZ7k767pkTJnE1KjGLc6N5MmjiQhLgI8grK+HXeehYu235JwYeRfTvz5K1X0Sopjv2nzvPeb8vYffKsbN/un76+u4lCv1ljc2Anz6GzK5e7oBcZEMDdo/tyw5Bu2OwSc9bt58eVu6lxzurXXC0PoEeHZG6d3I++PVpSb7GyadspVq4+wv4DmdhkI+I0HEszAxXy+W83/P3fywt2LVLTpRWrNtCpfSLmeisr1x/ljyW7ySooB/Bptjq+C+gNGl69Yyyje6Xz+6YDvLNoA1ZBahJ0VrudW/6Yz9mKUlXQBRt1fD96Mn3iknljz1p+PLXby2yVa3NyyA2Nbc99bUeRHppIdm0xC7O3sjJvHyZ7tdd50Gvc78zKk+6ws3j0DrfZNfRP6cSUTlcwslVvquvr+OXA3/y4byXlTk1ETctzAa9NVBy/TX2I8IBA7vjtO7acOa0KPI1d5MNpU5nct7dfAwf07dCar/5zJ3Wmeh5463uOZVxwnC+l5GPctbwAvY6J4/oxbcpwUpKiKSmtYvWavaxcvZejx7OQJMkv89VTXPdS61YJDOzXgZEju9OlYxoAO/acZN6SLWzcdgSr8zm4GMh1S0/l6enX0Kt9KzJyCvjgt7/4e98Rt/Zu6/oCnMqIJ57tjInesFMCnWd5U+BzQS8pPJQHxg/gqt4dqKw18d3ynczdcBCbxdHgYqCXlhDBxDHdGTuiEyHBRkrLati4+STbd2dw8HA2ZrP1kl5oAQF6Vi564vKCXe/evaU585azesMxVm44SplnYqYvbQ6IDA/kwwcn0Ck1no+XbGbWxr2K80fITddZt0yh3m7nlt/nca6yDK+BN52giwwK4OexU0gPj2HG1j/5K/t4A+jUtDmdaCM1KIanOl5Fv+h0smuK+OncWtYUHEAUGiNSnnAD0Ms0vPKTjZOvWBXy7OTwSwtvwb29JzK6TT9Kait4f8s8lp7YhsX5VNhtgpeW5/LjxQSGM3vqg7SOiuX+uT+x8qjjwXQFLtSA98HSFXy64m+fwGubHM83T91NVFgwT388m793HnYbPADUtTxwPOtDB3Ri/JW9GTqgMwaDjvKKGvbsP83+/WfIOJvPucx8iosrvc4PgFYjEh0TRkpSNO3TU2jfPoUe3VoTFxsOwPFT2axcu4/V6/eTV1zesN7FQC4pNpIZt17FVYN6UFhWyWfzVjJv4y5sdnvzIOfHYACOfTd+94SdP6Dz/C00nHvvMhf02ifE8PiEIQzokEpWYRmfLtzCuv1nmu3Pc+zHUWYQRfr1bMWVQzswsHcrDAYd5norR47ncPJUPidP5ZOZVUxBURV1Kv2gjQYdLVIiSU2Jol16PD17pBIZEUREWNDlBbvImFSp06CHvbrnyCEHKIKuc+t43rnvasICjTw7aznrj531Cbr2STH8OG0yZpuNab/P47wP0CWGhfDL2OtJDArl/k0L2ZR3VhV0Lm0uWCtwT9uRTEsbTJ2tnu/OrmJZ7lbskqNeDji9gukqb1N2ogiL0mQYTpED0AW+tlGteHbIbXSNb8PB/DO8uOZHTpQ4NERfwAvVB/HzjQ/QIymVJxfP4Y+9zqHsVYD3/s03cn2/vnzy12o+XLZSFXgA0SHBfDnjTnqkpzHzj1XMnLcayS2B2B144A09gJBAI0MHdKJvz3T69kwnIS6i8f9brFRV11FVXYfdLqHXaTEYdESEB6ORReny8ks5fDyT7btPsG33cQplM84pji8nO/1qoAsLCeT+66/k5nGDsNnsfP/ner5bup4aS717e5VPwCfgJA0YtFraJsbTISmB5KhIEsLDiQ0LJcCgJ0CvQ2cwUmexYrJYqKgzkVdZRX5lNRnFJZwoKKakxuEK8gt2CtqeJ/QGpacyY9JQ2iRGc/BsLh/N28Shs3mXBD0Ag0ZD947J9O3Rku6dkmmVGoNO13hyqqpN1NSasVrtWK02AgP0BAcbCXR2HwMwmS0cOp7D3oOZPDh9+OUFu+CIFKn7FY/5BTnHb0cg4sYR3ZkxZSgF5dXM+PFPTuYUKXYBc63bJSWe726+lur6em79Y36Dj04JdC0jI5g97gaCtHru2jiXvUU5bqDzNFt1oo1OYcm80nUKacGxLMvZxVdnVlBjc2gcLoDJAaek2cml7ESRap0cgp7QExAY13YIjw+8iWB9AJ/tWMxP+1ZitgteZq3cj2fUGPhu8j0Mb9OBl5Yv5NutG50nXBl4/7vxeqYO7M/Xf6/nrYV/+gSeQaPl9TuncN3wvmw+cIKnPppNRaWzn6aKluf2G/eHQrBLxESFktYijpapccTFhBMaEkhIsLNLmMWKud5KcUklBUVl5OaXcupMDmUVNd5pJxcJOZ1eyy3jB3Pf5FEEBxpZuGEXn8xdSUFFpXt7NcipDgIAwUYD/dPbMMC5tEuMR+sc8sxut1NUWUVBRSXVZjN19fWgN2DUagnQ64gICCAhNASjbLatgqpq9mbnsPPcBbafzyKztFzdnPUTehpRYFKfTjwwfiAxYUGs2XeazxZtIbuw3G/ogTr4BJuETquhZWo0KQkRxEaHEBcTSoBRh06nQafVUFNbT1WNiYrKOrJzy8jMLuFCfhkW5429deFTlxnsIlOkbiMf94IcKGtzIcEGnrtlFKN7pbPhcAYv/LaKCrO5oZ0S6Hq3TOKrmyZRUlvLrX/Mb4i6KoEuPTqK2eNuRABuW/c7J6scmpEcdHKz1SDaubvNFdzZZgTF5gr+d2w+B8odQwZ5Qs5ds/M9GGGpT9hpZd+9wWexa4gwhvLMkDsY1boPB/PP8OSKr8iqLHecV6eW5+nH06Bl5qTpXN2xB++sWcbHG1e79bbwDFq8Nvlapg8dzM+btvLS7wtBoacFNH6/cXh/XrzjWkorq3nq49nsOXa2wax1tQPf0HO0U75P5eWqE0Z7lCsNoKk0GonrvhQ0AlcP6cljN48jKSaSTfuP8+7sZZzMyXNv3wzISRoIDQxgTLfOjO3RlSHt22HQaTHVW9hz7hx7z53n6IVcjufmklNahsWjv6gxydtnFxkQQJuYKDrGxtA5Po5+LZKJd/aRPV1Uwurjp1l1/DQnC4t9wq4p6AXoddw2rCfTR/VGp9WwcNNhvv1rJ2UVtY2nVQV6jjJvbc+xL5VrLAOlz+GvRIFt8/9z+cGuy5jHVSHn+O3Q5vp1aMGr08cQERLAzGXb+GnDHlydCZQ69QMMSU/js+uv4UJFBbfNXUBBXXUD6DwH3ewaF8fPY6+nzmrhlnVzOF9TAniDzmW2JgQE8mb3G+kZ2YoVuXuYeXoRNTaTKuQ8AadmygKUHC9WrbNIcm3OG3xWu9hg2o5qNZDnh01HkiSeX/M9a8/ub4jYKgFPkDR8ePUtXN+tL59vXsObq5eqAk+wCTx7zdU8eOUVzN+xm6d/+QO7xe4GPHDX9Dq1TObjR26lRVwUPyzZwCdzVjiGP6dp6LmVeYjSw+FrvtXGDSqXK/nlRvTpxOM3j6NdaiJHzmbz3uxlbDt22r19E5BzM1O1AkPap3P9wL6M7tYZo05HVkkJqw4e5u8jx9h37jxmW9PDkxuSm+5BIdghLSKcoa3SGN2uDb2Tk9CIIkfzC1h04BhLDx+nwmRWhZ2nT8/TtI0ODOS+cf25bmAX6i1WZq/dxy9/72uI3IJ/0Gtoq/K3Pa+z6jXWwo7fLzfYRaVIncc94X6jySAHEBxs4JHrBjNlSFcy8kp4/ueVHM8rbDBbQRl0V3Vrx/8mjOFUUTF3zFtESX2tKuh6JSby0+gplJpruWXtHHJN5V4RVzno+ken8laPmwjQ6PngxCLWFuzyC3JywCmlnLik+HiJap2b6Sq5tDmt81N0a2Oxa0gKjeWtUY/QKbYlP+1fxQdb5jaYtUp+PMku8uaYG5jeZwjf7dzAi8sW+gTeI1eO4ulrxrP64BEe/v4X6k0Wn8ALNOh55uZruHn0IE5m5fHyF3M5cCoTwXn7qUIP3MDnErXTqDp/QxOAA3fIDeyWzqNTx9E9PZXzeUV8MncFf+086NZ31V/ISRoIMRqZMqAPtw8fTMvYGMqqa1i8dx/zd+7mUPYF8Hh+veYT9hC/YGdz32iUIYDxHdKZ3LUTnePjMFmsLD1ynF927edUYclFQy81MpyHrx7E6J7pVNSYmLVqD3M3HKCuTtZdzAN6jjL5sSr/XzUAKs0HLWkEds5+8vKCXVB0itTpqicAb8hJIozt044nbxhGeHAAszfs5/MVWzFbbD6HUpc0cHPvbrw87gp2ZmVz38KlDX1dlUDXPzmFH668jrzaKqat/Y2i+ipV0OlEG9e36M+MDleRXVvMq0dmkVlbgF5jU4WcGuBc9UYxgISAJMJ04RjFQIwaI2W55dRaaqk2V5FbdYHiGkd01uJxZRug1gT0wMCj/acxteuVbM8+wozlX1FiMin68VypKS+NvI77B1zBL3u28MzSeUg2VIF32+CBvD7lOnZlnOPuL76nusbUADzw9uMJdhjetQOv3TOFhOgI/liznQ9mLaOq2n1QAFdblyiCzVcqlkKMxxOCaiORDO7RnoduHE2P9DTyisv4fMFqFm7e7ZzU2mNdPyAXExrCXVcM45ahAwkJMLL77Dl+2riZlYcOUy8zTT3h1lTfWEOKb9h5BybcwdchOpppPboxsXMHAnQ6Nmec5+stu9idlXPR0GufEMPDVw9kSKdWlFfXMXvNPn5ff4AaU72XT8/zGJWucVNpKEom7WUJu44THLCTQ65760QeuW4wPdokcSQzn9d/X8OJPEcQAnyD7pFhA3h4aH/WnM7g0aV/NYxeogS6QSkt+P7K6zhfVcat6+ZQaqlRjbgaNRL/7XQNk1L6saXoGG8f+5Vam9kLdJ6Q8wRcmC6cDiFd6RLWhbSgtkToo5s8T7WWGrLKznIw7wAH8vaQUXKaetlT6wt6ci3vqvRhPD9sOvnVpTy49BNOlRb6BN4zw67hsSFj+H3/Dp5cNMcx9YMK8Cb06M7Ht03jRE4ed878lqKyqkZQqfjxAg16HpsyltvGDaGqpo6vF6zlt5VbsdQ3vsbVwAfqWp1cmprARv6gaLQiYwd2546Jw+nUKpmcolK+XryWBZt2UW+1XRTk4sLCeGjsSG4c1A+dRsNf+w/y9dr1HLpwQXYMcn+j7+P1FEOLZPVKvOHm7qNrrIvQG7mxexem9+lBdFAQe7NzmblpO1vPZl009Lokx3HPmP4M69KKqloT8zcd5vf1+ykqr/F4iSmDr7He519UvMa7f77cYBeTIrWfNANwXNCurRK4c3xfhnZpRWF5NV+t2M6iXUexS5Ki2QqNkNPoRF69eiRTunVm/qEjPL9qDVbR7g462aCbw1LT+GbUtWRUlHDLujlUWGtVQReu1/JOj6n0i07n53Pr+OnccnSaRqjJtTklyAVpBHpE9GVw9DDaBHcEoMJSyrnqo+SZMik0ZVNuKcZkq8Nsr6P0TC0BukBCDGEkhqaSHJZGq6gOpEWmIwoipbXFbDi7hrUZqyiszm+AmxL0PH15XePa8u6Yx9CLOh7+6zN2XDgDuAcu5MB7fNA4nh5xFfMP7uLxhb+5jZjiCbzhHdrz9Z23U1Jdw+2ffcPZ3EIv4IE3+NonJ/DUtGsY2r09ucVlfLNgLYvX78ZsbjR/lPvGNn2PKcLDQ4uLiQhh8sh+3DB6AInREWTkFPD9nxtYvGVPQ0DAH9DJ9xUVHsyDY0cxbcgANKLI/J27+WLNOs4XFzuPQRlw/yTslPvGCrLv3uVGUcOUrp25t19vEsNC2ZOVwycbtrEr88JFQ69TYhy3j+rFqO5tsdsl/t53igUbD7P/TI7CC8yzW6Dq33MTjzEy2PPjZQa7wJgUqcsNTzGsayumXdmTbq0Sqagx8eOa3czZcgCTxeqmzYFyxNVo1PLxlKsY3qYVn23ZwSfbtuOa7lAJdMNTW/L1qEmcKi/m1nVzqLLVqaaWxAcE8mnv22kVHMe7xxfwd8FOv7Q5vWjFKAYwInYMV8SOJUgbTLE5j31lGzhWuYd8UyZGsfFhlkvu0XKvsnpJS4ghjM7xvenX4gq6JvRBFDXsubCNuYd+41xZhiL0PLU8i11DQkg0n4x/muTQGJ5Z9Q1/nd4PqAPvkQFjeHbkNSw8tJtHF8z2CbyuKcn8dN89aEWRO7/4jv1nHB3e1fx4DXVA/w5teHLqVXRvm0ppZTW/rdjKvDU7KCipaPDpueSS+sYKjvHkhvbswDXDejKyTxd0Wg3bDp/ip+Wb2HDwOFJDTwp8fnpqcwGBeu4eOZz7rhyOUadjwa49fLLqb7JLS53H4g05vzr+qwzhb0j1odnZvM0798Rhb/C5yvQaDdd37sQDA/sRHxLMhjNn+WDtlkvy6SWFh3LL8J5c07cDIYFGTucU8+e2o6zec8qt763b3/bzOts9rvG+72ZcXrBr3b6TtH/fXkIDjWQXlfPr+n0s2XmUOmcUylObA2/QxYQH8dVNE2kfG8PLq9bx++HDPkE3Iq0lX410gO6WdXOo9gG6tOAwvuh7J+G6IF449Av7y483gM6XNhekERgZN45RseMJ1AZztGIXW4v/4lzNMQyieya4QQF4OUcrvMrqPfx1QcZ4hrW+iivTryVIH8Ke7G38euAnciqzsdi1PoEHEKAL5YOxT9Itvg2vb/iVPw6v94rUyoH3UP/RPD9qQpPAA0gNj+LXB+4jISKcJ2fNYdneA265eKAMO9dnn3atuPOq4Yzq0xm73c6uYxks27SPTftOUFjqODee8PMlrnkdwoMDGdgtnaE9OzCiTyfCggMpqahi6ea9zFmznXMFjSk/zYWcoBW4YWBfnrxmHLFhofy1/yDvLlvO2SLHNt1SnTz24fldEWzNhZ3C9Jue8FMCnyf0jKKGW3t254GBfQk2GFh46CifrNtGYXWN45o2ATx5mQt6ARotY3u2Y8rgrnROjcdul9ifkcPmQ2fZduQ8Z3JLvLbhj0giGHQa0uIj+f3FWy8v2PXo2VN6/avZLN9znJ0ns7A672A1bc5V5vreLjGGb6ZOIkiv5/Elf7Hh/Hm/NLqTZUXctv53nxpdu9AoZva9E52g4ZmD33KyKrtJ0OlFK51Du3Njyq1EGeI4VrGbNQVzKa0/1fCfPeGmU9DTLxytdPtt9XjVy8Gn0YZxZfq1jGl3PQatkb9OLGLeodlUO1M6rHbRy6x1AU8UjLw56hGGt+zJB1vn8f3e5f4B7/AeHpn3i6oPDyDSGMx3d99B39atvAcQAC8tT+kzNSaaCUN6MmFwL9ISYgA4m1PA7qNnOZ2Vx+msfC4UlFBeXUuNc2IhQRAIMOiIiwwjKTaSFvHRdG6TQqc2KbRNjkMURcoqq9mw/zjLtu5n+5FTWJy9XHx17fLllxvUri0vXj+RDkmJ7D57jjcX/8ne8+ed9eqQ8wk4P4GnT/OGnaefrkHkAJRrdX5AL1xv4IGB/bi1V3esNjvfbdvNd9v3UG+2ebT3+PQBPXBEcMf0bMeVPdqSnuS4xiWVNRzNLOD4+QJO5xSTV1pFXkkl1bVmrM75R3RaDaGBBqLDgmiVEEXrxCg6tYyne+tE7HaJQKP+8oJdUFwLqc3UJxp+K0HO9dsTdiPTW/HupHFUmkzcs3AJJ4uKfYJuUEoLfhg9mZNlRdy6/nefGl3HsBhm9r0Tm2TnqQNfcb6mwA10crPVpc2F6wxMazGdHhEDKDBlsyTnO3LrDgDugFOCm1FwB2DW0aqG7/WSd2xdDj8X+Az6KK7vdg9DW42jqKaAz7d9wLHCw4pantyPZ0fPK8PvZ1z6AGbuXMzMnUt8Au/B/lfywqiJzD2wk8cX/qYapQUwCFrevelGJvftzfwdu3lu9jzqzVY34IGylif/LtihQ2oi/Tu3ZUDntnRPTyM8uHHSFgCLc7w5ndbbW11cXsWRs9kcOJ3JloMnOXI2G5vg22fmD+RSoiJ5fsoExnXvSmZxCW8t+ZPlBw856/2AnBxeKrCLCwmla2ILOick0SIiiuSISOJDwgjQ6QnQ6dFqtZisFuqsFsrMdeRUV5JTXcmpsmKOlBRwuqwEq2T3BqAC+PyBXmpoGE8NH8LY9m25UF7Bu2s2s+r4ab9NW3mZ10CiYUEMaJ9K77YpdEiJpVV8FKJnIrhdwmqzode5PxcWm42M3BJ2nc5m18ksZj543f8N7ARBuB54BegA9JUkaY8/6wXGpUhtp87wCTmvTw08OKQfjw4fyKG8fB5YtJSC6hqfoBuYnMIPoydzrrKMqWtn+9ToOobF8GXfuzDZLTy5/0uK6h29KNRApxetpAd3YHra/QRrw1hbOJddJQuwSVZVyHnCraHc2T7zSDVmBci5RA5AF/hc0EuN6s5dfZ8iNiSRJcfmMffQr9RZvf14cuDZJC3PDb2HSR2G+gW8xweN5ekRVzN73zaeWvyHIvCg0Y/3+NjRPDl+LPvPZXLv1z9SVFrZUI/Hw+ALevLvMeEhtE1JICEqnLDgAMKCAhEEAbPFitliobC0ktziUrILSikoc5i+vnxjqpADRb/cA6Ov4N4rR2C32/ls9Rq+XbexIQnYE3R+Q06UiAgIZHjbDgxt3Y6hbdqRGOroB2yX7BRUVZJTUUZeZTnV9SZqLfUIwYEYtToCNToijYEkBYeSFBSK0Tmvi8lqYXdhDpsvnGdTzjmOlzrMajf4ucCnoO2pQa9fUhIvXDmCDrExbD+fxVurNjTLnycvA2/wgaOHRouYcBIiQ0iIDCXIoEev06DVaKgxmamsNVNWXce5/FIyi8ocaUHOa3Xok/8jn50gCB1wZDx9DfzHX9gFxKVIbabN8IIceGtzAIEBOt6aMIaxHdqy+Mhxnl/9NybJKmvvDbreiUn8MvZ6MqvKmLb2N8p9RF3bh0bzVb+7MdstzNj/BcX1jvw2OejkZqtBtDE+4VrGxU+ipD6P37M+ocTsmG3KBToX5OSAUwtMuCTziPcwUC6RQ1ANenqNket7PMqw1leRUXKCdze+QUGN44F3mbWefjyrXcvzwxzA+2T7Qr7e/adP4P1nyFXMGDaOn/ds4ZklcxUTj6EReGO7dOHj226mus7E/d/8xL5zmV5mrau90qdL1Pw48nK16GVzYAcoanNX9+rOi1MmEh8exqLde3lr6TLyK5wwvRjIiRJGrY5xHbsyuXtvhrVuj1bUUFpbw5ZzJ9mVdZZDeVkczc+h1uI98oehZZJXmQC0DI2kc2Qc3aMTGZiQRvsIpxugopRFZ46xKOMo2VUVPqHXlKanEQRu6tqFx4cOJNRgYM7eQ3y8fhtV5qZ7Y8i372voeLf/JWvnGX2Vi12EIx/9HwcoBEHYQHNgF58itb51hhfklD5bxUXy2fVXkxYZwbsbNvP9nn2NN5cK6DrFxvL7+JsoqK3ipjWzKbOq59GlBYfxbb97EQR4bN/nTYIuSCNyR9o9dI8YwN7SDazM+wKLZPYbcgYV7Q7g3JEaxXKLh7bnAp8Lep5aXpek4dzd7xlMljr+t/FVThafc7TzAbyXht/HNe0H89bG3/jpwDpAPUr77PAJPDJ4NDM3r+ENla5l0Ai89vEJfHfPHSREhPPG/KXM2rjF/Y2v9CCoaHi+ylziTxqHv5BrmxDHKzdcy+D26RzOvsCL8xaq+uX8hVxyeCTT+w5maq8BRAYGkVNRyqIje/nr2EEO5WVhlySEpnpQKMDO7f85IRUXEMwVya25Jq0j/eNbALDhwllmHdvHxgvn3IMXKtDz5c97dMgApvXoRlltHR+u28rCg0cbX2BuKS4KZSranlzUAKg0OJCkgaPvX4awa3X7jIYDVPuc0KU9r4wfSZ3FwmNLlrPzwoUmQZceHcUf46dSY63n+tW/UFhfqdozIj4gkO/730uw1sjj+2eSa3JMZagGumh9MA+1eYKkgJasyPuV3aULAIc25wk5X4BT0/DOHqlVLDfL+8LKwOcLerGhbXlsyOuEGiP4fNsH7Mje0uDHUwKeXdLx5qhHGNW6D8+s/oZFxx1DPqkB780xN3BHn6G8t245H65f2STwQgOMfHzLzVzZpTNLdu/j+d/mU11jamgDNAk9zzpf0hTwmoJcaGAAT1w1htuGDaLaZOb9v1bwy5Zt2HHdf+rdxgA3uLk+O8Ql8ujwK7mmYw8kJFYcP8RPezaz/fwZUJh1TlSJxAIYWqnDzq4QqJBsAvGBIdzYpivT0nsQGxjMmfISZh7cwZKMY9jl3bKaCb1OMTG8fOUV9ExO5FBuPm+sXM/BnHxlwCmUyffh2c6XKGl5lwQ7QRDWAPEKVc9LkrTE2WYDTcBOEIR7gXsBdKERvdo89KLXAcvN1leuGsmEzh3Yk53D40v+Ir+2pknQpYSHsfCam7Ha7dy4ZjY5dWWOKoVO/WE6Dd/2v5fkwCie3P8lJzyiri7QuQIR8cYwHm/7HCHaUH7P+phzNTtUtTkXzAw+TFgl/92Zw3VeZfV4aHUK4JNDTw68EEM49w96k9bRHfl65yesy1jtE3hg4KNxT9E7qT0PLP2YjZnHVXtaSHaRD66axk09+vPy8oV8s32DF/CgMQgh2AQEQeChUVfw5Pix5JVX8Mj3v7Dfada62jp21vh//TVnlaTJPDYFN4qgFbhxUD+enjiesMBAZm/dzvt/raSs1qF1+63NyT5TI6J5bszVTOjUkypzHbP2bOGHnZvIqyp30+CU4CaoTL1pVIGd3eZNeU/4aSUN41Lb80Cn/nSIjOVcZSnv7dnMX+dONpq3PgIZcugJsroJHdvz9IghxIUEs/jQMd5fu4UiZ6qKq33D/1L5Lt+PvyK/fsfevcw0O2NsopR8870AaINCQOc4WkkD3ZLieXfSWFLCw/h86w5m7tiFXZIaAhEA1tpKx+CYMtBFhwSzeOo9hBkCuG7hV5wpK0IUG8ejE0U7WlFyDNGkkfh0xL30j2/PE5u+YG/hEXRO0OlEO3rRis4VwBBtJAVF8WzfVwnUBfHD2TcoMh9zA50a5OSAc7XRixFEBfQiTN+RCGMHjJp4dJowtEIIVpsZU305pvoyCitPUlh+hNzS/RRXOoaPkoPPBT0l4IFDy6u3a9Fp9Nw38E26Jvbl212fs/r0X17AkwctdJogvp34Ikmhsdwy7y2OFeepjpaCJPLVtXdydccePDz/Zxbs3wuArarOMfSTq5O/DHhoNPRu357Pp99CQng4Hy1byder1zcM9+1q79iQ+33jz0Ngt9Rjl/m45A+CqDMgGnWKdZIG+rVtzYtTJtClRQo7Tmfw0oJFHM/NddY3H3KhxgAeHzaauwYMw2Kz8c2O9Xy9fR2VFtlQSB6AU4Ob4KGsGVsnuv2WlPLr8IafHHySTWBUchue7D6UDpGx7C64wOs71nGwON8begrAs1VXQ70zBcXZLkir58Fhg7l7yEAsNhsz12xi1pad1ANaQ5BzXdn/8rzGfvacaPwPNqy11Q1sOPP5q5cX7LQhYVJ4j/4gQnifwWhCgwnU6ZhxxSCm9elOfmUVT/65kt25OY4/JAOdpJEoW7GqsbO3IBEWHMzytz8gLT6BCS89xd4zxxFEEASpYRFFCVFwLG/fMYPbR13Lf394h983LkYjSGgEOxrR+em8ohpBokVMAl8/+SNGvZFZeW9Saj7VLNAZBQsaIYCk4HEkBY8m0tgXUdBilyxU1Z+iznoBi60Cq72SylItBl0YQcYYokM7EmCIBKCiJpOTOSs4lr2IsuqzTULPE3haUcc9A1+jR9JAvt/9BStP/akIPFfkNiIghh+vfQVJkrhx7hvkVVd5mbPgAJ5O0PHLTQ/SP7U1d835ntXHjlK1aQdIAkg0JgHLvof1HUio0cj/brqea3r24Gh2Dk//8jtHsnNUfTqe4JOLYG+ETsXRfdjrze4NnHW6sAiCW7f3glzb+DienXwNIzt3JLesjDcX/8nSfQdwjURyMaC7vnsfXho7icjAIP44sJN31i2jsK4xaVwOOU/AeYJNSTxhpySeAJSDTw49wS5yfesu/KfHUGICgpl7+hBv7txAudnkE3ply1chuDK3XRB0/q2WCYm8+cB9jB3Qn5zCIt7+YRZrLBok/NfwPEWweZuupsJcqk46034EKNm8+v8sGnst8BkQA5QDByRJGtPUesbEFCnt3kaf3ZDWqbw49gpSIsL4de8BPty0lWqrc5YnD9B5mq46nciv466ne0wid66bx7bC814jDMuHabohtSfPdb6W2ec38N3ZP33m0UXqA3iq3UsEaoL59uwrlNefUfXPKUPOSGroDbQJvwODJooaSybFNcspqV1LteUEkuQeZTt52OT2OzggmaToQbRMvIbk6IEIgsjpnGVsP/kFpdUZDdDzB3gaUcs9A16jZ/IgPtryNhvPbXPUKwDPYteQHtWC7ya9xKnibG5f8A51NmX/HUCgNoA/pj1C+9gEpvzwOfuyHF3F1ExaaDR/xnbpwhvXX0dkSDBfrV7HzJVrqauvV4eeS3w9GE0MAgCO+y4hIpzHxo/m+gF9qDHXM/Pvtfy4cTMm2b0nX9cfyCWEhvPepBsZ2bYTe7LP8dzyuRzOv9BgrqpBzhNwGjXPvFOagp3Nw4OvBj459AIFA490HchdHftQbq7jua2rWZ15xi8tz/Hp8dsOfVsk8/SwwXRLSuBYfiEfrd/KpjPn3dp7fvdV5vafFK7ziTcus+5ixqQUKfX+GbSMiuCZK4cyom0rzpeW8dyKv9mdnePsOdHon3N8eoMOjcSnI65mQquOPLJpCcuyj/kcSr17RALf9L+X/aUZPHfoW7Qaq2LPCFfU9Yn0/5IUkMq3Z1+l0HTUC3S+tLmkoPF0ivoPBm00xXVbyS7/nErz3sZzoOCzO3HY7FXmMk+N+ii6tLqbTi2no9MEcCzzDzYeex+zpdINemp+PIeGp+ex4R/SKrIdr697nkP5DvNYDXgjWvbjvTGPMOfQGl7fMNtnSkpkYDB/Tn+SUIORq77+iMwSR9cff4AXZgzg1SnXMrlvb/LKynln8V8s3r3PMaPYJfhzlAAHkBwZwV0jhzFtyEAAft26jU9W/k1ZTc0laXPXde3NW9dMQSdqeHPtUn7ctbkh8OAP5JQApwa9gDbKsLMq+Ox8gc8TepJNoGNELO8NuopOkXEsOHOYl7etpcpSrwg9z2vp+O5eJtjhmo7teHzIQFpEhLM3O4evtuxi85nzXpoeCr+bEjn0Tr56mcEuLLWl9NvylYzt0Jbaegufb9vBL3sOUO/Uhf0BnaSReK7PcO7r2pd39m3gq+PbFac7dIEu2mBg9uCHsUl27t/9IWbJkdOmFJDQi1bua/UIXcL6MDvzfTKqt/oEnRxyBk00PWJeISZwKOWmQ5wre7sBckqAMwqNYbBjhxs1vXqF15ZZ0mLUR9K9zUN0bnkHdfVlrDn4Amfz1ylqeUrAC9SH8PQVMwkLiOTZlU+QVVGgmHjsAt4j/W7m9h7j/YrQtgyL5c+7ZlBhquOabz6ipMqZSqMAPNdnw0MiQa+Wabw6eRLdUltwOr+AmSvWsGT3PuzOe7S5D4FLXKeyU3ISD4y9gvE9umGXJBbs2sPHK1aTU1Z2SZAL0ht4b9JNXNulF7uyzvLY4l/IrGzsb+sCnT+Q86XRibJgRmCbBLc6mwLkwBt+cvC5oKdk3mrsGh7pOpCHugykoLaaR9YvZW9h7kVreQA6RKZ07cRDA/sRHxpCRnEJ327dw7KjJxtGmbnUa3zqpcsMdr1795Y2bN3G7H0H+WH3Xkpr62RhfxXQQcN4dJJG4qb0rrwzZCyzTuzllb2rvSaw9hx88/1e0xgQ3Y77d8/kXE2WauRVL1oZGTuOycnTWJb7E3tKF3n56NRAF2HoTt/4j9EIAZwre5+cqtmA3T3nTpDH+N1FDju5eILPLGmJCu3E0O7vExPWiT2nv2Xzsfeod9pvnsDzNGlDA5N4efSXlNYW89yqGdRY7KoBC7ukY+bVz9EhJpXr5rzMufJS1YCF3S7QI74l829/hMN52Vz/w0zqLbbGB0MFeCB7SBCY0LM7D44aScfkRM7kFzBnyw4W79pLcVVj0rWvh0J+ukIDjIzv2Z2pg/vTPa0FVXUmftmyjR83bSa/vAL5CMEXA7o20bH8cPPdtIyK4b31y/l8699Ioro25y/k5GBTEk/YeYoS/OTga7h2TWh53aMT+GTwBBKCQnlt51p+OX6g2cBzK7ODThQZ1z6du/v1okNcLGW1dSw6eIyFB49yuqjE7ZjVrrP8GmtFkcGtU+meksCDg/tfXrBLSm8nJT74OOUmk4ez2D21BFAEXb/4FGaPu4FteZnctXEuNkny6ae7vkUPnu9yHZ+d+pOFFzYogg4cuXTtQtKYkf4Cxyp2s+DC//wGXVLweLrHvEadNZdjhQ9Qa8nwCTmjwlU8cshb86v3GHZXDj6LEMjATi/TMe1WMvJWsnzv09TaHNtoCnjt4gfy5LC3WXv6L77a9blqwMJi1xAXFMmc69/mXHket8x72214d8+Ahd0ucE37Xnw95Q5+37+DJxb+1piSAn4BDwkEQWBs1y48MHIEPVqmYrXZ2HbqDDtPZbAn4xzHcnKprPVO1YkPDyM9IZ4uqckM79SBni1T0Wo0nMjJY/a27SzavZeKOud6HtocNA90Y9p34bMpt2C2Wrlv/o9sO3/ayzfXHMgpAU6r8rQHtVWGnefE6uANPl/QU9LyQkQjHw+5hiuS2zD39CFe2Po3ZpvNcb0uosuZvM3gtBbc0K0Lo9Jbo9NouFBeweYz59mVdYEzRSWcKyn3mmxIr9GQEhFGj+REeqYkMqxNGtHBQZTU1BIdfJnNG2tMTpFSHp7hU5sDb9ABJIaFsGzibZSaarl2xS9U200+/XSpQaH8PuQxjpSf55mD36DTNMLNU6sL1ep4oeNbSJKNbzKewGyvbTBfPYMRctC1CruVTlFPUW7aydHCh9FKjRPnyCGnBDiXGASJw4cs1EuCYr0a9MySls4t76R/pxcpLD/Mgm13UG11BDo8fXieeXgTutzH1R1v5oNNb7I5cweg7r+7otUA3h39EJ9sW8DXe5ap+u8A7HaBJ4dcxZPDxjmmaJTn4IF/wAOc+bu0iYtlSp8+XNmlE+mJjSmfpnoL+eUV2CQ7QQYDIUYjQUZDQ/3hrGzWHz3B30ePciAzq3G7fmhzbt8VQPfAoCt4aewkDuRkctfc78itLG8SdP5CTg64qIBQOsam0j6mBa0iEggzBhFqCMQYFECVpY5Ki5mCunJOVeVxqjKPc9WFDYnP4A0/Ofhc0PNHy8Mm8Hi3ITzWbRD7CnO4Y/WCJqO14FvLk7eLCgzkyjatGdY6jQEtWxCkd8wLa7XbqagzUVtvwWy1EhUUSERgQMP6ZbV1bD+fzZJjx9l09jwnnnn88oNd8qOuaKz/oNPrReZffTNpoZFM/OsnzteW+vTT6UQbH/e+jR4RLbll+/uUWUp9mq/TWtzOgKiRfJnxPEWmY4p+OnkwwihYSA6eQI/YNyisWc6JoqcwCLXO9uqQM6gMynZYQbMD3AAoh54ceKlxVzKq91fkluxi0Y57qXMOiaMGvHq7FlHQ8PTIL4gKiufxP++lzFSnmnBssWt4a9QjDEvrycTZL3C2vER18h67XQCbyPc33MWo9M5c/+Nn7Mw86zfwwF3Lk0t4YCC9UlNpFRtLbFgoCeFhANTW11NjMnOuqIhTeQWcLMh3BBzkogA58KHNgSLoXhwzkQcHj2Txkb08vvhX6nFcN19mqwtuapCTA65lRDyj2/RhZKvudI5r1VCeV1VCWV0VlfW1YNQQpDUSqgsg3hiBQePIHyw1V7Gp8AQbC46xvfg0NucwVnLo+QIeeGt5crN2TIt0Ph0ygayqcm5ZMZf82mq/gef47l0mbwsOM7d1RCRtoqNoGxNFeICRIL0evVZDaW0dl0qZngAAgvNJREFUhVXV5FdWsz8/j3OlZW7bOfPsZeazMyanSElPPNHw2x/QSRqJ/w0Zw9T0btyzfgFrck/59NMBjEvsyNs9pvLpqT9Z1IT52iGkFU+2e4ktRctYU/CtovnqCbqYgIH0jf+MCtMuDhfc6xN0SoAzeuQbHJTBrl7huihBTw68tsnXMaLHx5y6sJS/9v7HzYenFrCIDU3nlTFfsuXcGmbu+MSnORthjGTh1P9xtPAcdy56X1G7g0bgBWsDWHHPUwTrDYz+4j0KK51DWDUXeC652Fu1CcjJv/vS5jSiyPuTbuKmHv35cfcmXlgx38s/58ts9QU6AYERrbpzS/dR9E92DOF/MP8M68/t50DeaTJKs6iqb0xGDk5v1HA1gkiSMZb2ockMiG7HwJh2BGmNFJoqmJ+1k4VZO6mwOEx3Jej5Y9bKgdc/rgXfjphMZb2ZW1fOJaOitEngQdNanmf75ojrumU8ow475RDO/7FIbjef61MBdDTWjU9LZ2p6N2Ye3sbf2acb6uQd/OUSrBV4osN4TlZeYEnOJtVjcY1icmPKrZTVF7G64PfGOg8/HTSmlwRqk+kV9x7V9Wc4WviwF+iMgk0RdEZBaFh8iV4QGpbGMgm9c1t6Z+Ra37APK6cvLGTnsbdJT55An7b3oacRujrBisHDb6gXrRRWnmLViXkMbz2WNlHtPM6NoyeJVnRoyWWmUj7bMY/+KZ0Y1boX4HhoNaIdjWh3e8BFUaLaWsddf3xHiMHIJ5OneQMEZa1K7t5wm3VLAM8pB1VFwK2957aaCzpBEPj4upu5qUd/3t+wnOeWz2sSdK7z4voOOC0RR3utYEMr2GgXncKcG5/n86sfJTUsjo+3z+OKHx/n9oWv8dP+PzmQf8INdJ5ik+xk1eWzumAPrx6dzdUbX+Wp/bM4V13Ag+mjWTL8Kaa06IeA4DZHiksp0Gpkk8CLjVaS43gbj9vxHyV2FGRx0+rf0Gs0/D7+JlqEhDeeW9c5UxrXz80nr35d5PeAL2lOW/iXYAfefxgUQOc8cbEBQbw+8EoOl+Tz4YHNCLIbxiWeWt2UFv2JNYbx+ell2CW7qlYH0DOiH8mBLVmV/xsiVW7mq0vc/XQ2esW+BZKdY4UPoKPcWd4Iusb13EHnKTpBbFi0gtCwyEUJeqAMvIMZX3ImZwkD2z9GXHhn9FgxyCbfNAhW9IIVrewV+uex2VSaypjW/XZ0otUBN5VX7JITazlblstjA65Fr5AmIQjuKRanSnN5fc0ShrfpwG19BrmDRHS/7mod9VWh52vBfX35dhXB6gN0AK+Nv5Yp3fryzrplfLBxxUX55zy1Ob1Gy+MDJjP3xpdIConh+TXfcvWvT/LT/j8prSvFU7TOF4/r5SNf5GKRbGwvOcqTB75j2raPOFKexTOdJvJd/3toGRzrto5Gdq2aA7yjpQXcvHoOOlHDr2OvJzYgqFnAc3x3L1eaTtLX4tZWYX1P+ddg55KmQCdpJD4YNp4gnZ4ntvyJ3c0UcA9KuCRcr2V662HsLDnJkYrTDUnDnqITbRhFOxMSJ5Nfl8nJyg1u9Z5anausVdithBu7c7r0Fcy2XGe5O+gMgtQAOk9NTg44NVECn7/A23LoeWrNxYzp8T80osPRaxCt6Dw0O63g6Adst1Xx57Hf6Bzfgy7x3WXHaffS7mySnS92LqB1ZBIT2juScuXanVxcIJi1ewsbzhznlXHXkh4Trzj0kU8AOcWfG9qzrT+zeamCzimPDxvN3f2H88329Xy8eZXX/1MyXV3iCTqXNpcYEsUfN77IvX2u5q9T27luzn/569TmBh8buMNN20SPCjXwZdbm8eSB73jt8FxSg2L4ZeBDjE/s0bAOXDzwTlcUM33tXKIDgvhl3A2E6g0+gecZkHR8bxp6aqJ0jX3Jvwo7f0B3Tav2DE1qyVt713OmwpGDIw9KuESu1V2T1ItwfRDfZaxuqFfT6rqF9yLGkMDfBXORsDep1enFSNpF3E9x7RqKav5SHX3YJUqQa640F3j11kq2HHqWqNB2dEm90c2cdfwfh3Ynl/Vn/qSktohJHac0aHdqsubsbk4UZXJHz7GKqRGe2h0aO48u/oU6i4U3r5nSWO4BFzXTUg16vha39mIzQCcXUWJkekeeGXU18w/u4pXVixz/r4mHS8l0hcYgRFp4PL9OeZaE4CgeXPYRr6z/lgpzYw6hP3DzJUrQW12wh6nbPuJweSavdrueqWkDG9rCxQPvYEke96xfQOuwSN4fOg5AFXig7qLwzKFv9jXWeG/DU/5FM9b7BvesN2q0PNtnOEdLCph9ar/XTaak1elFO9en9uNIeSbHK7NV9++KwA6PGUlZfSHHKne71atpdW0j7kYUDJwtfa8xHUVBq3P8dged+7Y0XovBY5GLXMvzBTzH/q1kFa7lQtE2+rV7EJ3WMdqEknbnOGdWRKmOjRnL6JrQi/gQ765Icu1OK9qZc3g1baOS6ZvcvqGNL+2uqKaK9zb8xeCW6Yzt0EXVXGwSSs0QRVA2BTr5IJthEXw25VYO52Xz1LLfkZD8Nl/VQNcqIoFfpvwXnUbLHYvfZlvW/oZdq0HO02TVuV7cCovSei6ptFbynwPfs67gMDM6XM3trYY2tAN34DVHtuVn8r89GxmTms5dnTxiAz6AB761PH/F33X+HdgpOZk93wbAXZ17kxQcymt71jR0GWpKq+sf3YYWQTHMz97aeFOI3jcCQKwhnrYhndlZ8jcG0aw4vaGbr04TR1roDRRUL6TOes6tnb+gc4HNH1GDHrgDTy56maa1+8T/CDRE073lrarandx3tzFjOVa7lSvbjHPz3elEb0CuOL2D0rpKbuk2Eq1g8/Khemp3gkbilz1bOVmYx0tjJ6ERRWVtCt/A88chrQa55oBOEAS+uPF2NILIvfN+wGS1XDToXBJuDOa7SU8iAXcs+h8ZpY25f56QUzNLmxI16LnEKtl49chsVuXt5+F2Y1VN2uZodwDfn9jFysyTPNt3GJ2j4tw1r2YAz/HbP4A1F47/rhnrw3w1arTc1bk367Iz2FmQrajVeYpOtDEqoQtVljo2FB72qvcckLNbuOMttK9sY+M2ZAnEcjEKFpJDrkEU9GRVfO2l1amJJ+guRjyB5xJ9A/iUtbui8gNkFW6ma+oNHsekfMwVplKO5u+hX8rAJo/JLplZcWo7Q1K7EagzutWpaXc2yc5ba5fSMjKGCZ17yBqoR2k9v8vL/HFcK62vCEuP++naLr3ok9KKF1bM53xZscIK/otLq3tpxC1EBYbx4J8fklWR01ivALpLFV/As0l2Xj8yj/2lZ3mq4zXEGcPc2l4s8J7etpxys4mX+o8AvCHm2Jh/wHOU+V7c217GAYqm3s43pnchyhjIF0e3N5QpRWDdfgsiQ2M7sK34OFbJ9w2jF610C+vOhdoMKq3ekS95Xp1LUoLHU2bai8nqbh6raXVNgc4g6NwWHVq3xb1t4/qe0Vqv/ybT7jJyFhIalEJChAMuBgUtzRWo0AtWDuRsJy4kkcRQ73lJ5aYswLpzezBodQxO7Qw0Birk4qnd/X3qKCcL83hoyCjlg/dD22uO+ASdip8uQKfn+THXcCg3i/mHHO6NSzVfx7Tpzdi2/fhy9xJOlTRaBf6CzjNYoRdtXouneGp5btsWrLxxdD6iIPBCl2t97ttfqbSY+fjAFvrFt2B8Wrp7pcp1lYu/gYaLXe9fj8YqaXUA0zv1Yk/BBfYUXnBrrmTCuqRjWBLh+iC2Fh1zM2GVxCgGkBaUzsmq/Q6wqcwL4TJhg3UtCda3oahmaWNdE1pdYzt30Lng1pT4A7ymtLvzeSux2kykJ43zMmUd67mXHczbCUD3hEbfi5opeyDvNOWmaoaldVUNVHiKhMTMrWvoFJ/EgLQ2qhFQ8FMj8yF+g87jGKb3HUxiaIQjafiiM5kbRSdqeG7YNI4WnuOHfX81lPsDuuYEK3xBT2kfBeZiZp5eQf/odEbEdXJb52K1uzlnDnC8tJCnejv8gc3R7lztmwO95rT992GnIGmhEbQKi2Tx2WOAH9Ev54nvEObQRg5VnHerV/LXJQYkIwoiWbWnGsqUJrIG54gmxm4AlNdtV2zjS6tzb9c05OTiCbzmisVWQ0HZQRIjuiscizfASmuLKKstoWVEqyajsjbJzuGCDDrFpnnVqZmyAH8dP4DZamFUu06eqzkb+3gY/LxjL1YTBLi+R192ZZ1l9wWHBnapvrqhaV2JCQpn5q7FoPDCAXXQXYyoveCVZHH2TgpM5UxM6aV6HM0RuyTx/bHdtAqLpEeMx2AFzdDa/YFYczXBfxd2Kgc7PLklABvzMhTr1fx16SEJlNZXU2yu9Kr3TDlJCmgBQL4p062dWipJhKELFlsFddZMj9FMLt2/0pTIgafkv1MKVshN2eLy/cSEdWzIuQN1vx1AdnkGqRFpTR6XVrRzsjiTlhEJ6DX+Q7nWUs/OrLOMaNvBUeBDu1MSXyDzy2+npNU5pX1cAh3iEll02K8ZBnyKS9ud2GEgJbUVbMvy9iOrrnsJqSfgDTw17U4QbazM3U+/qLZE6YMvaZ8uWZV5CrPNysTWjm5vTWl3auILZoo+viZodllqdj1jE7lQXUF2dUVDWVPjewGkBUdzvrrQZxvXhY41xGO2maiwlHi1UZrqMFTfmqr6E9BMs0ZuwjZXq2tKvHtaKB9bccURNBoD4UEOwCv57Rq3YSW3MouE0BS/juFMyQV0Gi0pYbENZU357QC2njtFh7hEAvV6mhJfAYqm2vktTugNa+1Ipfnr+IFL2Ji7DGzRhb8z9nglDLvEU5u6VNA1V9bkH0Iraugb3catvClTVk2qLPVsyjnH0OQ0v4/BVwqaP2X+yOUBO4+TFxcUTG6Nt3YmF6URXUN0AZRblCealotetBKoDaLWVt1kW5foxHDMNu9Axv8fpK7eAXSjPsKv9jX1lRi1RjQ+oseuB9SVDBuiD2zWMeVWlAEQFxzWREv/pCltz19JDo+kylxHUXXVpR8UEBkQQqDOwLnyvIaJnC43ya51jKqcEOC4P/w1ZdX8dogS5yrLSAoKVVip+aByz8W7eB/q5QE7p7j+SExAEIW1TUPLU0K0Rmqs3gM6KkmAJpA6m//70GvCsdgbNU1/gxOXg5jrywEw6sN9tnNNOFTnfGEE6oOa3HaV2dFBPdTQPNgVVjteZnEhCg8ENMukvSSNzkOSwyO4UF72j20vKTQagNzKS0tfuRjx13dntlspMVeREBD+j+07t6YSo1ZHlNHHfdHMQIRPs9aPe+DSvN//RyIgXFQUTBD8X0+guQZp89dorvTqZlCtM8uupkmWVmNxmkYmZ9K1WRIwOZOQTJIWk6RrGAgxoYUBc5Tj5jPZdZglHSa7DpOkw+IaKsquIyTCMThidHoUYn0AFruGeruGeruWepvjO0C9TYMxOBKAwOQoArUJbsMG2eyi21BB8mGCxNgoAPQJsegFs8/JmeHih/4BhQdBIeHV9SBpAgNBp8WQltxQ1xCgaPh0N+fkA8ZCo/mnE20EhscAYEgIJ9jQOCyTXHvyDKA1J8DwT4ldsiP6M4ejn+Iy2TX/4DYvVS4rzc51wxfV1RAT0LRW4SnVFhNBmoCmGwJ1tjoCNP5rIxZ7BTqxUQsxSZfle0JRdKLDVLTYy322M9sdPkWj87yYbOrDCrkkWOs435UW/zRql7iub2GdinbtOZadD/Ea9+4SJLemkoSgkH9se3l15QDE/4Nak79SrzBEu5LoBA1RhpCGY/0nJCkoFLPNSpHa9YVmX2Nf19mfl+HlATuPOS2LamuID/R9w3lODwdQZa0jTNc0wOrtWupstQRq/AeqxVaOXhPpd/vLSXSiwxdTb/ftB3VJgCaYens9VkndVK+3OR6kUOf5rraYVNsqiQsoRbX++02VpHFAyEt7EFySU11JuCGAML2x6cZ+SKm5mlJzFe1DkxXv2ctBEgMjEQWRvDqH+a40j4WSKA3s6SgQSA2JIK+mytsWsjf/xeQ+0vHFv9guy7N/qDiftNAIN+DZ/fiTWTUlpAbF+GzjupBF5gKMmkCCteFebUx276hppeUcIfp2XuXNEbPke4SU5opFcn+KzSrzVwTp22OXrNRYHH0xlf6fS0x2HTGGRIrN+X4dQ1pQLDbJzoXaxuCN5/R98klcXA9Ev7gWnKsspcqiPKOaXJRgpfSmv5QHwbXujjzHORrdou1Fb0suEhInq3LpFdkaQWXkUdeLo+G3n7D5p2REbBcA9sp6doD3SMZKc1UoiVGjZUhSGjvy1Afi8FeUrunFXud/F3YqB73+wlkAhia0UqxXOtkWu4aTlXnEGMMI13lrbPV2rdtNlFPnuBAJxlS3diZJGQTlpiPoNZEYtSlubUxN9EQ2NdFtzR+RQ1JpeyaFIdzlZnawoTvV9aewS42TcJtV/idAnDGVC3VN36gWu4a2IYlk1RRhtvsPcoOoYUBCCzZkO5N2lfx1PsSnFqdi7rgBU17vsc+DxfmcryxjYquOfh2LL3G9WJdd2E9CQAQ9Ilp61anJpQLPc305UN2GZreLjEvswd7SDPJN5Ze0T5eMSmlDsM7A4gxnpwA/4KT2QlNt39Q1VpDLUrM7VVbMmfISbmzb1a/2rjfQyUrHQJqdwtwB5vnmBMipc7zBUwIbc4ssKuAySTpKTQcAiAgYpNjGU6vy1Loa2zVPu7tUbVAUDIQZulJiOuRVp6ThBWvDiNTHkFOXRb3dt19SQKBDaAonK/O86jxNNrlmfkVSWwK0OjY4X2reK6sHJvx9q1+KlvfbiYMMTkyjgzN30KWN2hs+3TUc139t0IA8NNuNBceptNRxZ+uR2FUgpnSPXizwmrPelfHdaBEUw9LsfRe1LyW5o2Nvcmsq2Znv8cJsRvDJL0A28xr/+7DzeKu7/sCC00foFZtEp8i4Rl8A7iYRuJtMh8qyqLaYGBzjeCvLI4eeUmurIas2g3YhPR2RSRXTzgWEKstpai1ZRAaOaaxTCFIoa1nu2phZsvgFMc82TUVhHb81svY6IgNGoBWDyK9Zq6i1epa1C+kJwPFKR7a/PBLrKR1Ck4k2hLK16KSipqJm7tzXuS/nKkvZlHNesd4lFws6tfZNaXeu9nNOHqTUVMvL/VQGK2immO0WPjuxgl6Rrbk2pV9Duec5u1Tg1duV73c1rS5MG8qT7SdwuDyTlbkH3OqbMmHV/HUTUjvSKzaJj/dtxS5JytfsHwDdxbT9V0KKtooKypetAgFChg5CE+5tdv564gAPduvPA5368/DmJYDjxIoaiZK56xCcvQUEQUIUJUTBsawJHcrQLn149OfdSJIFjSChEexoROenYEfjXHfF1Su55+oHODa7kMqqAkcd9oYx3rSCzfnbhlaw0+6VFbQNvxu9JgbsuQ3HapI0bt3GTJKEURCwSPaGPrImyeY1IIAcZgZB5xOASqBTb9t4WaODJmKyFlJs2g1oFLU5i6RpgH2H0F6U1ZdwoS4Lz9vD9fJwPTxDYjphtdvYWngScDwgVptI0e/rkSShYQGQ7IAkMLRLd7rHJPLfLavcHwaFyZbl4u9NXbFhI3aTe7BEcl5vXVwswb16NKai2ATFXK/KejMf7N3Cm4NGMzo5ndUXTiHZBASN1HAP2m0iosaOZBcQRAmbXUQj2rHaRLQaOzabiEZjx2LXoBNtLL6wh5EJnXmo7Th2FZ8mz+xI5HXVy8+xZyqKEsD0os0vEKqBzm7X8EzH6zBq9Lx6aCF2JL8DEy4pnb+WhltREjDq9Tz12R0czDjNN+9/hCRJNHTqkQTCrx7tc3sXo43X5+ZRc+hQwzX2Jf8K7MTgYEIG9UcSQAwKbLzp7IJj4ESbQGW9mZ+P7+eBrv3odHQHR0sLGvKdwsb0BZtj/glRtKMVpYbcprXmDCaFXMm1d05lR/4BdM6RT3TOXCh9w5wKNjJDTiGKIrfdeQvbcxagFy0N/RmNghWDYEEvWDGIFrQ6keyqpbQNv5uU0LvJKHvbqx+tWRK8pkxsCniN6/oHOvdyda0OIFDXltjAEZwp/wGwg2tqRRV/nSBEkB7Sk23FG1SPxSV2SceYhF7sKT1DldXUsG2A0DH9wOYAgd01jyyATeTVGx+goLaKhWeOyDbmDTqfUyriPh2fXEL79MNmNXuVSxoJ0Whs2LZX7p3s3pM0Er+fPMRtHXvw5oAx7F+W4zuFoglxAe2Nw4v4bfAjfNjzDh7a8w2llnK3epcoAc9TmgKdkpYol0fbXcXQ2I58ePwvMmuK3Or81epCRg1AstoatLr3rriOlNg4nli/jKChfd2nTNQ4uwX+A9cYGsez08XFEjKgf0N5xcq/Vdf5V8xYQdSgDQtDFxqGIDoPQcFJ/eXBHZSaanmpd6M5YbcJiMGhaCMdiy4yFCE8DDE8DF1UCLvNFygwlXNzp1EYooMRI8IQI8PQRIYSEBNEQEwQgTGBBMUEUh5Ywvma0wxNvQpddAiG6BACY4IIizUSFmsgPM5AYGwQgTFBhEZqqbVmk1O9mMTQaRg0jhEdXFqUCzSN4GmEnlwTM0k2v4MWSm09zVfvdVzHoyM1/Ems9moyKn7yMlddycRy6RUxHL2oZ2vJeurtWp8m7LCYzsQaw/jj/A4vjUAbFowmPKzhGmkjQtGEhjG5Z396xCfzzu5NmG021Te5r4dAsPl+CESjEV1wGLrgMLRhjYsuOByNtjGdpGEfKuasVbLz0LqlBGl1fD5kIhpBuGTfXYGpgsf2zCLSEMIXfe4jRh/VUKdk0jYFLCVRWs9i1zRsX0DgiXbXclPqYP7I3MKc81vd9q80l6yS2G0CmpAgNKFhaCNCubHnIKZ26c3nB7azu7oEbXgo2vAwxxIajsal1DjlUq6xvI2Ixu06+5J/zWfXkB+lYpEJNoEqSz0f7N1Cv/gUJqR1cPPdgeMm83SE2yQ78zN30juqLckB3nMpuMTifIg3Fq0l1phE2+BubvUmZ+8Cz7ITpV8jSRJpEU80wMLTd9cU8Bx1NrdFrUy+vhLo1Hx1YYbexAZdQUbFLCzO/DpXrwn37TpM2Hq7gf5RYzhbfaIhUi0XTxN2SotBXKgtYVuRY4gslwkrF3mviRCdgWd6DudAUS4Lzxxt1qTKju9NPwCeorSOoPTAqaQ3nC4v4bmtq+kX34Jne14BXHywwgWTI+XZPLjre0J1AXzd937aBbdo2KccSi5xwUu++FMn36ZL9IKRlzrdzOSUAcw6u5H3jy13a+MJZ/n/8dTq5NI5Mo43Boxme14mH+7b0nD+HCv4r7VfzDV2reeP/KsBCi/gKQQrfj91iP1FubzebwyJzo7FdpugGKiw2Rwz1y/K3k2N1cydra5sqHc9qJ4pKHvLdlJeX8KoOMfQ5Wa7TjEq6wJfnS2fjIpZxAdPIjJgaJNpKL6A595O/Yq5a4bqoHNBVxSMtI1+i1rLBc5W/OqXVtcjYhjRhgT+LljZoNWpSffw9nQNb8mc89swe75sZF3EXCLZBN7sP4aYgCBe2ramMdG0GaCTiyu9xNfi3t59Gz6B53HsizKO8eOxPdzdqQ/3d+pHc0QNeMcqLnDfzu+wSXa+7vsA97Qah15sfGEqQU8u/mh9ntvoFdGOXwY8xhXxXfjs5Eo+P7nK7ZgUj9uPoETr0EhmjbqRElMtj6xfhq0JP6zrfHteJyVgXco1VpJ/PRrbFPDsksQj6/9EFAQ+GHSV11tYSbursNQy+9wWRsR1pVVQqs8bo9Ym8VfeIlKD2tEyeIBbnUu7M7sBTcfpsq+pqj9N26i3GnonqJmzjjJ34Mm1NDVRaucP6EySjlYRzxCkS+NA0cvYJEc3Ll9anVUK5Mq4G8isOcPBisZx3Dz7w7rO431txpFXV8ai7F1Ao1Ynvw5yrW5CWgcmtOzIh/u2cLA43/1G9QE6JUg1J/VE6YHw3IfbvlUyA17dvo4lZ4/x314juKltN7+1O1AH3pmqfKZt+YyVefu5vdUIZvWbQc9w96HMXcDyJ3Agb+sZcX2u44180usurJKN+3d+x89nN7kdi82pKLgdrx+gSwwK5edRN2GXJKatmEtRXY3foGsoU7nG/qaeNOee+BfN2MY/6Qt4gk0gu6qCN3atZ0B8Knd26OOoakK7++38Fsrra3g4/aqGek/tznWxt5dsotCUx7j4W7BIAYranVlm1tqxsK/wWXRiGO1jPsMsOfuSKgBPbtJ6+tnkQPNc5OK5ri/QxQdPJil0Ghnlsygx7fYyx5W0ukHRVxGuj2Fx7rwmtbrhsb1pH5rMN6fXUqvQm8wVlHBJojGMV/uOZl9hDl8e2qmYQKz0tm8KcoJdfXFrp6BBeN538mNQAp4EzNiwnPUXMnir/1im/gPAs9g1VFlNvHpoIQ/u+h5BgE973823fR5lTHxvN01Pvo7a4inpwS3+v/bOOjyqo/3f91mPuydECBASPEBwK1K0UGgLpdCWUnd3d3enXooUd3cnQCAkWBJIQhLibmvn98duNusJ9H2/8P6az3Xlyu6xnXNm5j7PzDzzDC/E38LyIc8xOrgH8zK2ceuer0gpv2C6nnmaLNLZCtBFuHvx16gZeCiUzN7wNxeqyp12TTgCXfPny8vjlvLZnq7OAIVZnW8ReMZ9C8+cMCzVljicPn7N/Rx6ncSudVeh1vLN2U309GnPqKAkh9adRi+lQS9h8cU/CFSFMyxgcvM+UeoQFlXqsxwvfhVfl77EBXxIg2gYbbIGHthaefbAZy17x1nC0xZ0vi5D6eD3JiX1ezlV9rkF1Bqt7qPJqnOVhXFd0E2cqDjEmeo00357Vp1K4s4jHSeSXpnLurxjgH2rDgwVQyHK+HboFKQSgcd2rMU01dasMjirBDagclDQrWXvOEfNJgvAOgGeVtRz35aV7LiYxbv9x/Jg1/6tAp6zQYsm4BwuzeSW3V/w7skVqKRyXu5yM2uHvsbbXW9nTHAfQlWBDqeaNclN6k6iTyce6jCJRQOe5ed+DzE0sAsrcg8zbfenfH9uC2q91gKOVwq6OO8All4/Cy+FilkbFpNeVnRZfbDWL5wryePLPRb+oeuJIAgfAhMBNZAJ3CmKYkWrzm16eFIRQWcYSm4a9je5BjQ9BKNLwJM717PqBn++HnoDE9b8SpG62hR2R9QL6MzYLZXqWZGbzPiwnjzQYTx7S9Kp09kGZGwKp5NedYKj5XsZHjiV1MoDVGnOWyzC06CXg8SwjmzT57zadShLA0jwexKNroyMsjdRCWoaRBkqQWsCkkrQmSBl7prSEvCaZAlL84GIZtB5KnvROeBzqtVnOHTpSeqboGinGd4EOgGBG8PuRyfqWJD7R4sjsPfFjsVD5sJDqb/QqJfYDEqYXE2M+fZG0mi6+YcwZ9NSsqsrDBXWCehabGZiCBkU5x9AtK83QR7uBHm4AwL1Gg21ajUXyso5V1xKTlWlof/I7FxRYlvuDJ8dlD0rd6gGtNy9eTkfDr2ep3sOxU/pyltHtiFK9Hb97wCHPniAyQ/PIC3Lcg+xLPcQib4xjAhOYGhQZ4YaF8Kp0zZyvraQCnUt1ZoGtKIOd5kKD7kLYS5+pqgqjToNyWUZ/Jq5k82XUqk1uuFYTBGzAzloHej6BkYwb8RUajRqbl27iHMVpS2Czpk1Zy+PAXxdXOjg60dsgC++rq64yuUoZVLK6uoprK6hoKqaE4WFVDU22j3fngSxlRXO7smCMBrYJoqiVhCE9wFEUXy2pfNU4RFi+CNPmL43xRJrqsem7035IBVNscVi/XxZOWkW5ypKuGXTX6jRmBbOFiSiRWwxqVRPnKc/fw58iF3FJ3kz7XebRbPN15L1VbjwSvz7VGvK+CnrabSiGqVEY1pLtilcu8XC2YKGzr5PEOt9B0W16zhT8hwKmqFqHuTT0XoV1r55jib0OwJdgOs4Ovm/T4M2n70Fc6jU2o6+mjdfm2DXx3cq40NnMz/7J7YX7zbssxO7Tq2T0sM7jk973c2fWbv5/Mx6NHqphVVn3nzV6wRmxSbyRtJovkzZx0dH9hgKditAZ68C+Lq4MCGuEyM6xNAjPMQUnw+gTq1BL+pxkcsNC28bVa/RcDA7l50ZF9iWlUV+lSFPnK1Gb77Nwg/PegF3qchLSSOY26U3O/IyeWT3Kqp1Bkdm8+UDHMW9A8tV8aRmn62jBHfwCCbOK4yOHiHEeATgIXPBQ+6CXCKlRtNAtbaeS/WVnKkq4GxVAakVOdTrmoMrWDdxnVlz4Bx0t3XsySt9RpJbU8Ft6xeTX1vdatC1BDmlTMrAqEiGxUQzpH0UYV6WQV0bNFrUOi2eqmb3Ib0ocq64lAMXclmZforUS4VkPP/EEVEUe2NH/wh2FhcShCnANFEUZ7Z0bGBsBzHg3odR63SmQtVa4IlSkVHtYvlh5BRWX0jnsX2rAGyA1wQ7uUTH7TFDeKjT9bydtogthYcsgGe9cHYP73gein2Gg6WbWF/wtcm6awl4MV6zifd9gir1SdKLHkCtK3K4kPblLNJjPcJr7ubSICqI9HqAKJ9HKW84wqFLj6PWV1g0vc0DdEIz6AJVXbi3/RucrEzm+6wvbaw6c9B5yt34qe9TVGrquH3vN9RoRRvQQfOgxMDAaH697ma2X8zk7s3LDRXgMkDXtL9XWCh3901kaGw0cqmUM0UlHM6+yNHcfE4XFlNcU0tVQ7MDsZtCQYyfD7EBfiSEBDI4NoooX8MA0t6sbBYeT2XruUw0er1d6Jk/arvlDyyCfd7aqTuv9x9JQW0V9+5YxumK4hYDfYJtsE/TdqmteXIlq33Z68O7XGvO8NmwTSHKeLPfGG6O7ca23Ewe3bGGKrWdgKstgM4e5DoG+DG9W1cmdemMl4uKmkY1+y/kcDj7IhnFpZwrLqWkpg69kVNyqZQgDzfCvb3oGR5Cr3ZhJEWGo5TJyCgupUOg//8J7FYDi0RR/LOlY3v37i2u3b6DeQeTWXQ8lXqN1i70LAqcWWETpSIPdEvi2T5D+fjYLr5K32tRuKyBp5To+TbpLuI8w5hz8HMKGwsdAk8h0XJD6M2MCZ7EopwvOFW1tdXAC3IdRq/A99CLjZwrfZWSug02syyuNJy7JeTkKGVhxPq9jb/LAPKqV5JS/AZ1xkdkDbqmc5pAJxX8eLjD++hEPe+cfplKjdqm+WoOuze6ziHJrxN37PuG9Mpii+aruVWn1wnEuPuzfOws8mqqmLrmL+oaNJcNur7twrm/X18GxURSWlvHiuPprEhN52yR5eJI9t4Z1t4/kb7ejE/oxLSeXQjz8qSgqpqfDx3h7xMnqVVrnEKvNcDrFRjKtyNuwFOh5NVDm/k7M9Uh8MC+lQetA9/lytpvzh7kwLk1F+nhzReDb6C7fwifH9vHp0f32LrptKLZav0i6xcZwd19ezOkfRRqrZYNp8+xLCWd5OyLaPR6m/OtZZ7PHkol18d3oEdECDf16HrlsBMEYQsQbGfXi6IorjQe8yLQG7hRdHBBQRDuAe4B8A4OSdx44BB9I8O5VFXNBzt2szr9zGUD75OhY5ka25Wn961jyfnjFtYdYAG8cFd35g98iBJ1FQ8lf4FeqDf111kDTyXR82iHZ4l268TP598kvz7F1JwFnALPXR5Fr8B38FJ2oaRuK1ll71OvvWB3iUZn4LMfZECORFAS6nEbkd4PA5BW+iE51UubHZxbAJ1cUDI7+m2CVO34+MybZNZeNFkC9qy6myOu4/4O4/jk1Bp+zzIsoG2v+arXCQQoPFg+bhYKiZTJq/4kr9LYnNcLDkFnXgmifLx5/rqhjIiNobS2jp/2J/NX8nHqNVrT8ZerpkohEQQGtY/k7gF96BsZTnVDI38cSWHeoSNUNzZeXgsDLIAX4OLGl8Mn0D8kko05Z3l+/3rKtc1Rnltj5TXJGnqm41qAnz2HYLCdCWEPcmAfdDM79uDFxBGo9Tqe2rWezTkZ/9iaGxEbw6OD+hMfHEhJTS2/HjzG38dSqahvsDjvctWUX2df+S82YwVBuAO4F7hOFMWW43gDqrAIMfK+J0iMCOP5MUPpGhLE0Yv5vLhhC+fKSo2Jty101sCTygR+GTOV/iHtuHPr3+wtOm+3OQuGwjIoMJovet/B1sLjvJP+p411B5iA5yVX8HTHl/FS+PJtxoumAQtHwAPDEowqQYOAlGivmXTyeQCpoKSwdjU5FV9Tr802ndtaNUFMIigJcb+ZCK/7UMoCKKrbzonid6nXXWo16CRImNbuBeI8Evkh6zOSy08Ajvvpunt34uOec9l2KZUXUhY57KfT6wTcZAoWjpxJlKcPN69dQHqRcb6lHdBZVwSlIOXRwf25o08v1Fot3+w+yJ+HU2jU6mwK/+VUBmsrr+l715Ag5gzozbj4jlTWN/DDwWR+Sz5Kg15nduzlQQ+pyNwufXi692Cq1Y28fHAT63PO2Fh5hs+20AP7K+Y5gp8z2Zvq1VrIAYSovHiv//UMCY1hV955ntq1nsK6misGnaCHpHbhPD10EN3DQjhfWs6Pew+z+uRp1DrbPDa/RkuyzuMzr/+XYCcIwvXAJ8BQURSLWzq+SarQCDHqnicMo2DAlO7xPH3dYNyUCr7ae4B5B4+gwfAEDasK0fzZCnhuKjlLJtxKuLsXMzb9RVrlJaf9d3fEDOXBTmP4+txaluRus9ucBUNfSbDKi2c6vYZe1PJ95ivU6/JbBbymfQqJL7HedxLleTMSQUl541FKa9dTWreVRl1z1BRHkgiueKv64Os6jkDX65BLPSmrP8ip8u8oazhiF3Lm361HXseGPERfv5EszPmVXSVbnPbThbr48XXio5Sqq7lz33dUaXQOByRkoowfh05jQHAUd21eys7sC4YbaAXoEkNCefv6kcQG+PF3ykk+3baX0to6qw5t22fTmknijrY1fY4LCuCx4QMY3iGGvMoqPtu9j1Vpp9EJlovwXI6V18nHn4+GjKWbfwgbc87yxuEt5NVWOYUetA58lyN7IeBbgpxUL+X2uEQe7zEIAYF3D+/gj1Mp/whysX6+PDlsECM7tCe/soqvdh5gxYl040yL5rQ5ys/WNGPNt/03YZcBKIGmzpQDoije19J5qpAIMXruE2aFCHxdXXhl3AjGdu7IqaJinli13sLKcwa8QA83lk64FTe5gps3/0lmVakN8CR6DRJRg0Ki5/3+tzEiuCsvnfiT/aXHnQ5YxLiF8miHF1Dr6/kx6zXqtBdtgAcGyFkDr2m/UupHO4+phLmPxkNh8JJv1JVQ1ZhGnSYXUaxAq69CKqhA8EYp88dD0Rl3eQyCIEWjq+JS3XZyq1dQ2nAEwCnorAcjBCSMC32IPr7Xsb5gBasLltgFHRiaskrBnS8TH8Fb7sad+78jq6bCxp/OBDu9hC8GTGZ8VBxP71rP4nOpzSOvOgHUWhAEJMgsKoNSkPLM8MHc3rsneZVVvLJmC3uysh1WgCtqwuoMv43csmZYg69vZDjPjhpCl5AgThUW8dbWnRzKuXjFTVuJDO7u2odHewxAIgjMSz/MtycPUGcWKdoR9MAWfNYyB2FL61pYT92zNwAh6gSGh7XnxcThxHr7s/1iJi/t3czFmqrLBp3YoEUQBPzdPHh8yABu6t6FOrWGH/cd5pcDR20suX+ax6b7lIKo03Hm3af/+wMUlyO5p7cYfc9TSI0rTJlD77qOMbwxfiRuSgVvbt7B4pMnjfucAy/C24tlE29FrdcxbeMfXKosRp1zCV15ObqKatCokcolSCQiLoLA3y9+TnxEe+5Z8SYX3KpwcZM4Bd4jHZ5DJ2r4Met1ajTZNoMWgEMrDyB5XTFunlIGj+iOv0sfvJQJ+CjjUUmDkUubh9l1+gbU+nKq1WcobzxFecMJSusPoUdjOQ/XiTUHWDRdBwv3MDxhLGsLlrG2YJldf7omq07UK3i/x30keLXjoUM/c6g01+mAxJu9x3Bbp168cWAbP6UlW4BOk19IXWoagijg3q0Hcl9fBJ1AtJc3n08eT3xQIL8fOsan2/ZS39D8rJqhaFluLqcyqCtKqTqTAlIJngmJyN09jWWn+RgL60AKYxM68uSIQYR7e7H21Bne27aLgtoa47GXB7yaoymEh4by6sw7mNI+gaK6Gr44sZfFGSfQmPXVmkPP8N3WomsJfqb7MQKpel8qUjcXXLsbonDbAxwYINfdL4Sneg5hcGg0mZWlvH1wB1tzMy8fcvVq6k6dQl9WxpwJ43nujlm4qVT8lXycb3cfpLy+wW6+/pM8Nt2HFDTVlVSeTKZ4x9prC3ZKv0AxYMhYPDv3sABd039/N1c+mHw9A2Mi2XjmHM+t20S1Rt0i8OIDA1g0djoF5aVMfPVJKj3lKEK8kfl4IPVQIZOKyKR6JIIOXy38cd2juEoV3PTu/ZQqq/DuGoqHn9Iu8CJdg3msw3MIgsDvFz6gqOGkBfAAp9Bb/Hk+Lm5SJs4NstNnJ0EucUMnNqIXLRegsTeJv0ktgU4hUTE57Cnivfrw/dqvOR6y3ynotDoZL8TP4rrg7ryUsog1eSftrgPbBLpnug/j/i79+eb4Ad5P3mUBOrG+kerd+3DvlQj1aurSTuE1YBDTunXl1VEjaNRqeW7VRnacO29TCZxWhla07kS9nrJje3CP7YxO3UjDpVy8u/UDmVlFtwM9UWrw95o7oA/3DOiDiMgPBw7z48FkU39ea6FXsXYjEpUSj+uH0CMghBeThtE3KIKC2mp+SDvI4owTFpYe2ILPsO3ym7Mli7YjUSnxnjDItM0acv2C2vFA134MCY2hrKGOL1L280f6MbSi/vJ959R6qpMPMSypH2/dMZuOgf7sSk3jpXm/cck3CInx4VyORdfaWRGiBERRpCL1EKqgMM7/9sm1BTuX4HDRM64nPt37GYJ3gg30kMKc/ok8PnwgeZVVPLR8DadLS2xGapuAJ2q1NJw9R6K3P0teeoPsmgpmbP2Lal29wxHaGHdv5vW/F7VOw5yFL5NxMAWvuGCCegShVIg2wAt3CeDB2Cfxkfux5OI3nK7aBuCwWdskpaBh2RcXcXGTMuVu/8t+XtahppxBDgyRW5TSEG6PepZgVSQfLXyPFYeWEj+zq1MXk0c73sTk8H58fnodv2TuBxyPvD6cMIgnegzmz9PHeHHvZgvQCXqoSz+NoAe3jp0RdAKa9DTeuetOZg4eyP7zOTyzcgPFFYaAmC1BznYepPPnVVdykcaSS3gn9EYURcqP78M1qiNK3+aV5xzBrul/qJcHT48cwrj4jlysrOSdrTvZlJFp3N8y8CrWbELiosBz1FDTMYPDoni4Rz+SgttRrW5kSWYqf545SmZVmalPz1z24NcalS3ZiqBU4jVucPM96gRcZXImRycwOy6ROJ8AiutrmXfyMH+cSqFWo77ivjmfvDxeu2064/v0Jre8kvc272TzqXNUpxxF5u6Be1TzqnytzWPr/fbU9Pw1VeVUZaTi23MQ6R8/da3BLkIM6DcKmac3LiERgP0CJ0ohMSKUT6eOx1Ol5KX1W1h5+rQN8LR1tdQeOYLM1wdVl44MionhlzHTSC8rZNa2hdSLjQ6Bl+AdyHd951KhruGhvZ9wfk8K2ppGIsd0wNVDajNo4SNXcW/7R4h1j2dH0XJ2Ff2OHn2LVt6qL7NRuUmZeFfQFT2zRjtNWHOrzzy0epCqK7dFPoVMomBe1pf8/tF8JC5K4m7t5hB0d8dM4taoofySuYNvzm5yOvJ6R4c+vNp3JEsyUnlq5/pmp2Ej6ERRpHrrLjwS+yBTuRPi4cHXE8fSLTyMb/cc5Isd+xG1hrxwZNVZzqm0/0zs9eHrJVBx+igq/xBU/oYAq3X5F9Cqa/Fob5h6ZelbZ/vZ/H/fyHBeHDOMuKAAdmSe5+0tOzhfWWHc7xh6FWs3InFV4jlyaPOIrfGYHgEh3J7QkwlRnVFIpaQU57PyfDobcs5QUGdw17EHv9aqfOkWJC5KPMcMQSmVMTA4kknR8YyO6ICrXEFaaSG/ph1lZdYpGnXaK4acUpByZ4+uPDB4AEgEvttziF8OHEWjNhyob2yg4uBefPoORipRWFzD/Pqm73by2dE4jXlXZU3OOUDELbojaR/9H8yguBy5BEWIYaNuprGqFK9O3c06gu3/9/N05dOp4+kbGc6PB5L5cPcedManoK2rpvpIMqq4DiiiQk0Fa2R0e767bjJHi/O4c8ciGkS1wyllib5hfNV3Dpfqy3ji2DfkpZyi6mwRUeM64eYlswGei1Tk1ojZ9Pe/juzaMyzK/Zw6bZ7FXFpr6K376jzu7jB6TrjdZ6IUNE6XN7QIRmAFOcDUPzcgYAYjAqdRqi7i28xPyKkr4ugPKUhcFHSY0cMu6O6MHs/s6BEsydnH+2lrnIJuZmwv3koaw7oLZ3ho2yr0WixAJ+gEtJVV1KUcx7v/EPqEhvHVlAkopFLuf+d9DuoVSGXKy4ZcawcnRVFPcfI2/HsMQSI3VDB1QzWVZ47h13OI4RhzwDkoe+afJTKBmX168Oiw/ihlMn5LPsbXew9SrVUbj7OFXvm6jQbgXDfM1k3FeIy/ypUpsQlMiY0nwc/wEjxXUcLu/PMcLrrIybJL5NZU2r1PQSraBLMFQ5DUyLSLJMYncN2w4SQFRaCUyihvqGfN+dMsy0jjaFG+hf9ba8IxWYNudGx7nh8xlAhvL9YlH+ODvUcoqKq2yc+aUyeRurjiFhpjc23z46D1eWytsrRDuEREo/QO4OSn1xjsXIMixMgpd1N5JgW/noObC4mdgtf0WSqX8MKYoczs3YOdmed5bM16KmorqTpwAJe4jsgjgpv78IyFamz7jnw5fCLJRRe5c8ci4zxa+z54Sf7t+Lz37RTUl/FUyndcPHGKqjNFxNzQGZUKG+ApJFp6+/RnRrs7EBBYnf8LaZWbAOxCb9NXGbi5C1x3Z3PEFrBs7prL3sI4jiAH4CGPZFr4g0S6deJQ2U4W5PxBtdbQEX74++NIXJTETO8FWIJuTvR4ZkWPYEXuQd45uQq12QR/a9DdEtOD9/qPZXPOOe7fuhKtRrQBHUBjVjb6qlruumU6r4wezsWKSh5ctIrjW7egDA5H5Wuo2BbRL0yVq/l+rQu/oAOZVEJkoA/BPh54uarwcFUiIKDR6mjQaLlUVMzZowdoCOqERmu0MCQixclb8e8xBJTN82pbAz3z/35urjw+YiBTuydQWlvHxzv3sDQtHRFb4JVt3IBEpcRrxDDbQQywAV+Mly8jImIYEh5FUlAEKpkhXysbG8iuLie/toqCumpqNWrqdRp0ej0uMjkqmRx/lSthbl6Euxv+mnSmvJjdeRfYefE8+wty0Oj1/xhyHXx8eWnkMAZGR3K2qITnP/mM44IKmdLN6njDf01ZGTVZp/DtObDVeQzg5+FKiK8nob6euCrlKORSZBIptY1qquoaKK+u53xhGRW19RQd2Yp/4hAkMgUnPr/WYBcYIcZOf4yi5K0EJA4HucHasAc9a/Dd3LMrL48dzoWycma8+RYFDY24dOpg04fXVJgmdojj82ET2Ftwgbt3LUHTAvA+TZxNSWMVT6V8x7nthxCkAmGDIu06HgMEq7y4I+peYt3jyapJY2XePCo1WYAl9LZ/fQalm4yhd0aZtrXkXGw9OGEeY68JcjrRjeGBNzIkYDJqfQMLcn/hSPlBi7h0R35IQeKiJPLmRKA5rt+97W9geuQQluce4N2Tq52CbmpUNz4YMI4dF7O4d8sKNBq9XdAJOqg7nsqrt8/mvuuGsyvzPE8sXU9NXSN12VnQqDH14Qg655ATdIZC37djBH07taN7VAgRgd7IpfbDdZlLq9OTmV9CWm4hqRcusX7NKiqlHij8mvvt9Haas62BXpeQIF68fhi9wkM5nn+Jd7ftJDk/37jfUO7KNm9EojQ2Y7G8tiPoNZ2vkEjp6ONPV/9gEvwCifDwIszdkyBXD1xlcmTmAQ+0Gsob68mrqSKvuoqzFSUcWLOeE7nZaAb0MD5HO4CDy4Kcj0LFw4P6cWuv7tQ2qvl8xz5+37KDmrOn8U7s73iQSSdSemQn3vG9kSvdDbdsZdmp5DISO4TTq30YCRFBxEcG4enaPOHfmYorqjlx6iwnCms5cCaHxc/NurZg17V7D/HJj+fx559/UqD0R2Z0QdGbQ86JlZfUPoIvpo6nsbGR+1at5URhkWmk1h7wbuwUz0dDxrG34AL37Fri1MJL9A3j8953UKOt54nDX3No4RZCBkXhHeHhEHhKiY4BfkOZHHYLKqkrh8u2sr1oGY265sWjd3+bjtJNxuA7ooFmi8+Z7IWHb4KcRnShl89QRgROw0cRQHLZbv6+uIBStWESS9NABEDKj8cQVEraT+9pGnV9rNPNTAzry6LsPXyUvs5p07UJdHvyLzB38zLUasegc5XIeX9AEuOS+jI/OYW3NuxA1BocSBuLL6G+VIBXp56G461A11QJPBVKRvfsyLg+cSTGGpr9VXUNHMvMJyO3mMz8UvJLq6ioqaeqrhFEEblcikohx11bQXiQPx07dqRzVBCd2wXh4+4CQEbuJXafzmX9kdOczSsxlacrhd6krnE8OWIQwZ4ebDh9jo927uGCsT+vdMsGJEolXtcNMx5vZsnZi6gCNuCzPq9JcokEmURKg1aD9V5BJ1CxehMSldI0OGIdav5yIKeQSpnVszsPDEjCXaFg0bFUvti+j4qaBupyshAb1Li3j7M/yGS8dtWp4yh9AnD1a14TxkupZGSPDozs0YHE2HCUchkarY5z+SWculBIRn4pBaVVFJRWUV3XiFqrQ6vT4aZS4Ommwt/LjZgQP6ID3EmIDKRDVDiNGi0qhfzagl2nhK7iyRMpyKVSUjJy+GPHcbalZaIXRQvgga2VJ0oN/TL+ly6w4J3XCfT05PFV69icmfkfA14X7yC+7HMHAI9t+JiDu/YSOTHebmgoaI5M4SNXMSF0KgP9hgOQXL6NvSVrqdZcYMc3p1G4yRhwe6yFxdeSrBfv1uNBT+8hDA28AV9FENm1GSzNW0BGzRlTf5w56NR6Gak/JiO4qIi6pReISl6Mn8WQwC7My9jG9+e2XAbolqNW62xAZ2p6KF2ZN3UyCYEBvL1+K/OPpZmaqoIONFUV1GacwrerIfy9NeSi/HyYNbwXE5PiUcplZF0qZf3B0+xLy+ZMTpFhndkW+nUqsk8id/XCLSDCVHaiQ3zpFe7G0MQE+nXrhEwqIbOglJUH0lh5II2KRsO8zCuBnlIpY07/ROYO6I1CKmVBygm+3nuQc6uXI1Gq8Bo+1OJ4w2er0dsm2RuUaKWPncUzWLXZADszq7KlBW9sZj8AkzrH8fiQAYR7ebEr8zzvb95NRnFpc39c2gnkXr64BIZbXsPqJVaXk4Go1+MV3pGBnaOYOrArg+KjkcukZBeWszs1i30nL3AsI49Gjc4mjc5UV1FAQ0UhHXoOJDbUj28fn3Ztwc41IELsN+sFhsa4c+dN42gX5EducQU/bDjImqOnbKBnDTx1aRG1uZlEDh3O9zMm0zUkiDc2b2f+8RP2gQcgEU3A23cpm7t3/m0DPGgetGjv7s0Xfe7AV+nBg9+9yunAMjwCXWyCB4CllaeQaPGR+zEuZAJJvsORSWScrz3FwqXzSc7cQ4ep/g776RxJI7oQ6dqJHt6D6eY9EJXUhezaDNYULCet6rgF5ACbEdf0nw4jc1UQN2MYb3WdQ4JXOz5KX8PfOQecgm5adHfe7z+2VaCL8vDm55tuJNDdjbmvv02yxANBIrHol9PXNVCRcgD/PsMQdM2Qiw3048HxAxjRPZZGjZa1B06xZOcJTucW2S30Ep3jMluaeQQ3/wgUvpaj3rXFuWgaqoiMT+S6xI6M79eZHu1DadRo2XzsHH/tOEZafqEhnZcJvSbf0AeG9uOWnl1p1Gr5fskyvlm5GhJ7G4+z7NMz32Z+fQtd4YhsxSqjZWe0KsE+4AyfbbeNjm3PI4P6ExcYwMmCQj7cspsDF3JtrLeK5P24t49D4eZj8RvWLzFlbSU39otn9uQxhPp5UVJZy7qDp9hw6Aync4ts0gfO89hc1aU5aBtr8YqIB+DovGusz84tIEKMm/wElTlpyN09mDD6Ou68vg/xkUGcyy/hi1V72HX6PGAoeOYFTpRCZfoxFAGBKMPCUKlkfDJ1PCM6xPDNvoN8smefU+BN6RTPR4PHcqgol7k7/3Y6ShuscuHT3rPp6BHKe5t/Zov8lJll59zKU0i0eMg86ec3mIF+QwlUGUz4i3WZZNWmcakhm8KGXCrUJTTq69GKGgQkqKQuuEo9CFSFE6RsRzvXDsS4d0EldaFR18CR8gPsLd3B+doMu5Az/Lec/nXm54N0iu7AvGc+IVDpxcvHF7Op4DTg2I9uRkxP3ul/PTvzsrh78wqnoOseEMy8aZMRELj798XsWrYM3wHDLKw6w4/pKdm3hYCkkUhFCcEe7jw4YQAT+sRT26hmwdZjLN5xnLLqOovCb13wnfUAFJ3dj3d4PHIPL4vt9RWF1Jbn4RubaCpLsaF+TB3SjfH9OuPuouTw2Vx+25rM7jMXTGUPLq9pG+3nw8ND+zO2cwdq6uv5IyWV35KPUWa0Hu0FDLXebtrmfCaYQ1WsNfQXeo0YZtrWUrRgARgdG8sDA/qSEBxEVmkZX+08wLq0M2CnP04URUr3bsWvz1CkErnF/ibIhXp6MGtEIpP7JeCqUnDoTA5Ld6ayPSUDrU7vNI+t02lPohSq8s8iSKR4BLcHIPmXJ68x2PlHiPGTHqeqIANRAh6hHUAK1/XswIOTBxIZ5MPO1Cze+3sb+VXVFoVOL4iUJm/Hu+cAJK4qRKnBNeCVcSOY3qsbC1NSeWXzVnQSvUPgTeoQx6dDx3O0JI852xdTZ+aHZw08T7mUN+JvZFh4N1blHeTLs0uRSAwuB9bAa9oGlkEXFRItVes0DOwxmNHDrqOda3vkkuZRQQCdqEUq2IZ1Km68xKmqk6RVneBsdRqN+kankAMsQKfWSWl3VOCrB19HI9Hz9NH5HCnLM/ymA9A1RRnelpvJfVtX2O2jawrPNCCyHd9OmUhpbR1z/1pOZuYF6s6cwrtX/2bYmb3xS5N3ENi1P7NG9uf+cf2RSiQs2p7CLxsOU1XdYLpv88Jv1//KQUUoSN+Of6f+SBWWHdyNDZVU5qYTEGdoQuulxnmhEnBTKZgyqAu3juxFsI8H6TmF/LDhANvTDQNNVwK9gPOneXbO7UwcNIA6tYaFKSf4NfkY+TXVpjQ5Ap/1vstV+bqNSBUqvIYPM22znZbV7Cs3vnMn7unXm1h/Py6UlfPN7oOsST2N3okvpK6hnorjB01WOjRDLszbk7mj+zIxyWBtbTh0ms+++Joy9xgkNN/oleZxk/RSKM89icLVCzc/g7/u4d8dw+4frUHxTyToQCKRotM2ItGJ6BHYmnyOHSmZTB/Rg/snDWDZi7fz7br9/LHrqKFpC4iaBhAFpFKl6Y2jR+TVtVspr63n/sFJeKtUPLF2PY06LYZ3loiIYFpTYNW502j0er4YPoHfR0zn9u2LqNU1IEFvsY4FQBU6nk5ZwG1HU3h00myi3AJ54+TvlKqrWnWfcokOtV5Ges5JzpVkkRp6AAkS/JVBhLqE4SnzxkXqgkrqgkavoV5XR52ujsKGfC415NOgNyyF2LwmhMwGck37zSEHoNHJuKXdddwzbAzpFzN5LnMZF+tqnE4Bm9spiRd7j2Bj9lke3LbKrntJE+iu79iBTyaOJaukjLvmL6O0qg4atUgkcgvQmVeGnp078clzd9IpIoidJzL5YMF2CsqqTUBsqgAWo7N2Cr3goJmj1+uQIrM5R4IUUas1WCXS5t/RI1BXp2b+pqMs3JbCuH5xzBmbxGf33MDp3CK+XruvuZXRQl6b63TWBea89T59briRuwf2YXbvntzeuydbzmXy+5EUDuVcBItFdGyGGi7j16zOFK2mczVtN7PuglzdmN6jGzN6dsXfzY3ThcU8tnQtG0+da5XDt9jYiFSmsOiOCPH04J7rk5iUlIBOr2fprhP8tjGZwvIairIu4h8XgUTaXL9aymPDMfbzWZQKhnM0zfnd0oqTVwV2gmi4OUGUgM4wUicxZrYOPfM3HWXLkXM8M2M4T0wZwrBu7Xlp/gbyyqrQ1dQgd/FAIgpYryv92Y59lNfX88LoYXiolNy/fBW1OjX2gLc+8yz361fy9YhJ/HXdrdy+fSEV2jok6E2LpJgklfHJxvnk+ep4vf9Mfuz7JG+lLeRo+alW37NOFJCIgglaF+uLuVjfmqhYllYc2EIOmn3nmj57yd14PeFW+vnHsWL/Fp7+8xPcxiU6ndT/UPxAnuw5hNXnT/HY9rXotI5Bd3OXLrw1diTHLuZz38KVVNc2GveJIAg2oFMg4e7RfZk7ui8lVbU8+e0qtqdkGo7BFnLmhd9RgZfYi32qF5HoQbCCh1QvQdCLhkphfg3jcXqpgE6rZ/WedNYeOMX1feO4Z0I/vrxvMsez8vli9R6Szxss4lZBT2+4/6zCMp5buZHPt+/j1t7dualnF8Z06sCFsnKWpaaz/GQ6BbU1FiAyXwzoiqQ3/r6V07FSkDIiNoapXeMZHBOFIAjsyDjPn4eOsTcrx7H7CJagE3SAVkSCBInesEbI3WOSmDawKwB/7zzOLxsOU1JZa8pfAQFBq7dAuDXgWpvPepnZsXq9MU0ikhZeEFfHshONidMLpkSbCjkieqlAYWk1T3yzivFJnXlmxnD+fmYW7/69jb83XUIiGCq1vc7r3/cdo7K+kXcmjuKXm25k7tIVVGkbsACeUVvOG9ZI+GHkZBaOvI1Z2xZQrK5GYizO5laeXipnTcYxzusreK/nDD7uOZc/L2zn9/Pr0VhT1450ogQ59tcHaI3sAQ6wsebUOildvTrycsJ0POWuvHtyBV9+9TGoVKicgO65HiO4NyGJpRmpPLVrg2HZQwegu7NXT14cOYxdmed5ePEaGhu1zX1zWhFBbK4UEj2E+XnxwexxdIkMZummXXy0ZC9qUeUUctYF3y7YAEFv3skvIOj0SMxi6IGxcugBvWhTKZoOk5jBUQ+s23eKjYfOMGlgAnePT+KnR29md1oWn6/cwzljeHhn0BNEjOXc8P1SeTWfbN7DV7v2Mza+Ezf2iOeJoQN5YuhAjuXls+lMBtsyssgqK+efWHVNvy2IhmfgoVQyMKodYzrFMqx9NO5KJZeqqvlxXzJLU06SU15pyDscwM3BCKtEp8fV1YV7RyVx+3W9UcplrNqfxrw1B7lUXm3zEpOIEtDqQHb5eWz4/aYRbMHiOIlORKIzbNPbWMeWumrNWInWcAOCvvnm9VIsrDw9Auv2n+LouYu8fucY3pp1Pd3CfXnp0+8dvvlEKaw8lk6dWs3HN47jj1umcuffyyhT12MCngTTUPyunAvM2vg3P4+ayqJRtzFz6wIKGioMaTRr1ur1AnpRyrnqMm7f9y1PJYzjtqjh9POL4+30RVyozUUh1VlAyVw6UYJOlDjcr5A4PhfsA86wvRlyKomChzpMYGrEQLJri3ks+XfSKovQiwKCKNiNRyfqBN7oPYZZnXrx+6mjvLJvi81cV3PQPdivL48PGciGU+d4atk6tBq9xUCEeSWX6GFY5xjemjUGEXj2h7Us+ONXvCISUKmUgHPImRdqc6g5kqAXDb+tFxEE8+sIxvKGTaVoAl8TuMybuDr0LN+ZytoD6Uwf3pM5Y/uw+LlZrDqYxjdr91FYU2txroX0lpZt07XVjTpWHktnxYl0Iny8GJ/QiVFxsTw7YgjPjhhCYXUNB7JzOZZfwKnCYs4UF1Orthy9b+oztBnBFASifLwZNnQoPTp3ZsiA/iQEBSKVSCirrWNd2lk2njrHvvM5zU1VWrbkzL9L9CCVCEwZ3JuHbniSQD8fth47x1fL95JdWO7QUhf0IlK9xNCi+6d5bC598zZnsISradnpRQStpXVnXfCaoHeppJr7P13K/ZMGMGdsXzqHB/Dsgm3klVU5fLtuTsvgQe0qvpw2kfnTb2LWoqWUNNZiD3iH8/KYuX4Rf1x/M0tGz2L2toVk1hQb1gA1Ak9bp0EvVaDTSahBz9upK9l56TQvdJnCj30eZn72DhZkb6ZRr7ELPZ1eMMLO9pErJFqHlpu5HEEOoKd3Z56Im0yoiy9/nd/DN2c3U6M1rFGqFw3wsgadRC/lg/7jmRLThW9PHOS9wzuxjl5iDronBg7ggYFJrDiRzgurNqE3OgtbDEQIhvyUiQIPjRvAXaP7kp5TyDPfraGguAr0IlJRcAg5R4Vf0InIZBLCg32IjPAjwM8dD3cV7m4GaGq1etRqLRmnlTQKwRSW1JCTV4ZOZywher3R2hGRaI3lzKw5ZF32DNsM+9SNOn7fkMzyPanMGduX6cN7MCaxE39sO8Iv25Opa9Sgl2DqDxT0WFi3jnSxpJLvdx7iuz2HCPPyZGBMJEnR4QyIascNXTqbjiutraOgqprC6hrqNBrqtRr0ehGlXIaLTI6viwshXh4EebijMM4uadRoOJ5fyDe7D7L/fC4pF/MdRgduLeQAhsRF89gNg2kf4sfh1NM8M28jJ7IKWu6O0Jk1N50ATtCJ+Pm4ERHmS5C/B4H+HriqFMjlMmQyCXX1aqprGqisqic3v5wjFefQ6PStA+XVGI318m0ndh3+CFWl59Fp1XiHxAGGwgeGzkcwWHomL3epgCiBgQntePOO0egFKY//vJqU8/km95Qm1xTzUbGk9hF8e8sNFFRVcduipRQ11FiO0oLJ+biTvz9/XH8TCqmUO7cvJqU03xBmR9NA5cYD+N84AEEQTCO1AH5KBU/Fj2dsaC8KG8r58uwa9pakmO61abT2/K/7kLkqaD+9p80+ezIHm2mbORCN+/0V/jzccSJDAruQW1vCm6nLOFZ+weQ/B1AwfyeCSmWKb6bXSVAg5+tBUxgRHssHybv4+vgBp6B7Zsgg7unXh8XHUnllzRYwh5xZ/5y6shShJI/v33qZoV1jWLL7BB8t3IFGrUOiEylM341fZE/kKneLt3xTBTAvtDIEeiSEk9gtksRu7ejYPhiZ1HIAqbauEVEEuVyKUmH5kmhs1JBxvpj0cwXsP3yKTRtX4x3ex7RflJg1Z+2UPcN3436z0dtQP08emjKQ6/vEUVpVy7frDrDsUCo6fbN/aOGBDUgUKvz7DLMZvTX/bDsKa/gf6OFG56BA4oL8CfXyJMTLg0APN1QyOS5yGVKJhAaNlnqNhsqGBgoqqymoqiazpIz9q1aQWViMR9IgO4MUtp/tzXqwhlxcSABPThlC347tyC4s55MFm1i29G8C4wYajmuhOyLv1DZCowcagkBYvcTaRwaQ1Cua7vHhdGofhJ+vu0WaNRodGo3OMB/YRWFTBi4VlnMsLY8jJ3J4+fHx15brSWJiovjNj0tYvnor23anovAyDBs3FT7zgmde6JoKnFtNJr9/+jqhfl689tdm1h47bQO8pnNEKSRGh/HDjMlcqq7htoVLLIBn+F1MwAv39mT+9Tfj5+LKPTuXsr8wG21RMerMbLyG9wCwmXEhl+jo4RPF0/ET6OgZyomK8/yctZnjFWdM95zz+15krgrDLAajFE7G1u01ac0B6Cnz4baoYUwKS0In6vkpczsLLuylzggN84GIogU7EFQqU3wzN4mKH4dMo09QBC/u3cSCdMPCO45A99zQwcxN6s38I8d5c902h6ADCFIIfDF3Mh2j2/Hhou38vfOEsavCYFUUpG4lpOMQJDK5xVvevALExwQxZlgC1w2Kw9vLFa1Wx6mzlziRmsuF7BKyc0spLKqipqYBndl5EolAY00aCV0H0q5dCB3aB9GxYxCdO4agUspRqzUcSc1ly65T7D54jjpNs4lhr+yBc+jFRwbxxE1D6NUhnMyCUj5ftYedpwzuKgUHNyBVqPDrO8zsNyyvZf3Z3veWtpurKQ9KdhhA6ztgmMV2p58dQC7E04MHxw9gfJ/OVNbW88OaAyzdlYqmoZGikzsJ6TICQXBuqet0GgrO7SK8w3DjsSIJnUIZOTiOof07EuDnAUB2bimnzxRw5twlsnNKKSyuorikmsZGy/api4sCX29XIsJ98ffV0a1bB/r2jkMuk+Luprq2YBcT01ncu/8AIUFeVFTUsHzDCZatP0Z5jcHNwrzg2bPyKgrO4unpyndvPk6fjhF8tXovP2495BR4vaJC+WHGFIpqapjZAvACPNz44/qbiPH05am9a1i4bDFyXw9cOxunxdjxxwNQSUVuCO/NnNhhBKm8OVFxgSU5e9hVnMaF33cgc1EQcbMhH5xZdU2yZ91FuIQxJbwf40L7IBUkrMs/yg/ntnGxzhA+3NqtBKBk4XYEpcGyC1B48MvwW2jv6ccTu9ay5pwRyC2A7s/kFN5cv90Scmagk+ihY6g/X98zGZVMwnPzNnAwLQdoBp1ep6Xw5A7C4gwVxBx0EonAkN6xTL+hD13iQmlUa9l3KIOt29I5kpJDfb3a4WiduQryDuPjG4vKxceY/wIKuZQOMa707R3FmNEDCA70oqFRw459Z1m+/hhpmZdM518J9Ib3aM/DNw4iKsiXIxkX+Wzlbjb9/asBdr2HNV/byk/PfJv1Z3O1BnRNEnRQvHMDEqUKv37DTNvM95s+6223N0HOS6lkzqi+zBjaA4AF247x87pD1NYZfEwlOpFLJ3cS0L4vMoWL0+4IdU055YVn6NxlKONHdmXi6O6EBXvTqNZyIDmLAwczOXzkPCWlNRbXaI0qyrPQCyK+/rEEBXqx6Lf7ri3YeXiGi70HPUK70Abm3DmVoQMTaGzUsGhVMn8uPUidRuvQyhOloG2so+jcQUJ7DefVO8cyIakzf+04xgcrd6ATWgZeYU0Nty74m5LGWofA83BRMG/UFJKC2/HsL9+ykGJkLjKLZfCsV3Zvgp6rDCaF9+b2mCGEuPhQ1ljNws0r2Jy6n5I+HoiIrV7pXaOX4q/0ZIB/Z64PSaSbdxRqvZYN+cf4OWMHefXlphFea7cSMPTPlSzajqBU0vOWG/htxHS8FCru3bqCfbkGGDkC3dODB3Fv/z78cfgYb23Y4RR0PaND+fKeydTWq5l+/9NUurVHIpWZQCfRgaahhrLzxwiNMTSnm6y5gT2juf/2YURF+JFXUMGS5YfZtDWN2jpbwEm0zh0/iopScXUNwN09GL2smSqVFdlo9Y34BXYioXMYo0bEM3J4PG6uSk5nXGLB8kPs2H/WNIX0cqEnlUmYPKgL90zoh7+XG2u37+H9H/+iMrCD4ThHgHOw3dk2ZxJ0ULzbYNn5JQ0zbbM4xgnkVBIpM4b2ZM6oPrirlKw5mM53K/ebRlihuclaejYZT99IVJ4BTvtcA93UzLp5MOPH9Echl3HsRA4bNqeye9856q4gj81VVZ1Hg6Ya/0CDA/OOzc9dg7Dr9zB5uQfwC06gQ2wUs2YOYNSweErLa/nprz2s3p6KKBoKnb1mbUn2UeSefriHRvHEtKHMHNmL1QfTeXXRJjSIToAXxrxbp5BbUclti/6mTF3vEHgKhYTPEoczrmsvvjt5gA+ObzdbEk9vs7q7uZUHoJTo6effgamRfRng1xGZVEaZuoajZRlkVOeTUXOJwoZyarQN1GobUEhkuMtc8Fa4Ee0WRKxHCF28oujkGQZAdm0xy3IOsTbvKJWaegvIATZuJWDonytdvJWkLj3464U3EUWR2zcuIa2oyCKemTXoHhnQj0cG9Wf+keO8sW6bU9AN7BzFx3dO4FJZNQ9+tozUXevwi+qBXOVuAp2gE2moKaXmUhZB7QxlMSbMj0fuGkHv7pHkXCzj5993s2vvWURN8zO0LvgtvfVLys4gl7ng5dnOBCiA0rJzCHIl3j5RprLk4qJg1Ih4pk5OJDLcj9y8MuYvP8SG7WloaXZ1gNZDT+UiZ+Z1vZg9sgcuKiWrD53ix42HuFjRHITTekZGk6ynh10u6JpUvNO2Cd1SwEyFIGVK/wTuGtWXIB8PdqVm8fXyvZzLK3Ho8F2VexqpXImnb5Rhv1WXRMd2Acy+uT9DkmJpbNSwYXMay9ccJSe3zGpE1hZurbXuahpLqK7OIzioBwDbtr9wbcHO0zNc7NP7QXJydhMckYRMrkKUCsR1DOaBe0fQLT6clLRc3v9qA7lFlXabtWpNLUVZB/GLS0Lq6s7ccUk8cMMANh49w/N/rncKvKT2EXw/fTJZZWXMWrSECk2DXeBpK8ppSDnBpy+/yqyE3qy5cIon969GrdeZlmoE51YeGGZR1C5PYUSfAUycMJ5u3lGEGJtZzlSrbeBsVT57is+yp+g0WTVFFn569iAHWKzpqtcJDM5T88Njz1PQUMMdG5eSXV7hFHT3J/XhyaGDWHL8JC+t2uywj67JteSjuyaQkV/Cg58vp7KqnrLTh3APisbFzd9iEKK+JI/G6lKCIrsze0oSs6f1o7ZOza/z97JqbQp6dXMtNK8A1gXfWUWoqLqATqfB17+jxfai4pOo3P3xcDeEaje3+pAJDB7QkZnT+9EpNpiLBeX8tGAvW/adNr1wDecYDm9N01adsZ9H776N2VPHIZVIWH0onZ82HSK33BZ65tcw15XOjS3aswGp3DA40iR7gAODo/Hk/gnMGdWXYB8PjmXk8fWKvRw9l+cQck2NktriXNR1FfgHdzHsN0KuXZA3d88czPCBnaiuaeDP+etYvuYEaq2rmQXY8kusJeCJUoGGxkpKy84QFtIXgK27XrzGYOcRJib2uIecvH1ERg5FEART4ROlAteP7MKD945ALpfy9S87WL75uGGf0cprKmxV5TnUVeTjG9cXZFJmjUrk8WlDWH/kNC/O3+AUeAM7RPLtLZNIKyxi9uKl1Ok1FsDT6zRU7zuAS0IssvBA7unShxeThnPwUg737V5GhbreBniADfTAAL5L83cicVESNs0wGuguU9HeI4gApSfuMiVuMhVqvZYabQOVmjrO1xRRUF8B2DoiO4OcIe3NoLuzYx9eShzB4XOnuffwVirqGpyCbnbPHrwyajgrU0/x3MqNplh09kA3JC6aT+ZO5HRuEQ9+vpzaWsPUv8qcU0hlSrz8YywGISryT9Ehuh0fvHEvHWOC2LQ9na+/20pVeZ3p3poqgXlBt18R7Dd1autLqKzLJySwh8X23MKDBPjFo1R6GstBE8CaiSJKBfonteeu2wcTGx3I6YxLfPHTNk6cNQbmvAzo5R8x9JslDB7PHWN6M3VIN2RSCZuOnuWnTYfIKCi1AJz18q9XatUBFO01wi5xmMV2c8i5yeTcNKgbtw1PJMDLjWMZeXy/ej+HTue2CLmm/NDV1VF0/iBhsUMQBAmeLkrumjGQG67vgbpRy98rkln09z5Op20lPGIgUqnc4UvMEdgc5bNoHJHV6TTk5O8lKtzAkS17X7rG5saKoKmvRilzM2aAaJq1oEfCxo2pJB+7wNOPj+XJ+0bRPT6c97/fRH2DBolWMDmFenhHoK4tpyIjBe/YHvyx+QiCAI9NHYJOJ/LSgg3orJw6wZB5e89l8/iydXwxbQLfTp7EPctWmubS6vRqag8fRR4QgDwoGHQiP5w8TEFdNR8PGcfyMbdz1/YlZNWUgNHp2N6sCzBAr8nXTUIzuMrVGpJLL7bwoGytOGiGHNgHnV4nIJdIeLPPGG7t2IM1B/Zw95efoBza3ynoJnfuzCujhrP5TAbPtwC6/p3a8fFdEzibV8yDny2jtk5t6p9TuvlQX5qP4GM52jp6cAJvv/oAjY1aXnx9GXsPZNi86Ztn1Fhbc/YLvWBWeUSZBKXCg8ayStDqEATjM9Fr0arrUUrdEHQiotTct9NY7mQSBJ3IgX0ZHDiUychh8dw9ZyjfvHsrm3el893vuygsrzGmtcknz7F/aJOfXWl5LR8t3smvG5KZObIX04Z2Y2zvOA6eyWHhrhR2ncxCK4gWIGry2btiGR+dvZDnUUE+3DyoO5OS4nF3UbL/VDYvzFvHkbMXbXzlms4B+6OsUpkLMpkL2toKbrlxBHfNGIi7m5LVG4/z6+97qaiso6YiD5XKB7koBa3eKeBak8dgyOemY2VIkQoytI21yFXu9k5vvs5Vsezcw8ROkdejRYu/T0fTG9LmbSsTmHFTEnfNHkxufhkvvLuCnMIKi348vSBSmpeKTt+IV0x3JCoVd43ty4OTB7J493HeXrrNrh9eE/hu6BnP+zeMYdPZDB5euYbGhhpqTqQg9fPGJT4OpIJFENCeISH8MHIyKqmcB3YuZ0/ReQC7Vh40W3rFC7cjd1PgP7m/zfMwb/KaQ81aLUHO8F/AQ6rih2FT6Rfcjq9S9vPSq68iUSgM8c3MVo4yB92o9u35asoEDmVf5J4FK9CodQ5B1yM6lO/uv5HswnLu/WQJNTWNJtABiI2NFJ7aQ3iHYUhEAalE4KFZQ7hpUh+On8zljXdXU1ZcbXhuTiBnXvitC7wzZRceINi3C0q5ofDXasspr8omLNDg9iNKLa058//mlp7SVcGMm5OYPrUPelHk5wX7+Ht1MtpWDGLkpRjCLAV3GWbRvPV0VTJtaDemDulGiK8nheXVrE0+zcoDaWQXlRuv4/jerC1Ae4vUXDpg6LML6DUMQQcuCjmje3ZgYlICvTuEozbG8Fuw5Rjp2YV2Qy215PTd1GSNChB48fGpdO4UxZHj2Xz13VbOXygxvFREkUs5B/D2icFd2byE6H8ijy3utywNVzd/PNxC2HzglWurGevlFipGhPTHyz0MN5cAU+GzV/BEqUDP7u149flJIMCzby4jLeuSJfAkIpUlWdSW5eIe3hFVQBiPTh3MHWP68NWavfy4xdYtxRx4t/XrwUvXD+ePXXt57L33UMXGoIhuZ7J7raMeB3u688voqXT09ufdozv46cxBANM6n/agV7Z4KxIXJX43DDBtM2/qWktrB3rmwQnsQQ6gk0cg3w+/kWBXD57ZvYEVmelUrtiMRKnCc/gwQ7qsQNc7NJTfpk/lVGExd/6xlPoGjV3QAbQP8OW3R26hvKaOuz5cTEVlvQXomvrois8dxMsvBm/fYN54YgID+8Ty6x/r+GNRuqlvTmL2prdXAWwKfysrQ3HlWWRSFT7u7UAmobjyHFKJHF+PKESLZmvL0BOlAsGBnjz8wEgGJsVyNrOQ97/ewJlsQxAHR8DLTd2IVK4kqNsw02+YQ08qERjcNYbJg7swID4KmVRCenYhO05msvNkFmcuWgaJuBw/u0sHN+AfGMiUW25jaEIMA+IjcVUpyC4sZ/X+NJbvOUl5df0/gpyrXMbdMwczdXwvCotK+fLbzew7lGthqdfVlVBWcpbw0H4m/zrDNZ0A7gqAV9lYQIO6kiCfeDYlv3Ztwc7DNVgM9etGu8B+CIrmsOPm0LMudKHhPrz/1k34+brxyoer2J9ywWaktlFdRfnFNPQScA2M4MOn72Ji/wRe/XMjK5LT7QJPp1fTUJTPE6OG8NjNU/l0206+Tj6KeQBQsAWeq0rOR0PGMi6qE2sunOKZfeuoF40+SFbQAyj72wA7n0kGj3OpvVeyHemsXuVNkANb0E1sl8D7/cdSpW7g/q0rOWJcMq9i1WYkCkPkWmvQdfDzY+HMmymtrePWXxZRUdNgAzowfA5yd+P3x6ajkEq54/2FFBRX2QWdRAt1ZXlI9eX88u1bxHcI4bU3v2XT9lxclT4OrTm7kLPpyG65fdegqeZSRRoRQf3Q63Xklhwm3C8RucrV8lmagNY66A0Z2JFHHxiJl5crC1cc5pdF+2g0pscaerlpmwyw6zLMeH7z7zZBz3CeYanQcUmdua5XLF2iQpBIBCpq6km9UEBq9iUuFJZzsaSSgvIqahrUplXTJIKAi1KOn4cr4f5eRAR4Ex8eROdgDzpGtwOgqKKGXcezWHMgnRNZhjVRWgM5wzb7oEvqGslTD4wmyN+TletT+PzzxVzMTiUkrC8ymRKJVo9aXcOl/KME+ifgqvAxXs8B5K4gj82lwZDHEf592Jb63rUFOxeFt9g1corpzQu2Bc+80DUVOG8/N957cxrtowN5/aPVbD90zgZ4OolIQ10pNWUX0TVU8sfnbzKwVwJ3vfsjB85eQC+AXtSgqa9GW1eFtr4GeUAAyvBwPpx9C1O7d+Gl9VtYmJrqGHgAEhFRKnJv174823sI56vKeHDXSs5WG8JMm6/mLpHqKV28DYmLEl8zy661sgc4w2fDdoUo48XeI5gdl8jBS7k8uG0VJTXGTn+9YArT7TV8mAXogt3dWXLbdARBYMYvi8gvq7IAHTRbda5SGb88fDORgT7c/dHfnMkucgg6QS/i5aHis5dvoF14ME8//zVbth0mKLCbBehaCzlBp0Mqk9C+UwgdEsLo2DmU4HBfvHzd8PJxQxBArdbSUKemuKCCvOxS0k6lkpJ8htOnspBJlAR4xCKar0pmbuE5KXtgCTx3dyX33T2cCaO7kX2xlDc/XcvpC4Y8Nwdek2UXkjDcsM3O9DBr6AH4ergysEsUPWJD6RIdQvsQPyRm09oANFodWr0eF4Xtcptl1XUcPnacY+kZpJZKOJVjG/bcUdDM1lhzD80ZzqTR3cm+WMqHn27gZHoegk6kovwCtRW5eHlHgVZHRVU2fh4xeLiH2IecA8B5+brRLTGKmLgQwiL8CG3ni5uHC0qVDJlcRm1VPZXltZQWVZN59hLn0vI4nZpL1sVUtLpGTuSuuLZg5+7iLw6MvRdkZuMjdqBnD3gqdyXvvzWN+I4hPP/ucgsLz3q2hVbUIKeBv964B19PdyY++io5xSVIpFKk7h5IPTyRenkiKOU0RTz+dvoNDIyJ5O7Fy9mdk9Mq4A0IacfnwybgqVDy6qHNLMo4YeaPZ/ivLa0AqRSFn9sVPTN7kAOIcvXl66GTifcN4ofUQ7x/eJchDh2YnIW15RUIggS5m5cJdG4KOQtm3Ew7by9u/XUxZwtKLCFn1U/33m1jGdOrE49/s5I9x89bWATWoHN3VfLF6zfTLtSX+x/9mCNHzuHjHYNML2nZmjPBUIdEKiGxfyyDR8bTb0Q8nt4Gy6yyvJaLWcVUlNZQWVaLKIoolHJcXBUERfgSFumHq7shUnFFeTUnDpxn5+aTHN59FnWj9j8CvcSekTz7xDh8vV35dfF+/lxywKIvr7GuAlEuQeHiaeHv1xL0DOc3f3ZRygnz8yQ8wJtgXw9cVXJclYb5oXWNGuobNZRV13GxuJK84kpKqmpR15QjSKQoVJ4W171SyAk6kS6dQnnpsfGEBHmxcOkhfv1jD5oGrfF4Q57V15RQXVOARARP9zBUSm+H+Wu4ruGHYzoFM2xsN5KGdCIy1rB2iE6r41JeOfk5pVSV1aJu0KDV6nH3VOHl605gqDehkX5IJBJ0Oj0nk8+zfu1Onn/zrmsLdr169hLffeVHlv2+l+zMoubC58TKMweeq4eST96fTlSEH0+/uZSjpy46BJ5eKhAe7M0fz8+goLya2z9fSK1W2+yKYtWH5+qi4K87bibMy5Nb/lzE2bLSVgHPX+XKp8PGMyQsms2553jl4CYK6qpN0ANLa695m/3mrN5On5055AS9hDvjevNEj8E06rQ8uWsd23KzMAVsNILOcGxz0xVAppfw3ZRJDI6J4r6FK9hzNttwnIMBiTuGJfL45CF8uXwPv2w4bDHX1Rp0Lio5n7w8jbj2wbzw2lIOH71g3G/bPyfo9HYhp3JRcP3URCbf2p/gcF9qqxs4uOMUB7amc+Z4LkX5FXafmbkCQ73p0iea7knt6T20E77+HtTVNLBz40lW/LnPstxBq1oYYGvlPfrgKEYNiyftTD5vf76OnEJD2pwFGYBm6Bm2Y7bdEnzmcuZ352g1LmfrdzgLq9UEOrkgMGf6QG6d0peikire+XAdqWkXWxxFd2atN+XxmBsTGT+tD+3aB6LV6DhxKIuU/RmcOJhF5ql8tBrnzVkXNwWx8WH0GBDLoDFd8Q3wwMPL9dqCXYeYzmJq2nFULgo2rTjKvE82UFVRZwE9R8ADQ4Hz9HHlsw9nEODnwf3Pzud8QZkF8KwjpvTvGskXD01h9aF0Xlm4yek82iAfdxbPmYFap2Pqb39R1tjQIvDA8H1ulz480WsgWlHk9UObWZp1EsACemAffPZkDjgAUScQ6eHNxwMn0DswnG25mTy/ZyOX6ozRbq1WebcGnaATeGHYEOb0TeS1dVtZcOSEJeSsQNcrKox5j0xj67EMnvthrUPQgcFR5t1nbqBfrxhee2clu/edsws6Z9bcyEk9mfv4GLz93ElNPs+KX/dweMdpNE0F/3L6c4zlSSKV0K1vDMMn9mDIuG6oXBTs25LGH99t5/zZS/8YeiOGxvHYg6OQyaR89O0mNu861Xy8VV+e+TXAMfSa9zuGnz21ZuGa1vTLCTqRkEAvXntqAvEdQ1m3OZWvvttqmt7VEuTAfv6qXBTcOGsAk28bgKe3K+nHstmy/Ah7N51s9re8zD67pnz28Xdnwb6Xry3YealCxDHd7+emu4cy5fZB1NU2Mu+TDWxacdSulefIwvMP8uS7L2ZTV6/mnuf+pLq20S7wmsJD3TexP/dM6Mfzv65jXcoZp6GhuoQHMf+Om0nJL+D2xcvQ6vX2gQcWAxeiVCTCw4tPho6jb1AEhwsv8u6RbRwtMTimWkOvNRKN4PJSqHiwa39uj0ukUafllX1bWJ6ZbmnNgcmHDmxBd2N8PB9MGMPvh4/xtpP5rgA+KhWLn74NtUbLrW/Np75eYwM6wGTV3TtjELOm9eOzrzezYs2xVoNO0OkIj/LnkZcm0a1vDGlHs5n33hpOH8813o+dwq91EqlRZsd91FiuPLxduWHWACbNGoibh5JNK47y25dbKC+taVULw/y/OfD8/dx5+bmJdO8SwZotJ/hi3janUVXMrwOW0DPsc3x7rZEzwBn2W0IOLEE3rH9HnnlwDAAffraBXXvPXr41Z2bVSUU9Iyf15I6HR+Ib4MmBbadY9N22K89jsJvPGzI/utZgFywOCJ8FUimRHYJ4+PUpJCRGsW9bOh+9uJRaY19Aa4AX3yWMz96fwdHUHJ5+d1nTGjx2gSeRCXz/5E10DPPnlo/mc7G00qFLiiiFiV3i+GjKWP48ksJrW7cbf791wJMIAtM7duPxXgMJdHVnY/ZZvk87YIKeucwBKOps3+S+ShdmdujF3IQ+eCiULM04yYfJuymsq7ks0HUPCmLBzJtJzs1n7vxlNsE3wdKq+/TOiQxOiOaO9xdy+oLzAYkR/TryxtOTWLXhOJ98vrFl0Jm97Ufd0IuHXpyIulHDzx+uZ+OSZERRtKwALRV8Z7KuFFIp7p4uTL9/BJNm9Uer0fHrl1tY9dcB9BLzaWSXBz2JXMIdswYx8+Z+5BWU88pHq8k4X2Rj5RnOaf4Z0cp6aylyvzkIW3I+drbOg73wWkqplMfvvo4Jo7px6mwBb7y7ioJLlVcMOkGnI7pjME++MYXY+DDSj2Xz47sOXmT/gTy+9mCnDBIHRMw2fJFKEQSBG2YPZO4zY8nJKua1R/7kUqHB6bQl4IlSgQlju/PUI2P49redzF912Gn/XZCfB4tencXp3CLu/naJKUoK2AfeMyMHc1f/3jy6Yi1rz55thpwj4IEF9FxlcuZ26c3dXfvgqVBxtCiP+WdS2FWQRXFDrcNnpJBISfQPZ2J0Z25sn4BKJmdLbgYfHN7FmfKSZshBq0DnrVCy/I6ZAEyb9xeVZi4mhmMsQTeuRyfevWMcny7ZxZ8bjxhuy0E/XaifJ798djvns0t47JkF6Bp1NqOu9kAnFfXMeXwM024fxLH9GXz41ELKS2qcVwDtZTRxZHaoYQ4+qZSQdn7c//Ik+gzpRPLus3z8yrJ/bOV17xrBi89MwNNDxYffbGLTznQLoLUWetAy+KzVmpXY7EFO0IkEB3ry5tM3ENchmD8W7ufXP/ei0+ktQHc51pxEr2fyzP7MeWw01ZV1/PDOGnauO2HY+Z/KY7DI5w3Zn/13YCcIwpvADRhmyhQBd4iiaGu6WMlLGSQOCLnVpuD16NeeF764DZ1Wx/P3/kpWptGx0gp41qO0olTg1RcnMbhfB+595k/OZBc7bM4CTB7ShZdnjeLNBVtYcjDVaf+dVC7h99k3ERfkz7TfFnCuvOyygGc4zgC9mzp04c4uiUR7+gJwqqyIU+VFlNTXUdpQi6tMQYCLG+HuXvQODMNVrqBBq2FpRho/n0wmo7LM8NztWHOABegM/w2fJXr44abJDIhqx62/LuJkbqHZflvQ+bq7sOy528ktrmDO+4sQdaJD0EkkAl+9fgsxkQHMfeAXCgsqWwU6uQDPvn8Tg0d1YdX8/Xz/9mr0On1zJTCvAPYK/+U2Y83BZ1XuAMbPSOLu5yZQX9vIe88tJuVg1j8Cno+3K6+9eAPdu0SwetNxPpu3DbVa2yromV/zSmVvrqmjJivA4KRYnn94LIIg8M6Ha9l3sOWpfM6sOXdPF555eyp9h8axf1s6n72wxNAn5whyjgDnKJ8d5PF/E3aeoihWGT8/AsSLonhfS+d5KYLEAaG3miXSmHCplLBof979ZS5KFwVP3zmPCxdKjcdIbNxSzAuZu5cLv3w3h8qaeuY8/Qc6nd5p/923j08lITKIyW/9RnFtrdP+uwBvN5bPnUllQwM3/DqfBr3uioAHIAAJfkEMCotkUFgU0Z4++KtcUcnk6EWR0oY6iupqOHzpIrvzszlQkEONxuCs7MiaA8egA0xRTJwNSDSdI9HDuzOvZ1TPjsx4az7n80otQGc4rhl208cn8tCc4bz9wRq2bEkz3LbRArAZdTWz6F78aDoDRybw/TtrWPHbHvuVwLoCXEkzx7pSOIFeu/aBvPDFTMKjA/j+g3WsWnDgHwFPKhG4c9Ygbpven4zzRTz3znIKi6scAs9wvv3baAl+jibSWy9CY23NSSQCd88czG1Tkzh97hJvvLuK/IKKfwS68Ch/3vx6Nv7BnvzwzhrW/HXAcExrXmRX2pRtasbmffnfb8YKgvA80E4UxftbOtZLESQOCLzFmMimwtQMvOBwXz5eeB9arZ7HZ31PSalxlMYB8JoKWP8BHXjntRv58qdtLFp31Lk7SpAXS167ndWH0nl98RYT7MB+c3ZAdDt+uW0q8w4m8/723cZjWgE8sICe4XjbZ+4qk9Og06K3kx92IQetAl2cnz/L7riVLWcyeHzpOts+OiurrntECL8/OZ156w7yzcp9Tt1M/D1d+evruaSk5fLCK0sd9tNZD0Y8+OJEJt6SxHdvr2bl73tbrgRWFUBsRYUQ7L75zf067UBPKkXlquDpj6Yz4Lp4Fs7bya9fbDb8ZgueAub/rSOp9O0dzSvPTUKr1fHax6s5ciLH4niwhZ7hOi3epkO1BDkAD3cVrz4+nqTEGFZtOM6X32xBo9H9I9B1TAjjzW9mI+pFXr//N0Pf3BW8yK40jzcUfusQdk48d1onQRDeFgQhF5gJvNKqk8wrtNaqoOt0XLpYxstzf8Hd04U3vpyFSm5MplZv4bfTZD00Zcq+gxnsP5zJnBkD8fNwNa4kZf+tl1tcyYJtx5jcrwtxwQGGhZVtOnOb//adz+GvI8eZ0zeRvu2M4dnN/d6swIOu2c/NMG3D8timvybVaTUm0JnvvxLQNUkpSPlwwhiq6htMATht7s8MdABP3jiE4ooap/50TXrg9mHI5BK++narRT4Yrm0fdDfOGsDEW5L4+8cd9kGn1VmWCeN2Uas1/bVGdo9vCaY6HQ11at5+6A/WLT7E9LlDeeDZ8cZ5nU1par4nU6W3goFEq7cAxaHk89z/6B+UV9bx8as3MfOGvmbPyHiuXrRZIUuitfxzJkfHWl+36fdiowOZ99EsenWL5KMvNvLJ5xv/MegSekXy3o93UlfTyBPTv7UEnVle2jx7s3z5x3nsRC3CThCELYIgnLTzdwOAKIoviqIYAcwHHnJynXsEQUgWBCFZra+3f/NmhS7rdAHvPjaf6E7BzH3yesznywlaPdbhYJosiq++24ZcLmXOjIGWv68TjRXWWIH1MG/dISrrGnh40kCz45oBYLFNBx9u3s2FsnI+HD8GV6nMuM9yIADMgAfNwAMb6DWf7wBu9s4zg6gj0AnGgYqHBvajc1AgL67ZTHl9g8W92BvFG5HQnu7RoXyzch8N9RrbA5rSrBeJiwpk9LB4Fi05RH5Bhdn9WPbTAaYK0TEhjLseH8OeTSf55eON9kFnOscSchbSaFv+M5PFNazLnZ2yp9eLfPnyMpb+tItJM/sz97HRxntrHfDsASM3r4wHHvuT3fvPcd+dQ3n9yYmm1dAsgiAY4WRvaUBroDkCob1rmKfruv6d+O69W5HJpDz6zF+sWX/cYbot/zsGXWznEN76ZjYlhVU8fet3FOSUOrfYW4LcP8ljB2oRdqIojhRFsYudv5VWh84Hpjq5zg+iKPYWRbG3QlA173ACvORdZ1nx214m3pJE18Qo435z68GybwggL7+cdRtTGTeiCwFebibrzp5qaxuZv+UIg+KjiQsJsBv/yxwKdRoNL67aTKiXJw8O6Gc31LU58OxaedAML70dsFnvt2PNNV3f4vesfj/G14e7khJZdjyNHefO2wWctVV31+i+5BZXsOZAOuDcqpt9U3+qaxpYsOSQTfPVdH2rAYnHX5tMeWkNn72wBFP3ib38NwOdhewUcoeyUylatPLMyh7AvA/WsWr+fqbeOZjxN/e1+QlHwDP/bA6O+no1r729ku9+2sGwgZ346u3pBHi5mfbbPD8zaLW0Lqqj46yvO+fmAbz27CTOZBZyz0O/kX66wGL/lYAuINiLN76aRVVFHc/d/iOlRVUtW+xGOYRca+QAfI70j5qxgiB0MPt6A3C6NedpRQ0N6irLty3YLXS/f76JgpxSHnttcnNzFiynoTRJrUHbUMtvf25GkMDUsZ2pLMmiovAsFQVnqLx4mqrc01TlnqEm9ww1l7L4bel6qusamDOiJ7rGegStzmTdWdyrERZHL+az9Hgac/r2or2fr2mGQtMxhv+2UNKrNYgNdswpa7DZA6AVLFsCnaCH10aNoF6t4cMtuxEb1OiNz9SRVdc/th1dIoP5bWMyeq3jiiXoRaJDfRnSrwNLVx6hzrjaVPNzMlh1elFHbX0xpdWZlFVmMOWOPkR3CuGrV1dQW91g1Y9jvxKYZO9NrtM5/hNF6vRVlGrzKdXmU99YYYKrjZXnKA3G9H3/1ioObj/FA8+Np2e/9hbWHTgGnk6nQa83XMsaIAuXHOKlN5bTLsyPHz6ZTWJCO6vnZ//5W8PPEeB0Og2iWmNxHU+Vknefm8ydtw5k/ZZUnnxuERWVdf8YdEoXOa99PhOFSs5js9/j3IUTlFRnUtGQT0NDOaKod9j/+o/y2Kz8iKJIfWMFpfU5dp+b6f6c7m1Z7xmbtCeA0cCjrTtNpKAxg1JNXovAa6zX8MXLywiL9GfijCRDYTM+7EZ1NZUVFygqPMHFnL3k5OyisOAo6ScPsW7jfiaPTUIlkSARpMgEBVK5EqlciUSmQJDI0Gs1lBYV8OfKzYzs1RnlpQyKkrdRmrKbqrPHqS/IRlddY9Ok/XDLbho0Wh4bNMBsu3PgVW3eRvWuPc3gstdctZYdyLUGdIOi2tE/uh2f7dhHWV09ZXu3UXFwj+V9WFl104f2oLiyltX7W7bqbhzXk8ZGDctWHrFr1TWqa7iYf5CKqlwEQUZAoC8z7x7FuhU72LPlmP3mjZlMZcLaMrNT0G0emagjr/EMJeqLYIRAkTaHS/Xn0KubweywWWueLmOT9v0nF5CTVczT70zD3dOlVcDLzt3Fxdz9pt+zBsm+gxk8+OSf1NY18tHr0xgzON5mGpcz8NlT0/F5p7eRf36vaXuQjwdffXArSYkxfPX9Vt7/eL1F/5y99LUGdHpRz20P9Ce6UzBP3v0W505nIRWlSAU5anUNRfXnuVBxhAr1JcPLxlHXhAPItSRRp0Ov1VKszaVIkw04r1P/CHaiKE41Nmm7iaI4URTFvNacJ0NOhLQj1doyGnRmjrX2+m50OlIOZJK8+yxTZw1CoZRR11jOxeKjFBafQKOtx9UlgKCA7kRGDqVd6ABCQ/uwdUcu7u4uTJo0Fi//GDz9o/Hwj8IjIBovv2g8A2LwDumIT7uubEgrRiqVMPvOOQT2vg6vDj1QePihra6m8mQylanJaKoqTLAor6vnj8PHuL5zB+KDAlsEkOFh2XkQ5uCz92cmyyaz80x9bPAA8iur+Ptoqm3T1U4Z8nd1ZVB8NGsPpJtipdmToBdRSiSMHNyZXfvPUVXdYHVtQ4EuLD2Jr0cUYX498HMJZ859NyOXy5j30UoKa85aFHxrwFiAzkwOC38TrIznlekKkAtKwmUd8ZUG4ysE0U4eh4hIpa7IcbPWdD1b4NXXqvno6UV4erly/zPjjPfqHHiIltAAW6Ccv1DCA4/9wYm0i7z05Hhm3dwPe3EhzMHn7M9aEh10jg7imw9nEuDnwdMv/c2SFUdaTFdrACuKIu06y7jp9tEs/20XOcd0BKii8HEJw8cljEDXGNp5dCPUNY5qTQllddm2F3HwMrORVR6bq06sokFXQ7i0A36yEKdp/sejsVcqqSDDE29qdOWOOxbNti/+fjtevq7E9wqhqDwNb1Uo7QKTCPDphIdbMEqpKxKzJuDx1FzyCiro0yMKoMWR2aPnLtI/rh0SUYLCxQOXwHA8Y7vg23sISt9gqk4cQddgWMRb0MFP+49QXlfPtC7xTu/TGniOolM4vYYD0Nmz6uKDAkgICeLLnfvR6Jva0LbXM4de344RyKQSVu1NsxiBtaf4TqG4uijYsDHVZNWZq6GxEikSPBSBAEgkAgOvS2DXhpPUFSnQaOvR6A3P0SHozGS3Ajgq/FotNdpSfMUA0/oThvsX8SGQKn2Z4bs94NkFn+WA2cLvtjNkbFdCQ73tPxyjTNaQ3jE8mrbV1ql59uUlbNqeztxZg7llch8kZj6NVyJBb3QO93bjy/dmgCjyyFN/kWJ0eXEGOrv3YceqU2truf2+ieRnl/DHZ1stTzR7kSmlroQo2lOpLUKr17T+ZeYkj83/avQVeEn8kQjSFq3BqzJdTBCEYsAO6vEHSv6Pk/NP9b+W5rb0/vf1v5bm/7X0guM0R4qiGGDvhKsCO0cSBCHZkUPgtar/tTS3pfe/r/+1NP+vpReuLM1XrRnbpja1qU3/l2qDXZva1KZ/ha412P1wtRNwBfpfS3Nbev/7+l9L8/9aeuEK0nxN9dm1qU1tatN/S9eaZdemNrWpTf8VXXOwEwThTUEQTgiCkCIIwiZBEEKvdpqcSRCEDwVBOG1M83JBELyvdppakiAINwmCkCYIgl4QhGt2FE4QhOsFQTgjCEKGIAjPXe30tCRBEH4WBKFIEISTVzstrZEgCBGCIGwXBCHdWB5aOQPq6kgQBJUgCIcEQThuTO/rl3X+tdaMvdKAoFdLgiCMBraJoqgVBOF9AFEUn73KyXIqQRA6Y3A1/h54ShTF5KucJBsJgiAFzgKjgIvAYWCGKIrpVzVhTiQIwhCgBvhdFMUuVzs9LUkQhBAgRBTFo4IgeABHgMnX6jMWDJ7ibqIo1giCIAf2AI+KonigNedfc5ZdE+iMcsP+RKtrRqIobhJFscnN+wAQfjXT0xqJonhKFMUzVzsdLagvkCGKYpYoimpgIYZgE9esRFHcBZRd7XS0VqIoFoiieNT4uRo4BYRd3VQ5lmhQjfGr3PjXaj5cc7ADriwg6LWhOcD6q52I/08UBuSafb/INVwR/9clCEIU0BM4eJWT4lSCIEgFQUjBsObNZlEUW53eqwK7/1RA0P8rtZRe4zEvAloMab7qak2a29QmAEEQ3IGlwGNWLatrTqIo6kRR7IGhBdVXEIRWdxf8gyj3Vy5RFEe28tD5wDrg1f9iclpUS+kVBOEOYAJwnXiNdIJexjO+VpUHRJh9Dzdua9N/UMa+r6XAfFEUl13t9LRWoihWCIKwHbgeaNWA0DXXjL3SgKBXS4IgXA88A0wSRbHuaqfn/yMdBjoIghAtCIICmA6suspp+v9Kxg7/n4BToih+crXT05IEQQho8nYQBMEFw+BVq/lwLY7GLgU6YRgtzAbua22cvKshQRAyACVQatx04FoePQYQBGEK8CUQAFQAKaIojrmqibIjQRDGAZ8BUuBnURTfvropci5BEBYAwzBE5CgEXhVF8aermignEgRhELAbSKU5ENgLoiiuu3qpcixBELoBv2EoDxJgsSiKb7T6/GsNdm1qU5va9N/QNdeMbVOb2tSm/4baYNemNrXpX6E22LWpTW36V6gNdm1qU5v+FWqDXZva1KZ/hdpg16Y2telfoTbYtalNbfpXqA12bbqmJAjCMkEQ3hIEYZcgCDmCIPyvT3tr0zWiNti16VpTV6BCFMUhwKMYIt+0qU3/WFclEECb2mRPgiC4Al7Ap8ZNcqBCEITJwHjAE/hJFMVNVyeFbfpfVhvs2nQtKR44Ioqizvi9G3BSFMUVwApBEHyAj4A22LXpstXWjG3TtaSuQIrZ927ACbPvLwFf/18mqE3//6gNdm26lmQNuy7AScGg94H1TWHE29Smy1Vb1JM2XfMyLrx0O4YYdymiKH53lZPUpv9BtcGuTW1q079Cbc3YNrWpTf8KtcGuTW1q079CbbBrU5va9K9QG+za1KY2/SvUBrs2talN/wq1wa5NbWrTv0JtsGtTm9r0r1Ab7NrUpjb9K9QGuza1qU3/Cv0/4GLn80Dl3+4AAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "f, ax = plt.subplots(1, 1)\n", + "f.set_size_inches(5, 5)\n", + "\n", + "plot_func(\n", + " ax,\n", + " internal_func,\n", + " slices=[slice(-np.pi, np.pi, 101 * 1j), slice(-np.pi, np.pi, 101 * 1j)],\n", + " bounds=bounds,\n", + ")\n", + "bounds = jnp.array([[-5, 5], [-5, 5]])\n", + "draw_covariances(\n", + " ax,\n", + " internal_func,\n", + " slices=[slice(-np.pi, np.pi, 10 * 1j), slice(-np.pi, np.pi, 10 * 1j)],\n", + " bounds=bounds,\n", + " scale=1,\n", + ")" + ] + }, + { + "source": [ + "# Transforming the Hessian\n", + "\n", + "We're interested in how the Hessian Matrix (or its inverse, the covariance matrix) transforms under variable change. As the matrix elements in the Hessian are a *second order* derivative, the matrix does in general *not* transform linearly by attaching Jacobian factors to it:\n", + "\n", + "$$\n", + "\\begin{align}\n", + "\\frac{\\partial^2}{\\partial x_i \\partial x_j} f &= \\frac{\\partial}{\\partial x_i}\\bigg(\\frac{\\partial}{\\partial x_j} \\bigg (f \\bigg) \\bigg)\n", + "\\end{align}\n", + "$$\n", + "\n", + "under a Jacobian transform\n", + "\n", + "$$\\frac{\\partial}{\\partial x_i} \\to \\sum_k \\frac{\\partial y_k}{\\partial x_i}\\frac{\\partial}{\\partial y_k} = J_{ik} \\frac{\\partial}{\\partial y_k}$$ \n", + "\n", + "\n", + "$$\n", + "\\begin{align}\n", + "\\frac{\\partial^2}{\\partial x_i \\partial x_j} f &= \\frac{\\partial}{\\partial x_i}\\left(\\frac{\\partial}{\\partial x_j}\\bigg(f \\bigg) \\right)\\\\\n", + "&= J_{ik}\\frac{\\partial}{\\partial y_k}\\left(J_{jl}\\frac{\\partial}{\\partial y_l}\\bigg(f \\bigg) \\right)\\\\\n", + "&= J_{ik}\\frac{\\partial J_{jl}}{\\partial y_k}\\frac{\\partial f}{\\partial y_l} + J_{ik} J_{jl} \\frac{\\partial^2 f}{\\partial y_k \\partial y_l} \\\\\n", + "(H_x)_{ij} &= J_{ik}\\frac{\\partial J_{jl}}{\\partial y_k}\\frac{\\partial f}{\\partial y_l} + J_{ik} (H_y)_{kl} J^T_{lj} \\\\\n", + "\\end{align}\n", + "$$\n", + "\n", + "at the minimum, where $\\frac{\\partial f}{\\partial y_l} = 0$\n", + "\n", + "we have\n", + "\n", + "$$\\frac{\\partial^2}{\\partial x_i \\partial x_j} f |_{\\frac{\\partial f}{\\partial y_l} = 0} = J_{ik} \\frac{\\partial^2 f}{\\partial y_k \\partial y_l} J^T_{lj} $$\n", + "\n", + "\n", + "since we have element-wise transforms $J_{ik} = g_i \\delta_{ik} = \\frac{\\partial y_i}{\\partial x_i}$ and thus \n", + "\n", + "$$\\frac{\\partial^2}{\\partial x_i \\partial x_j} f |_{\\frac{\\partial f}{\\partial y_l} = 0} = g_{i} \\frac{\\partial^2 f}{\\partial y_i \\partial y_j} g_{j} $$\n", + "\n", + "\n", + "and with the inverse being $(A B C)^{-1} = C^{-1}B^{-1} A^{-1}$ we get \n", + "\n", + "$$\\mathrm{cov}_{x_i,x_j} = \\frac{\\partial x_j}{\\partial y_j} \\cdot \\mathrm{cov}_{y_i,y_j} \\cdot \\frac{\\partial x_i}{\\partial y_i}$$\n", + "\n", + "\n", + "as is computed here: \n", + "\n", + "https://root.cern.ch/doc/master/classROOT_1_1Minuit2_1_1MnUserTransformation.html#a10f2146be0a2c991243dd2f70a943a15\n", + "\n", + "\n", + "Let's try to demonstrate this with JAX\n", + "\n", + "Heres the function to compute the Jacobian as a function of the internal parameters: $y \\mapsto J_{ij}(x(y))$" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 164, + "metadata": {}, + "outputs": [], + "source": [ + "def grads_from_n(n):\n", + " x = jax.vmap(to_bounded)(n, bounds)\n", + " J = jax.jacfwd(jax.vmap(to_inf))(x, bounds)\n", + " return J" + ] + }, + { + "source": [ + "Now we comute the expression above.\n", + "\n", + "In the first summand $a$ there are three terms: \n", + "* The Jacobian $J_{ik}$\n", + "* The derivative of the Jacobian wrt $y$: $\\partial J_{jl}/\\partial y_k$\n", + "* The gradient of the function wrt to the internal coordinates $y$: $\\partial f/\\partial y_l$\n", + "\n", + "The second summand $b$: has\n", + "\n", + "* two jacobian factors\n", + "* the internal Hessian $H_y = \\partial^2 f/\\partial y_k\\partial y_l$\n", + "\n", + "we then use the convenient einstein summation to compute the contractions" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 165, + "metadata": {}, + "outputs": [], + "source": [ + "def hessian_transform(extr, bounds):\n", + " intr = jax.vmap(to_inf)(extr, bounds)\n", + "\n", + " first = jax.jacfwd(jax.vmap(to_inf))(extr, bounds)\n", + " secnd = jax.jacfwd(grads_from_n)(intr)\n", + " third = jax.grad(internal_func)(intr, bounds)\n", + "\n", + " J = jax.jacfwd(jax.vmap(to_inf))(extr, bounds)\n", + "\n", + " a = jnp.einsum('ik,kjl,l->ij', first, secnd, third)\n", + "\n", + " int_hessian = jax.hessian(internal_func)(intr, bounds)\n", + " b = jnp.einsum('ik,jl,kl->ij', J, J, int_hessian)\n", + " return int_hessian, a, b, a + b" + ] + }, + { + "source": [ + "At the minimimum we see that the first part $a$ vanishes and the external Hessian can simply be computed as a transform of the internal hessian" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 166, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "internal hessian:\n[[47.999996 0. ]\n [ 0. 47.999996]]\nadditional part:\n[[0. 0.]\n [0. 0.]]\ntransformed internal hessian:\n[[2. 0.]\n [0. 2.]]\nreproduced external hessian:\n[[2. 0.]\n [0. 2.]]\ndirectly computed hessian:\n[[2. 0.]\n [0. 2.]]\n" + ] + } + ], + "source": [ + "def check_point(extrn, bounds):\n", + " int_hessian, a, b, extrn_hessian = hessian_transform(extrn, bounds)\n", + "\n", + " print(f'internal hessian:\\n{int_hessian}')\n", + " print(f'additional part:\\n{a}')\n", + " print(f'transformed internal hessian:\\n{b}')\n", + " print(f'reproduced external hessian:\\n{extrn_hessian}')\n", + "\n", + " direct_hessian = jax.hessian(func)(extrn)\n", + " print(f'directly computed hessian:\\n{direct_hessian}')\n", + "\n", + "\n", + "bounds = jnp.array([[-5, 5], [-5, 5]])\n", + "extrn = jnp.array([1.0, 1.0])\n", + "check_point(extrn, bounds)" + ] + }, + { + "source": [ + "While at any other point,m the transformed Hessian does not correctly reproduce the external Hessianm" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "internal hessian:\n[[38.000004 0. ]\n [ 0. 38.000004]]\nadditional part:\n[[0.19047618 0. ]\n [0. 0.19047618]]\ntransformed internal hessian:\n[[1.8095242 0. ]\n [0. 1.8095242]]\nreproduced external hessian:\n[[2.0000005 0. ]\n [0. 2.0000005]]\ndirectly computed hessian:\n[[2. 0.]\n [0. 2.]]\n" + ] + } + ], + "source": [ + "extrn = jnp.array([2.0, 2.0])\n", + "check_point(extrn, bounds)" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": {}, + "outputs": [], + "source": [ + "def compare(ax, scale=2, index=-1, color='k'):\n", + " slices = [slice(-5, 5, 11j), slice(-5, 5, 11j)]\n", + "\n", + " grid = x, y = np.mgrid[slices[0], slices[1]]\n", + " X = np.swapaxes(grid, 0, -1).reshape(-1, 2)\n", + " covariance = lambda X, bounds: hessian_transform(X, bounds)[index]\n", + " args = (X, bounds)\n", + " axes = (0, None)\n", + "\n", + " covariances = jax.vmap(covariance, in_axes=axes)(*args)\n", + "\n", + " lams, angles = jax.vmap(angle_and_lam)(covariances)\n", + " for i, (lam, angle) in enumerate(zip(lams, angles)):\n", + " e = patches.Ellipse(\n", + " X[i],\n", + " lam[0] * scale,\n", + " lam[1] * scale,\n", + " angle,\n", + " alpha=0.5,\n", + " facecolor='none',\n", + " edgecolor=color,\n", + " )\n", + " ax.add_patch(e)\n", + " ax.set_xlim(slices[0].start, slices[0].stop)\n", + " ax.set_ylim(slices[0].start, slices[0].stop)" + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n 2020-12-22T12:07:10.633737\n image/svg+xml\n \n \n Matplotlib v3.3.0, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATsAAAEvCAYAAAA6m2ZKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAACg/ElEQVR4nOy9d3gc13m3fc/uovfeGwEQhQBJNPbexKpCUYUSVR1LfuM4lu3YSezE0Zs3TmzJsuIm25LVu8QqVrGCBBtANKI3ove2KIsFtp7vjyHBIjZhl/InYe7r2ovkzuH+dnZmnnPOc8pPEkKgoKCg8E1H9bf+AgoKCgpfBUqwU1BQmBQowU5BQWFSoAQ7BQWFSYES7BQUFCYFSrBTUFCYFGj+FqL+/v4iOjr6byGtoKDwDaagoKBXCBFwvWN/k2AXHR1Nfn7+30JaQUHhG4wkSU03OqZ0YxUUFCYFSrBTUFCYFCjBTkFBYVKgBDsFBYVJgRLsFBQUJgVKsFNQUJgUKMFOQUFhUqAEOwUFhUmBEuwUFBQmBUqwU1BQmBQowU5BQWFSoAQ7BQWFSYES7BQUFCYFSrBTUFCYFCjBTkFBYVKgBDsFBYVJgRLsFBQUJgV/k52K7yRGI7S0QEcHGAxgNoMkgYMDuLpCZCQEBYHqDoT5+nq4cAFcXCAzE5yd7a9xJSYTnD4NyckQcN2NqO2LEPL5xcSAWv3V6A0MgI/PndcCsFhApwMvr69Gb2QEenshKuqr0aushL4+mDv3zl6/4WEoL5f/FALc3SEp6au7jjfiG9Gya2mBgwfhtdfg17+GEydAr5cDnIcHuLnJAa+nB7ZvhxdegPffh5MnYXDQdn2rFfbvh1275ADX0wN//jO0t9v+2TfjzBk4d07WFeLOagH098N770Fr653XAjnw/Pa3X40WyIH85Ze/Or3cXHjzza/m2rW2wp49csDLybkzGm1t8PHH8Mc/QleXXOm7uoJWKz+b770HDQ13Rvt2+Fq37Do74dAhubZKS4NVqyAsDNRqQWtrK8XFxWi1WlQqFWFhYSxcmM769V6MjEBzs9wS+/OfYfp0WLxYvjAT4exZwfnzvURHn6a+fgCNRoOvbxLvvjuN555zwsnJvudttVqpra3lrbdGmT69huzsOCIiBIsXT8P5DjQnzWYzVVVVnDjRSHFxOJ980s7y5cGkpKTg6Ohodz2j0UhZWRnnz9dTXBzHJ5/UkJycTGJiIhqN/W/ZsbExzp8/z8mT3RQXR7B1ax2pqanEx8ejugNdgJGREYqKiti/30RtrQ8ff9zMrFkpxMTEIEmS3fUGBwd59dVWNJomPDwGefPNmURFuRMdHW43vdJSOHAAliyBhQv7KC8vpKGhEyEE/v7+bN6cTn9/MNu3w4IFMHu2XWS/FJL4KqqVa8jMzBS2Gu6cPSvXUEuWQHr65Wb58PAwn3zyCSMjI2RkZBAcHIzFYqGuro7S0lJmzJjBqlWrxm9inQ6OH4eqKnjoIQgP/3Lfo729n+9+t4p586pYtGgaAQEBGI1Gqqur2brVQmZmLP/4j9PtdlN1dHTw8ccf4+TkRVnZKn74QwOffeaA1VqFyVTAihUryMzMtIsWQENDA9u2bSMwMBAvr1kcPRrEvHl9WK3naG5uZsOGDSQnJ9tNr6Kigt27dxMZGcmUKTP44IMQnn66meLiYnp6erj//vuJiYmxm15+fj6HDx8mLi4OV9eZfP65H48/Xk9RURE6nY6HHnqIkJAQu2gJIcjJyeH06dMkJSXR2JhJfb0ra9fWU1+fB8BDDz2Er6+vXfSsVisHDx6kuPg8VVX38P3vq/H0VPHqqwIXlxwiIqw8+OCDeHh42KRTUwOffQaPPGImN3c3dXV1zJw5c/w6tba2UlhYSHBwMMuWbeTjj51ZtEhuoNgbSZIKhBDXfwCEEHZ5AWqgCNhzq7IZGRnCFo4dE+KPfxRiYODq9/V6vfj9738vjh07JqxW6xf+3+joqHjrrbfErl27vnC8ulqIX/1KiMbG2/8eAwMD4kc/elv84hd119WrrR0WDz54Uhw5cuT2P/QmdHZ2ihdeeEGUl5eLpiYhXn1Vfj87W4hDh4To7e0Vv/3tb0VeXp5d9BobG8ULL7wg6uvrhRBCnD8vxH/8hxCnTsnH29vbxa9//WtRUVFhF72Kigrx61//WrS3twshhBgakvUuUV9fL1544QXR+GUu0k3Iy8sTv/3tb0Vvb68QQr4HrtQrLy8XL7zwgujs7LSL3pEjR8Sf//xnMTQ0JIQQ4r33ZL3WViGsVqs4d+6ceOmll8TAtTf2BLBarWLXrl3irbfeEs3No+J///fysX37hMjJsYpjx46J3//+90Kv109Yx2IR4uWXhbhwwSLef/998fHHHwuj0XidchaxZ88e8dprr4m2NqP45S+FMBgmLHtDgHxxg7hjzzb694FKO37edWlshIICeOKJLyaST58+TUREBEsWL0YyGuUM8MCAnJjT63HWaNi8eTP19fW0tbVd9X+nToX77pNzemNjt/ddjh07hrf3DJYti73cchsZkUdFgNhYd1JSsjh1qgStVmvbiQMHDx5kyZIlJCcno+0X+LobYGAAX2c92j4rfn5+bNmyhSNHjjA6OmqTlhCCffv2sWHDBrmGNpsxDY3C2BimIT2YTISEhPDQQw+xb98+LBaLTXoWi4V9+/ZdbkkZjXKze2xM/tNkIiYmhg0bNrBv375LFeyEGR0d5ciRI2zZsgU/X195NOuS3sgImEwkJyezZMkSDh06ZJMWgFarJT8/ny1btsgtKaMR48Xf0zg4iiQEmZmZzJw5k+zsbJv1Wltbqa+vZ/PmzQwNORMcaJXPb2iIYD8TPT0SS5YsISIigtOnT09Yp6ZGHoAwGKrR6XTcf//9ODg4yAfHxuTkOaBSqVi7di0uLi60thYRFQUlJTaf5pfCLgkQSZLCgXXAL4Af2uMzb8SpU7BihTzocCXmgQG6tm1jw/Tp8iiF0QiOjqDRyBlgkwlMJhy9vFg9MkLVxx8T/txzVw1LxcfLOb/SUsjKuvn30Ov1VFVV4e6+lsjIi28eOyb3r52d4emnkby8iI11ZGQki3PnzrFq1aoJn3dvby+dnZ1sfuABOHEC82dtOHZroKMFh3ZPzK0B4Ay+S5YQHx9PcXExc+fOnbBeU1MTwmAgobcXXn8dOjoQ3ZFQHY8YaIL8OggIIDwhgUAPDyorK0lJSZmwXmVlJZEqFeGFhbBtm/xgWt2gaDb86aQcjLy9SYiO5pRWS3NzM1E2DGMWFxcz09MT3+xsuQYdHYWhYChOhj/myPePnx/pUVGcvXCBvr4+/Pz8Jqx37tw5MuPjcTt5Uo4QQ0NYz2eg0Xkg3ioF736IimJOXBy/y81l5cqVuE40iQzk5eUxe/ZsHAHj8TM4ne2A1gugUuHU7I6RFFiYwPz583nzzTdZvHjxhPKhBQUwaxbk5uYyb9481Jeep6NH5WdBkiAlBdavR5Ik5s+fz549e1izJovDhyXsmHG5JfbK9v4v8BPAts7/LbBa5dGcBx645kBbG/q//AVvqxWPJUsgNFQehr02T2a1Qm8voZWVNP7pT/DXv8LTT8vDtheZNk2ucW4V7Nra2ggNDaWryxFPT+SH5exZ+P735Yh89izcdReenuDpGUtT026bzr25uZm4uDg0hw7B4CDmpatR4wfrJDR1YD46Ch5n4M03SVq2jJKKCtuCXWMjS5qbkUJCYOlSiIxEFGlgL4jFc2GRRR7iKy5mYXU1FUFBNgW7/uPHmdXQAHPmyHMj/P1BJ4EF+PFc+dp1dSHV1rKooYGuM2dsCna6w4eZOTIiX+glS+R5EbUSfAD8ZK48D6WjA3V1NUvr62nLz8fvrrsmrNdeVcU9XV2y1qZNEByMeF1C1Q3iofkQOgr19bieOEH6wABtbW3Ex8dPWK+pqYlly5bBvn2YBtxxWLcKHnIHwKHciOmTRnjnHfy/9z3c3Nzo7e0lODj4S+v090NIiKC5uZktW7bIb3Z0wPnz8NxzcmPjjTegthamTiUqKoqRkRG8vfX097vd9LPtjc3dWEmS1gPdQoiCW5R7RpKkfEmS8nt6eiakZbXKjbQrYpNMby9WlYqBqCi5P+rp+cVAB/LkusBApJQUuoKC5PFxg+GqIk5OciPwVlgsFjQaDVbrxTl7RqN8YV1cwNt7vC8sSSBJart08zQajTyvJS4O4euHpJLGNYSzi1yDjozgIITNelazGZfBQXmoOiZGPreLCIHcIo6MhOnTcdDrEbfb978BDn19WP38IDVVnjR47fVTqSAkBKZPx+rhgbqvzyY9p74+rKGh8m/m6/tFPbVaHq2aPh0cHVHZmIZQ6/XyoNj06fJ5XKEnBPJ9k5AAMTG463T2u1/6+rCGhaPydB8/pnJ2xBoSJt+jRiMajWbCehYLSJKcExtv1Y2Oyo0NFxe5d+XjI78HSJJ0sQVpwcZT/NLYo2U3H7hbkqS1gDPgKUnSe0KILVcWEkK8CrwK8mjsRIQ0Gvm+bG2FiIgrDkyfjuPICH6/+hXmX/wCTXi43DJwcJBfVqucRxsbg64uDNXVRI+MwD//s5xwuILGRrlheCt8fX3p6urCwcHK2JgKVx9P+aJu2yZP/Fu/HpBj6dhYj80jbL6+vhQVFSHuvRfpk09QNzVjcY0Bh0HMjU5oCoCO07BhA239/Tbr+fj7U5KWRsyxY7B3L0RHI7WHQn0wkksvDLRCUxOo1VTPnIlXWJhNeuaFC+k+cYKYP/xBrixCQ8HiCvVT4ECNfO3a2kCno9XVFT8bWq0A+iVL6C8rI/Tll+XgGhwMPT5QHyrrjY5CSwvCYKDOz49UG/tbTlOm0GYy4fXuu3IQiIhAqojFqnVGdbwZ8jqgqQlreDgF4eE8ZIf7paOjA4+1a3F48SgmcytIZlCrMZVbcDhrgB+txKDR0N/fj7e394R03NxAp1Ph5eVFZ2ennG+NiJBbDJ9+Kge7jg7YsAGQp8GYTCZMJtcJT/WaKDa37IQQ/yqECBdCRAMPA0evDXT2JC0NsrOvmYgpSbjOm8fAI49QvHgxLFok155eXnKwc3GRA1F0NGzYwIEZM/D6h3/4QlQbGoKiIrnyvRWBgYF4enoiRAdtbfJ34JFH5KTfhg1yAhBobRU0N+eRkZFh03nHxMQwOjpKm9EI3/0ummWLMLt5gZMTFjdP1PFT4Ic/xDJtGgUFBaSnp9ukl5ycTLVej3bzZvjWtyAuDsnDHdRqJHc3+bfcsoWxb3+bPK2WmTNn2qQ3MzOTY05OjH3ve7BunXxt3GU9vLzkB2jjRrR/93cUeHoyLTXVJr20uXP53MUFy49+BCtXysHO1fWyXnQ0PPwwrQ89RFNICDFTptikl5GRwfGhIcQPfiCPhIWGIjk5YpXUSL4+MGMGfP/7VGdm4hoYSGBgoM16eXl5EBKCw2MPY4pLks/LxQVTWDQOG1ZDVhbnz59nypQpuF2bBL9NkpLkZ2ZcD+Rn7umn5d8wOBi+/e3xSaz5+fnMmDGD0lINdpyxdFt87VZQzJkjt5YOHfrizPMFCxZwLDeXTjc3eb3W3Lly4FuwQP6PaWnktraiHR7+Qn5Jr4dPPpGTrbd7ny1atIimphNUVAzLb7i6yppxcQAMDwtKSi7g62tmio0Pi0qlYtGiRezcuZMRvR73uGCGQ6bCwoUMT5mBe0IYVrWaPXv2EBYWRlBQkE16jo6OzJkzh+3bt2NwdYWZM1GnTYeoKDQzpkF6OmYfH7bv2EFqairu17SQvyweHh6kpqayfdcuzCEh8vWbM0deSzV3LmRkYPD1ZfvOncyZM+fyiN8ECQoKIiwsjD0HDmCNjJRzd+npl/XS0tC5urLrs89YtGiRzZOLp0yZgoODA0ezsxEXz0+TFI81Mhp1xkyYNg2twcD+/ftZtGiRTVoAKSkpaLVacnNz8fJVo3UNk89rwQL6AxPxCnSio6OD48ePM3/+/AnrpKdDdTUkJmZQV1dHeXm5fMDJSX6Y5swZH01saGigsLCQ9PTZFBXJh79K7BrshBDZQoj19vzMa1Gp5AZUa6scnHS6y8fCwsJYt24d77zzDtnZ2QwNDV36XrS2trJ9+3Zyc3PZsmXLVSNPLS3ygGN0tBwbb5f4+Hg2bEji3XcLOH78NCMjI+N69fX1/OY3h1Cp6nn00c12mVSclpZGSkoKr776Ks3NBbS1ycnFzk4ren0T77zzDlqtlo0bN9qsBbBw4UKCg4N57bXXKCoqQqWS9dRqC2VlZbzxxhtoNBpWr15tF73Vq1ej0Wh44403KCsrG88jmUwmioqKeO211wgODmbhwoV20bvvvvvQarW888471NTUYLVaAXlFRV5eHq+99hqpqamk2WH2qyRJbN68mbq6Oj766CMaGhpwdJRra4tlhFOnTvH666+zaNEimwYmLqHRaNiyZQu5ubnk5u6gpmYQk0nWq63V096ex7vvvsu6desIsyEF4eoq97Y+/9yVhx9+lAMHDrBnzx66urrGy/T19XHw4EG2bt3Kpk0PcOqUL7Gxckrqq+Rru4LCbJa7swUFcu2SmSmneuQ1sD2cO3eO0tJSVCoVFosFV1dXMjIySE9Px8XFBatVTgGdOiWvYV21Ss5VT4S//KWfrq5KHBxOoNFoMJvNODsHUF+/in/+5xDCw21rhVxLU1MTubl5vP66P4sWlZCfH8+cOYOsWpXI9OnTLyeK7YAQgrq6Os6dO0dBgZbS0jSmTi0nK8uRzMxMkpOT7brESQhBRUUF+fn5XLjQzdmz81m8+BgxMTFkZWURFxdnVz2LxUJJSQkFBQVUVJgpK5vOkiXZxMfHM2vWLJtGfK+H0WikuLiYgoICzpzxp6MjlHnzzpKeHkdWVhaht5Mw/hKMjo5SWFjI738/RmRkDb6+Ixw/nsnf/Z2BRYvSCbDDDhJWq5yeMxjgrrt0VFbmU1hYiMlkQpIkJEli5syZTJ+exYkT3uh0sGXLdQYa7cDNVlB8bYPdJYaG5GVjlZVyqy8qSn6Fh4NGY8FsHkWSVGg0Luh0Es3Ncl69pUVOYaSnQ0aGbT+8TnepZWghI0PPwIADBw86MWuWxIIFdjnN6/Lxx2aMRhMtLRp+8hMH7sCy0atoaTHyyiuCxx6D5GQ7L/i9Dr29Bl56Cf7v/5XuyBrcayktNfDBB/Cf/6myuZt8K+RJ20ZOnoTnn1fj5HRnL15enqCgwEhkpJX+ficee8y+GSyrFY4ckRsf8fGQliZwcRlFCCtGoyslJSoqKuQdetau5Y7dqzcLdl/rjQBAnmWybp38A/b3y4GsqQny8sBoVGMyuaNSyT/upS2eMjNh48aJL/y/Fnd3ePZZOHBAzccfe+DictUYxR1j+XINH3ygYc2aO3fzXElwsCPR0VyeRH2H8fR0IjJSHtD7KggPdyIp6c60OK5FkiSSkpwYGsLuG0Vcj8xMiaYmJxob5VaVvVGp5HGeBQvkKXaHD0vodK5YrfLzMW0a/MM/fGHyw1fK175lp6CgoHCJm7XsvnajsQoKCgoTQQl2CgoKkwIl2CkoKEwKlGCnoKAwKVCCnYKCwqRACXYKCgqTAiXYKSgoTAqUYKegoDApUIKdgoLCpEAJdgoKCpMCJdgpKChMCpRgp6CgMCn42u96ciP0ej1lZWVotVpUKhVhYWEkJCTYda+3KxkeHqa0tJShoSE0Gg1RUVHExsbavMPtjdBqtZSVlTEyMoKDgwOxsbFERUXZda+3K+nu7qayspLR0VGcnJxISEiw+95rlxBC0N7eTk1NDQaDARcXF5KTk+2y99qN9Jqamrhw4QImkwk3NzdSUlLw8fG5I3pWq5ULFy7Q1NSE2WzG09OT1NRU2U/2DmCxWKiurqatrQ2r1YqPjw8pKSk2WTXeDJPJRGVlJZ2dnQgh8Pf3JyUlBaevYnuXm/CN2/XEbDZz4MABysrKmDp1KsHBwVgsFurq6ujr62P58uV22Xn2EmNjY+zdu5fa2trxB9JoNFJdXY1er2f16tUkJibaTU+n0/HZZ5/R2to6/kCOjY1RUVGBEIL169cTHR1tN73+/n527dpFf3//+AOp1+spLS3F1dWVu+++e0IWfDeio6OD3bt3o9frSU1NxdXVdbwi8fX15Z577rHZTOhKGhsb2bNnD5IkkZycjLOz83hFEh4ezt13323zlvNXUlVVxYEDB3B1dSUhIQFHR0d6enqoqKggPj6edevW4ezsbDe9wsJCjh49ip+fH3FxcajVajo7O6mpqSElJWV8d2h7IITg9OnTnDp1itDQUNlcHdmwu6GhgaysLJYuXXrHGgDwDd+880osFgvvv/8+7pLEmtRUXIaGZItDSQI3N7rVaj7JySF9zhzmzZtns57BYOCtt94iPDycFStW4KRWQ26uvOFbRARNTU1s27aNFStWMP12XHxugU6n44033iA1NZWFmZloamtBqwVnZ8TUqdRqtezatYv77ruPuIs+GLbQ19fHW2+9xYJ588gMDkbd1ia7fDk6IsLDKdFqOXj0KI8++qhdWnnt7e28//773LV4MaleXkidnbJLlaMjluBgCrq7ycnN5cknn7TJsPoSdXV17Nixg3tXrSLOwQGpu1veAtvZGVNQEKeamiipqODpp5+2S8ArKSnh8OHD3L9+PVFCyFtkX9zwzRAayuHz52lta+PJJ5+0Syvo9OnTFBQU8MADDxCs0cg73JpMEBWFPjiYvfv2MTo6yqOPPmpzj0cIwcGDB2lsbOSBBx7A18cHCgtlvawshvV6tm/fjru7Oxs3brxjPZDJscWTEBR/9CkRh06z7EIPY2er6e220jXiTrfOlb6GIRxPV/BQl57W3/2VvqpqmyWPHz9OYGAga9euxdHRieHPjtGT34T29e0Y+4aJioriscceY9++fej1epv1Pv/8c5KSkljq6Ynmj3/EWlNH/6gLpr4hpLffZmpZGQ9u3MiOHTswm8026+3Zs4cVISHMPn0a9eefw8gIeuECBgPSkSPMOHKEjZGR7Ni+HVsrTSEEuz76iIdcXJh+5AhSbq4ceJycwGBAffIks3JyWKvRsHfnTpvPzWw2s+fDD3nSzY34ffuQiopkBycnJ9l7NzubJfn5zDOZOLh/v816er2efXv28HRMDFHbtkFuLlaLQG9xgu5unLZuZW1rKxEODpw4ccJmvd7eXk6ePMkTjz9OcFkZvPkmut4x+ocdsB44iOvHH3P/unVIknTZFcwGmpubqaqq4rHHHsfJyZeB7UfpOVFJd0EL2nf3IEkePPzwI/T29l425fmK+Vrm7CwWqK+X7Sh7e2FgALRnqyk/BWELf0KhewzqMQl1h+yMJ4T8fyxWsPiYaazI5dQj5cRt8MM7zh9vb9lRLCLiC/7FN8RkMlFcXMxTT32bnByJwgIrpsMOuCy+F3PLBfT/NkDMIg8WLQogMTGRwsJCFtiwR7tOp6O2tpbn7rkHDhzA+q1v88HnfnTXyMefenwFPke2ElVXR3BwMOXl5cyYMWPCel1dXYjSUlJDQ+GhhyA8nJ4e+OMf4YknIGYl0N3NlK1bCW5qoqGhwSYHtfqaGqadO0fEo4/CihXg7MzoKPzqV/D88+M/AlP37aNx+3a6168n0AYHtfL8fBZUVRHwrW/J2+s6OtLeDq++eoWeVsv07dtp2bUL3Zo1NrXuCgsLWazX4z08DN/9Lnh6knMcjh2Dn/4UHNcLpJISluzcyWvNzSxZssSmreHPnTtHRkYGnu3tiOoaDib8I0UVTjg6gqfHAh713IfLwYMsWbKEHTt2MGfOnAm3tnp64PXXG5CkDfz2ty6orSYczwg0Sx9AsmgwbT+OqUmPycEVq3UDb75Zwo9+lHJb/sz25GsX7HJy4OxZ8POTg9OUKeAz2Ii6YQ87noB/+PFDt7hoGnp6prLjfw+xUWpnIOMZtCOOdHXJn+voKJvvxMbe/Hs0Nzfj7+/PqVM+6HTw8AY9wZZ8+KclcG4MQ0sJZVERvP8+LFkyk7KyozYFu7q6OmJjY3EuLISlS6nu9WNsDJ57Tv5NTpxx4J716+GPf2TmypVUVlfbFOxqa2qYMziI6rnnZEMPZIMikJ3dYmKAwECkhx4i49/+jeqyMpuCXc/u3QQlJSGtWzde23yhcerujnrTJsLPnKFt/34Cn3xywnqDn31GxNy5sGzZ+HtXOtUB4OOD4+OPE33qFC3Hj5O0bt2E9Rrz81ljscCDD8LFnFxTk3yssxMiIyWYMQPXwUFSPvqIlpYWm37P6upqHn30UThwgLroFdQ1OvHcc3LDde9eiaPG5ayrfJnwi85wPT09E/KqPXsWTpwQNDe38eMfzyUmBly72yC0BZ662BUP6YPEC4zFp9LWFsz//M8x3nnHRGamAytWTPgUvzRfq2AnhGzqkZUl36MuLhcPnOmgNy4AZ6PxtmonFxcXBr1c8Xcw4R+sG/d06+2Fjz+WTUNuFeyMRiMuLi5cuACbN0Owi+myEYSDA06SkYwM2VNTq3XDaDTacOaX9ejtheBghptl/2GVSvaTbmkBPDzA0RGXi+VtwaTX42S1yqbfl96TnRSvDkJ+fqhdXbFctK2cKJJWi0hMvHWzWqXCGhmJ6OuzSU+l1SLdjm+mgwPm0FCsvb026UmDg6hDQsYDHci/p4PD5d8VgKgo3M1m+90vw8MMBPgSGXlZOj4e8vOdwckJaWwMZ2fnCesVFMDcuYLR0TqSkx3ly2c0Xm0c4ugIRiPOzhAbqyIpqZO5c8c4flwJdjdEkmRz+rw8ePll8PGBgADwJgmX06V0aHS0tFhwdFSjVstd2EsDPxbL5Vdz8yAulYKzgdEMnPVGOwhdXfJDPHMmzJ596+/i4eFBf38/ixYJPvxQYvYMF2K71bhoBeYOE/29vhR9LI8fJCT00NNju4l0VVWVHHyqqgiNC+bUKblVUFQkBzza2wHoHRuzeRqDm7c3A05O8oenpwOXDYrGKxmA2lpGRkdxttGUW8TGIvLy4OGHb+54o9ejOn8eYaM3riUmBktOjtyMv9nooFaLqrYWh7VrbdJThYUxVlkJ3d3jLuyurnKgG58BIgTi3Dk6nZ0Js4PpeH9/P+4hIUSaG8iu8icpSTaoysmBpGAtdFixuLoyODg44S76PffAjh0qiovnsnWrjoQED/wNbji0m3AYkMuYO0yYvD3oL4eGBiMnTyZhtbrywAM2neKX5msV7EDuukZEyIGpu/tSzs6bvplrsb65i3d/koNP6gwsbp5YUGOxyEFSrQa1xYhqUEvL8RMEuYahXX8X3j4qomLk+8/X9/bydSAbcgshCAxsZvPmKAoKnNl5IZWx/x1AUy/wSIhl2ky47z748EM5f2IL8fHx7Nmzh/558/DdsYNwT09mZ87gk0/UhAQLFka3wqfbEUuXkn/qFOvX2+ZVPi0lhTd8fJi2fz+OQ0OQkUF0tAchIRdd0/R6KCnBkp3NCS8vNto4nSduwwZOnDjB1D//GfXKlTBlCk5Ojozbto6NQW0txv37KXVw4F4bmwRRmzZR85//yZTXX0datgyioggM1JCUdLGAXg+VlYzs3UtFYCCbbbSvT5k9m7z2du5+913ZhisxkRkzHDEYIChQQE8vHD9Of1UVbbGx3G2DcTXAjBkzyM/PJ3LePILefZd70oM5fCgco0kiNUbHvLZPYe5cKmtqCAgIwNvbe0I64eFyCtLb24m2tkqEmIW2LwTT6QhMI4Pg6IjDWU80phi8/EGrrWHlSolnn5UbJF8l36ipJzWFhZS+/jrrpk7FWXexe+rsLPd/h4dBr6dbrWZ/ezsP/td/4WJj7VlQUEB+fv7lqQJFRXDggNydfPZZcHCgpKSEo0eP8r3vfc/m4f3s7Gyam5t5ZPlyNAcPyplhf3852SQELF3KaZ2OsrIyvv3tb9s8vL97926sWi13u7sj1dbKPniurnLgGRhATJnCMaDLamXz5s02aQF8+MEHROh0zFerkbq65MSso6Osp9ViDQ3loF6POTLS5mAuhOC1V19ltpMTM0wm+bcMCJBTEXo9DA1hiYhgR28v/jNnsmTJEpv0LBYLv//977krKYmkri458envL7diBwYAMCYm8nZ9Pelz5thcOY6OjvKHP/yBjRs3EisE7Nsnt2CdnaGvD+bMQZeezutvvMGaNWuYOnWqTXparZbXXnuNLVu2yNOQyspkTUmCRYtg9mz6+/t544032Lx5M2E2BvMbMWnm2QGcOHGCoqIiVi1dylRfX9RmM6hUjEoShU1NnD5zhoceeohIO5ifCiHYv38/TU1NrFy5ktjYWPkh9fZm2GQiLy+P4uJiHnvssQklf6/FarWydetWdDody5cvJ9LLC2lgAFxc0Do4cObsWWpra3nyySfx8vKyWc9kMvHBBx/g4ODAkkWLCNVoxufZ9ahU5Jw+TXd3N0888YScH7KR0dFR3n77bQIDA1k4ezYB8peQR0rNZrJPnsRkMvHII4/YxcR6cHCQt956i/j4eOampeFjNoPFgnByonl0lCPZ2Xh4eHD//ffbZSJsd3c37777LmlpaWRNn47H6Kis5+7OBa2WQ4cPExUVxZo1a+wyD625uZmPP/6YefPmkZ6WhsvgIJhMWAICqGls5ODBg6SlpbHodnKXt0FVVRW7d+9myZIlTJ8+HaeREbBYMHl7U1FRweHDh1m6dCnpF9Mid4JJFexA/tHPnDlDX18fgYGBWCwWurq6mDp1KgsXLrTrsiMhBCUlJZw9exa9Xo+/vz9Go5Genh6mTZvGokWL7BJ4rtQ7d+4ceXl540t/xsbG0Gq1TJ8+nYULF+Lm5mY3PYvFwpkzZ8jPz8fR0XF8BYVOpyMtLY0FCxbgaEcXa4PBwKlTpygsLMTDw2N8BYXRaCQzM5O5c+fadcnfyMgIOTk5lJSU4OPjM76CQqVSMWvWLLKysuw6AXZwcJATJ05QXl5OQEAAjo6O9Pb24ubmxuzZs5k+fbpd9Xp6esjJyaGmpoagoCDUajXd3d34+fkxd+5cu67uAXlieE5ODo2NjeMra7q6uggNDWX+/PnjqyruFJMu2F2ir6+PgYEBVCoVQUFBd2wt4CW6u7vH18aGhITc0bWAQgg6OzvH18aGhobapbVzI6xWKx0dHeNrY0NDQ+/YOmOQg2x7e/v42tjQ0NA7Nuse5FZse3v7+NrY4ODgO6pnMBjo6OgYXxtrj5b/zdDr9XR1dY1XkPZccnc9hoeH6enpQQiBn5/fhHOCX5ZJG+wUFBQmF5NjuZiCgoLCTVCCnYKCwqRACXYKCgqTAiXYKSgoTAqUYKegoDApUIKdgoLCpEAJdgoKCpMCJdgpKChMCpRgp6CgMClQgp2CgsKkQAl2CgoKkwIl2CkoKEwKlGCnoKAwKfjabct+uwghaG5uHt+bLCwszC7GyjfCarXS0NAwvsVTZGSkXfexuxaz2Ux9ff34Fk/R0dF2da6/FqPRSH19/fgWTzExMXbZsPNGjI6O0tDQML7F05QpU+y6b9616HQ6Ghsbx7d4mjJlChrNnXs8BgcHaW5uHt/iKSYmxi4bhN6Ivr4+2traxrd4ioyMvKNbWHV1ddHZ2YkQAn9/f8LCwu6o3u3wjQt2wmKhZO9e6g8cwGdwEF9nZyxArk4H8fFMf+ABwm2wGLwWq9XK6dOnycvLw8fBgZmVlXSHhrLPwYGIiAiWL19OkI1mNFdiNps5fvw41cePk9TTg5/JhF6t5iNXV7zmzmXFypX4+PjYTc9gMHBs3z56Dh8mbmwMN0AHbNdo8F66lMXr19s1yOp0Ok5s3cpQTg5ThMBZkhiwWtnq4EDA8uUsuvdeu+4TqO3v5+SnnzJ65gxTVCocJYluq5V8FxdCV69mwdq1dg16XV1dnNy5E0teHnGShEYIWoTglJ8fU9atY96iRXYNes3NzRw7ehRLaSkzdDo0FgvF7u7sjoxk9sKFZGZm2jUI1dbWcvz4cUa0Wua2t6MymdgdHY1wdWXRokWkpKTYTevL8o3az050dFD+i1+g7e8n8d578Z89G8nDA6xWLN3dNB85QtPnnxN/112EffvbV9naTYRL26SPjo6yevVqggoKZP+CujpMzz5L0cULb69t4E0mE++//z5Bvb0sHhnBdfVqiIuD3l5Mhw5ROzTEPgcHnnjySbvsxjw6Osq23/yGmXV1xCxbhtv8+eDtDTodY7m5NH/+OWcDA7n3X/4FT09Pm/WGBgY4+i//QpLVSuTdd+OSliZbmel0jJw7R+Nnn1Hn78+q//f/cLHDRqzd7e2c+Zd/IcXbm/ANG3BKSZGNVQcHGTp9moa9e2meOpXVP/uZXTZGbW5u5sQLL7BIkghdtw7NjBmyXkcHg0eOUJGfT+fy5dzz2GN2CXjV1dV89tlnbPT1JUavR7VmDbi7I44fR9vczFZ3d8LtuA18YWEhx44dY926dUytr0c1OgpuboihIRoyM9mzZw9paWksXLjQZq0bcbP97BBC2PQCIoBjQAVQDnz/Vv8nIyND2J3GRtH+3HPi45/+VIyNjt6wWGt9vfjkySfF2K9/LcRNyt0Op06dEm+99ZYwm83yG7/7nRAdHUJ8+KEQpaVCCCFqa2vFiy++KIxGo01aQghx4MABsf2tt4T1l7+Uda7EYBDiT38SVZ98In73u98Jq9Vqs97ON94QlU8/Lay1tdcv0NYm6v/P/xEf/+Y3NmsJIcTB554T1T/96Q2vi3VwUJR+97vi6H/+p81aFotF7HvySdHwq18JcYNrY+3pEYVPPilO/fGPNusZjUbxxo9+JLp/9jMhtNrriFmF+cgRcebxx8WpnByb9YaHh8Uvf/lL0X7+vBAvvCDE8PBVWuK994Th2DHxyiuviJKSEpv1urq6xAsvvCB6e3vlz3/hBSH6+uRr+d//LYTBIIaHh8XLL78s6uvrbda7EUC+uEHcsUd72Qz8SAiRDMwBvitJUrIdPvf2sVoRu3eT4+3NzCeewOkmLbawmBicN26kdmwMTpywQdJKbm4uq1atkrcnNxphaEj2ZAwLG/dwjYuLIzQ0lNLS0glrgdydLC4uZmVICFJSkuyQfSWOjrB0KVN1OhwdHamrq7NJb3BwEOOJE0x58EGkuLjrFwoNJeqJJ3AtLKSjo8Mmvc7KSpxra4n72c9u2OKWPD2J//d/Rzp9mqHubpv0Gk+exHtkhKgf/vCGPrWSvz+xP/kJY/v2YdDrbdIrLSkhpb+fgKefllvHXxCTUC9dSuL06dTu2YPVarVJr6CggOTkZEL6+mDGDNkZ7got5s/HsbqaZcuWcfbsWZu0APLy8sjKypLz4t3d8jW85O4XHAwtLbi7u7Nw4UJyc3Nt1psINicjhBAdQMfFvw9LklQJhCG39OyOySQ7wRkM8stoBHN1A0NNAZwc8yGkK46eHtlZ8Moe+qVWuiSB1TqH97qGeOCzNjTeBjRuTjg5yT0KZ2fZ4e5WrfqWlhZcXV3x9AyhthaG2o2MdUzBekqFVBOApr8HtxDZDTAtLZ28vFybXJVqa2uJiIjAvb0d5s/HaoWqKujvl3t6iYngFhuLtG0bmYsXU1paSnx8/IT1KsrLSTGbcZw3b/w9o1F2i0xNvWzsrEpLI8nZmYqCAkJssDds3b0bj0WLUN2ie+oUFITbjBk07dlD6tNPT1iva98+vO+6C+kW+TjPpCRcwsJoPnyY+LvvnrBe3cmTLA4JgSsMZy45KqalXfTpliS8V64k7Le/paWlhahx09wvT2lpKRs3boQDB7AuWsKFWtkt0mqVjbLjp0Tg0t9PfHg4e4aG6O/vn5AvhdEox7ajR9u4//5HycsDU6MZ0RmHyJHLSG0xSCcFml5QqaaTm5tPZqaB8HAnWzNJXwq7DlBIkhQNpAF3LHT/4hfXebPFkZH+RBrMZo4cUV38LpdfIAe+S5Wl0ehFQWU0zhoNbLXANc/X0qWwePHNv4der8fT05O335YvNqNqqItBnQ3Wdm9Ev4ARueyaNb7obWwZXNKjuRk8PSkthR075PMTAurr4YEHNODigrezM5U26o0NDeHs5CR74F6kogL275dv8PG0i6Mjjt7eGLVam/QsAwO4TZt21XvDw/DSS/D881eXdQgOxmyjnnVwEJdr8qg1NfDBB1/UUwcFYezvt0nPPDCAU3DwVbXogQPQ0CBXruNxzccHT5XKfvfL2BgVrZ5szZbfv3S/pKaqud/ZGZXJhKenJ3q9fkLB7sMPob5eUFiYgIeHm3x6vU5IHWGoLgYya2UwotkVGgAcqKiYzl//KvDzgx//2KbT/FLYLdhJkuQObAOeE0IMXef4M8AzgE3J+n/6Jzm4XNWyqzIwVFSPbszCvHnpSJI03rIT4uqgJ0mg1erQa9tYbjGgWTsTjRvjLTsXFwgNvfX3cHZ2RqfTsXmzHH+GOqyMDbRinQVS3RAarRa3lXLLzmIZtHmaxiU9nJ1hZITk5MutXBcXmD4dsFhgbIwhgwFnG6tMJ3d3jEajPOBysbWVkCBXAlcNZpvNmIeGcLBxgELt4YHpmq6puzv84AdfLGvu7cXRxgEfyd0dQ2fnVe/FxsKPfvTFsta+PhzS0mzSU3t4YOztvXxDIleqMTEQHn5FwaEhdEIQaKf7xd3JicRwHffd539Vyy450Qp/GkM4OKDT6SZ8v2zaBO3tEn19F1i8eDYqlQumZhOitAsxSy4jmXqRQh3QJIBabaanp4JHHkknOtqmU/zS2CXYSZLkgBzo3hdCbL9eGSHEq8CrII/GTlTL3f3q9AMA6dGI/j30Dg4SF5fOlClTbvoZ+/fn8mTkBWampsKSiU1jiIyMZHBwEJOpmxkzAiFRA4U1sEqAWzeMjMBsuewnnxSRnGxbGjM+Pp59+/ahnzkT16oqHKZMIfPaMae6BggIoLCykrlz59qkl5icTLYkEZuXh2bJEkAOqkuXXl1OlJZSo9eTbKPxccjatTT8/OeIv/97pItTSyQJrp2qaOrvR1dYyIzvfMcmvYBVq+h96y149NGLfUhQq69qyAIw0tCAvqGBGcuX26QXPW8eba++SmBLC1wM1JGR438dZ+jYMVq8vFgcEWGTXnJyMkVFRayJjkbTdIEZy6OvLtDSBt7e1Hd24uTkNOE5qG5uEB8PK1b44ehYwIIFC+Sk1nAN3LVSLtR5AeYFQTycP1/OnDmOTJ9+52xGb4TNAxSSPGb9OlAphPiN7V9pAmg0SOvWsaS/n/wPP8RsNt+waE9nJwM7dpAgxBef3C+BWq0mKyuLI0eOyMlkJyf5yvf2QkcHhIQAcm6vsbGRGTbO7XNxcSElJYXj/f2I0lI5WXclFgscP06Djw9DQ0M2mx/7+vrC3Lk0fvghtLVdv1BvL61vv01fUhLhVzVPvjyh06ejDw2l/qWX5Cbr9Rgdpe6Xv8SaloaPjXqxy5YxKAStf/nL5fzGNYihIS688AKOy5fjYmPLdWZaGuc9PNC++65cEV4Ha14eNXl5RK9bZ7Mnb1ZWFiUlJfQFBUFxMYyOXj4oBJw9izkxkWPHjjF79mybp57Mnj2b3NxchoaGICgIdDoYHJS7Xu3tEBnJ6OgoJ06cYPbs2TZpTRSb59lJkrQAyAFKgUt3zU+FEPtu9H/u2Dy7hgbO/+d/MqxWM/3BB/FKT5ebgVYroreX9uxsqnfsIDYri6jvfe+L1fiXxGw288EHH+Dk5MTq1avxOnFCbo6Ul2N99lkqWlvZv38/9957r02DBZcwGAy89dZbJI6MMMdkwmnNGrla7e3FcvAgTV1dbFWreXTLFsLCwmzWGx4eZsevfsXcri6iNmzAcdYseSRxeBhTQQGtn31GjrMz6372M7usTunr6uLUT37CNB8fIu+7D4fp08fn2RmKimjavp1KYPkLL+Bu47UDaKuvp+inPyU1Joawu+9Gk5w8Ps9u9Nw56rdto87Pj9X/9V83HeG/XWpraih46SWWeHsTuGEDqtRUeRS9s5OREyeoPnqUmtmz2fTMM3aZyHz+/HkOHz7MZh8fQiwWpHXr5OfhxAl0lZVs8/HB3ceHjRs32mWe3alTpygoKODee+8lorgYSaWS9drb6Vy2jJ07dxITE8OqVavu2GqKSWWSbTUYyP/4Y9qOHiXMaMTbyQkr0DEywnBICCkbNzJl0aJbD7feJmazmaNHj1JUVESMry/TCwrQRkRwxsUFT09PVq1aZZcJxZcwGAwcPHiQ1pwcMoaH8TYaMajVFDs7I9LSuGvtWruu2BgZGeHItm2M5OSQZLHgBowBlYB69myWPfigXVdsaPv7yXnvPUz5+SSo1ThJEnqrlWrAbd48ljz6KG5ubnbT6+rs5NTbb6MuKyNOo8FRkhi2WKhRq/FZupQlDz5o1xUbzc3NnPzoI9wqK4mXJDSSxIAQVLm4ELpmDUtWr7brio2amhqOHDqET30904eH0VgsNHt6UurvT8bChSxYsMCuKzZKSkrIzs7GWQjmNTQgmc3kT51Kn9nMggULyMrKuqPLxiZVsLuE2WymtrZ2fG1seHj4HV2fZzQaqa6uHl8bGxUVRfC1c+HsyNjYGFVVVeNrY2NjY+/o2t+RkRGqq6vH18bGx8ff0bW/g4OD1NbWjq+NTUhIsGuQu5a+vj4uXLgwvjY2MTHR5kGem9HZ2UlTU9P42tiEhIQ7tvZXCEFra+tVa2Pj4+Pv2NpfIQSNjY3ja2MDAgKIjY29o2t/LzEpg52CgsLk42bBTtniSUFBYVKgBDsFBYVJgRLsFBQUJgVKsFNQUJgUKMFOQUFhUqAEOwUFhUmBEuwUFBQmBUqwU1BQmBQowU5BQWFSoAQ7BQWFSYES7BQUFCYFSrBTUFCYFCjBTkFBYVJwZ/Z4+f8DQjDS3o6uuxuVRoN3ZCQOd3BLIpA3u9S1tKD28sIvONjm3WZvxWBXF6Pt7Wi8vPCNjr6jW+gIIRhobsbQ14ejlxc+U6bc0X3JhNWK9sIFjMPDOPv44BUVJW8GeYewms3019ZiHh3Fxd8fLzvuQXg9LGYz/TU1WMbGcAsLw8OOexBeD5PJhLa+HmEw4DFlCq5f8DawLwaDgYHWVoTFgndk5B3dLut2+eYFu8FBuvbto/XgQQa7ulD7+CAsFqTBQXyTk4lZvx73hQvBjnt51dbWcvbsWYYrK5lVUkKfnx+lqamkpaUxd+5cXO3gXn8JIQTlZWU0fvghHufPI3l7oxoeRhsQgM9DD5G1eLFdN5u0Wq2U795N744dqHt7ZVOI4WHM7u743n03KZs22XVfNPPYGJXvvEP/oUMIkwmVmxvWoSFUnp4ErFlDwsMPo7KjnmFoiKq330Z75AiSWo3k7IxVq0UdFETw3XcTd889dg2y+pERyt5+m+GDB3HQaMDJCWt/P0ydSsQjjxBr5y3LBwcHOXv8OCPbthE8NITVwQGdycTo6tWkr15tk13j9ejt7eXMmTPU5+Uxq6wMyWqlIDmZ4MxM5s2bR8hFu4K/Bd+s/ewqKmj505/IGxsj/r77SFy+HMeLD/5ATw/ln33GwNGjLEhNxeuZZ2QTXxvJzs7m/PnzLF26lGlVVagjIuD0aXrXr+dMTQ319fU8/vjjdtnNVwjB3r17MR85wmwfHwKffRZ1UBAYDPR99BH1Z89SkJLCY08+aZeNLi0WC4dffBHvoiJCH3+c8Is+q8JioeP4cdrefJOeiAhWPP+8XTaeNOp05P7jP6JyciL68ccJnT0bSaVCWK00HztG87vvovbyYvaLL6K2g95IdzcF3/8+DqGhTHnsMYJmzgTAYjTSePAgbe+/j3N8PFnPP2+XgKft7+fkj39MpKsr4U89hV9aGkgS5uFhGrdto2PHDtSPP868+++3WQvkDULff/99VgwOEhcbi9vDD4OjI8YzZ+jaupVtgYEsWLGCzC84N02MhoYGtm7dyqxZs5jV0oJLTAy4u2PMzaUgNZWTJ0+ybt06m82nbsbN9rNDCPGVvzIyMoTdqa4WvT/9qfjzf/yH6O/vv2GxstJS8d73vy9Mv/ylEDqdTZIlJSXi97//vdBd+pyXXxait1eITz8VorhYCCHE2bNnxR/+8AdhsVhs0hJCiFOnTol3/vd/hekXvxBiaOjqg1arsL79tsj9wx/Em2++abOWEEIc++gjUbh5szB3dV33uHVoSJQ8/bTY/8c/2kXv9D/9kzj7r/8qrDf4rcwGgzj5938v8v/7v23WslosIudb3xIFL7xwQ72xwUFx4vHHRcmf/2yznsViER//+Mfiwr/8ixBG43XLjOTliRMbN4qSoiKb9cbGxsRLL70kqo4cEeI3v/mi5s6dYmjXLvHSSy+J+vp6m/UGBwfFCy+8IH+WxSLE//yPEMPDQphMQvziF0KMjoqOjg7xwgsviM7OTpv1bgSQL24Qd74ZAxRWKxw8SI6vL7PvvfemrahpKSlo5s6l3tERTp2asKQQgpMnT7JmzRq5FWUwyK5Rvr4QHCzbvSO7Ljk5OVFTUzNhLZBbWWfOnGHdlCloZsz4olmQJCHNnUumszMDAwO0trbapDc2NkbPvn0kPP446sDA65aRPDxIfOYZjCdPMjAwYJPeQEMDhvJy0n760xu2otSOjkz/2c8YPnGCMRv1OgsKsPT3M/MHP7ihnpOnJ4k//jF9e/ZgMRpt0quuqiK8rY0pzz4LDg7XLeOalcXUWbOo2LEDYWOP6/z584SFhZEgSZCa+kXNtDQ8OjpYunQpp2x4Di6Rn5/PtGnTiImJkY2dL3meajQQFgatrQQHBzNnzhzOnj1rs95E+GYEu+pqRoEas5mUlJRbFs/KyuKUWg2FhXKQmgAdHR2YTKbLHrUGg2xgLUmyI9YVn5uVlUVRUdGEdC5RV1eHj48Pvv39sqPY9YiJQdXVxawZM2zWKystJcFsxnXevJuWc5g5k0QnJ0ry8mzSa9y1C/d583C8ReLcIzQUp6QkGvbssUmv5bPP8Fm58pb5v4CUFNT+/jQfO2aTXuXx40SFh8MtcmSBq1bh2dRE5zUG3l+WoqIisrKyoKlJduK+lrAw6OsjJS6OtrY22QLRBgoLC2U9kG0br7yO7u6y2TqQnp5ORUUFphvZZd5BvnYDFL/9LWi117zZ4s5I/0KqzGb0o7c+JaMxnHPnMmjSaKDfAteMH9x9N9zK83loaIiAgAA++USishIYdYDz82EY6AwDrSsUyGWffTaQM2fO3O4p3lAvMDAQmpvHnaOff/7a76wBFxcCPTxoaG+3SW+4r49oFxfZPv4Knn8e/u3frhjfcXLC2d+fke5um/QM3d14Tpt2W2VdIiMZu9hyniim3l4CFy26rbJOERGM2hh8DD09uIWHX+Vqd+YMfP751ddR8vfH19GRwcFBm5L54/eLXg/u7ldpANxzj5o0FxccLBZ8fHwYHh7GcwLeuLt2QWGh4PjxTIaH/eXT6/OEtnRovFioOkXuiYQCuHH69GKGhqzEx8PTT0/4FL80X7tgd++9sgf1VVTqGK5vxarXs3p1xi0/Y3BwFP1IM6vNZrgrBa7J5cfF3fp7aDQaDAYDd911sbIeNsNYA6yeA9UD0NUDi5JQq+VheIcbdF1ul0t6aDTjJtLr1sne2OPfWQgwmTBaLDaPkGqcneWum8UCV0yhWb/+qn+CEFjHxlDbOAKscnLCfAPz6GuxjI6isdE3VnJ0xKTT3bae2sapE5KjI+YrjaqBpKTrWBcbjZisVrvdL+5qNZjNV90rALGxwGEzqNUYjcYJ3y9z50JgIHR01LNixXz5e7fooawNVk+XCzl3QKgEU+X0T1dXLXfdlX5bz5k9+doFu6io6/QEksOwvrKLKldBdHTnLS0Mjx8v5t64Xua4uMAyV5jAdLGIiAi6urpwcxtizhxPGFFBUQvMAVRD4D8s/x3Ys6eM2NjYLy9yBVOmTOHgwYOYpk7FobkZwsO51GsYp7cPNBrOX7jA1IQEm/Rip06lzGRiSnU1qitGz74wcNfWRntPD9HTp9uk5zdrFq0ffgjPPHPTclazmeHcXBJ//nOb9LwzMug5doz4++67aTnD0BCGsjKCv/c9m/RC0tPp/eAD/HW68S6et7f8uhJ9URHNKhVZ4eE26cXFxVFWVsbioCBobycr6xrT9MFBADqGhzEajQQEBExIJzAQAgMlGhqccXMrJT09HUIFDLaN3/80dUFKAEyD2to60tIMLF7sZC/r5tvmm5Gz8/RENXMmy81mjh87dtPk7sjICMUnT5I+OAjLl0/YLNvJyYnUi8PpALi6gtks5yv6+uDiIMnAwABlZWVkZNy6xXkzvLy8iI6Opmh0FMrL5VbctZSV0R8QQHNLC6mpqTbphYaGoouPp+WTT+QBoOshBB07dtAWGEjcjfKIt0n0ypUInY6mI0duWq7m009Re3sTfKs8wy2I27gRY20tXcXFNy1X9fbbOE6davMk4/S5cym3WtEdPXrjQiMjNO/di/+KFTbPlZw1axbnzp1jNCQErjc4VlODiI7mRE4OWVlZNk9InzVrFmfOnMFoNIK/P/T0yE1JIeSuWGAgFouFnJwcZs2adUcnpN+Ib0awA1i6lKlhYQQeOsTnH3983QTogFbLzt/8htVtbXguXHj9xO2XYMmSJVy4cIFjx45hsVohJATa2uRXSAjd3d288847LF26FA8bu10Ad911Fyfb26mvr0dcmwPs7GTg4EE+bGxk/fr1dpn3Nu/ZZymvrKTxj39EmM1XH7RaaX33XUqPHiXzu9+1+WFRaTRMee45Gl56icZDh75wXFit1GzbRud775Hwwx/apAXg6O5O+He+Q+W//zvtublfOG41myl7/XW0hw8zzQ56Hh4eRD3xBEVvvEH/0aNfqKwsQ0NU/fznVLq7s2D9epv1goKCmDlzJu/m5zPa1AQXLlw+qNdjyc7myPAwQ0NDzLbDRObY2FjCwsL44IMPGBEC/Pzk/HJvL1gsGDw82Lp163gj4W/BN2tSscWC8cgRqt5+m3aDAe85c/COiMBqNtNdXo6ltJSYuDhivvMdJBu7eZfQ6XTs2LGD7u5uFjk4ENLRgdDrOZGeTltXFytXriQtLc0uWgBarZbd775LZHY2gdOmoU5JQXR1MXziBGUxMcz91rdITEy0m15nUxMl//f/4jYwgOeSJTgGB2Pq62Po2DFGNBoS/u3fiLTjJNHWkye58JvfILm44LN4MY7e3hh6e9EeOwZqNUk//SmBNnaZr6R+3z6a//Qn1P7++CxYgIOHB6Pt7QweP47K05PU55/H28ZK8UpKjhyh6/e/x9PXF4+FC1G7uaGvrWX49GkMqanM/dnPcLdDxQhyfuz06dOUfPYZ81pbcZk/Hzw9seTkUAxoVqzg7rvvttuKG6vVytGjR8nPz2eWRkN8fz9WR0fanJw4IUlMmzaNNWvW2HXFzbXcbFLxNyvYXcJiYbC4mKYjRxjt6wOVCu/oaKLXrMEpImLCXdeb0dPTw/nCQlxOnmQ0IoLAOXNITk6+Yxe2vbmZ5u3boaMD4eaG75o1xKWn35H1uEIIWgsK6DxwAMvQECo3NwKWLSN6wYI70h25tGKiOycHi16P2t2dkOXLCZs7946sj720YqIvNxerwYDGy4vwNWts7irfCLPJRN3+/Qzm5SGMRjRBQURv3Ii/HYPqlRgMBirOnGHs6FEkoxFmzCBh9Wq7rOq5Hnq9npLz5zEeO4bKZIKlS5mRlmaX3s2tmHzBTkFBYVJys2D3zcnZKSgoKNwEJdgpKChMCpRgp6CgMClQgp2CgsKkQAl2CgoKkwIl2CkoKEwKlGCnoKAwKVCCnYKCwqRACXYKCgqTAiXYKSgoTAqUYKegoDApUIKdgoLCpEAJdgoKCpOCb3ywsxiNiCs337/TemazzTZ4X0rPaETcaCdhOyOE+Gr1rNa/id5Xxd9E7yt09bJaLFi/wmfvVnztPChuicmErrCQxn37GMjPl01OhMApIICARYuIWrMGhylT7LqnXX9/P/n5+VSdOUPqiRO0h4ZiWr6czMxMkpKS7L7HXFdXFxW7d2PYuxfnwUHMGg2WefOIfvBBpiYl2X2Pubbycpo++QTD2bNIJhNCrUaTnk7Epk1EZWbaVU9YrbScOEHrrl0YS0vlLeE1GlwyMojcuJGQLxhv2K7X8PnndOzejam6Wt5B2NERtzlziN60iYDbsOb8MlgsFuqOHaNj2zZEdTUSYHV3x33pUuIeegjf0FC76plMJspKSmj+9FPc8/NRW60MRUXh9eCDpM2fPyFHsZthMBg4f/4858+cIfzzz1GbzdQvW0bKggWkp6fj6up66w+5Q3yz9rPr7KT3T38ir6oKz3nziN+wgcDoaKxWK435+VzYvRvX2loy1q7F5eGHZZ9XGykvL2fv3r2kpaUxu6cHDx8frMXF1CxfzunSUtRqNQ8//DDOdtACyMvLo/yjj1g4NkbQU0/hnpGBqaODjtdfp6q1lYFly7h/0ya7bBoqhODsRx9h+uADfJcvJ3rTJtzDwxnt6aFx2zb6DhzAfNddLP7Od+wS8ITVyrnnn2e0ogL/deuYcs89uPj6ouvspH7HDvoPHMBr8WJmPvecXTbxNI+NkffP/4y5p4fADRuYsmEDDq6uDLW20rB9OwOHDhH44IMkP/GEzVogG48f+X//D/+6OgLuu4/Iu+9G7eyMtqKClo8/pqekhLCf/pQkO2yTDjA8PMz7779PXGMjKR4eBHz726i8vBj49FNac3P5PDycjQ88cNn72Eb6+vp4//33CQ4OZtHwMIHBwUgeHvSXlpITFsaFCxfYvHkzoXYO6Fdys/3sEELY/AJWA9VAHfAvtyqfkZEh7E5bmxj++c/F6889JxobG69bxGq1imOHDom9f//3wvLHPwphNNok2dDQIF588UXR2dkpv/GHPwjR0SHEBx8IUVYmLBaL2L17t3jnnXeE1Wq1SUsIIcrKysTvf/lLoX/+eSEuaV7CZBLm3/9e7Pv1r8X27dtt1hJCiHOHD4vT990nRsrKrnt8rKFB5D3wgDj+ySd20Sv41a/EiaeeEmODg9c9ruvqEscffliU/vWvdtE785OfiFP/+I/CNDp63ePa+nqRfe+9onbnTpu1rFar2P6rX4myb31LWAcGrlumb/t2cWDTJtFQX2+zntlsFn/6059Ezs6dwvrLXwqh0135ZYR4913RvmOH+NWvfiW6urps1hsdHRUvv/yyOHfunPz5L74oRF+fEKOjQvziF0KYTKKiokK8+OKLYvAG19ceAPniBnHH5upRkiQ18EdgDZAMbJYkyX6mBLeDEPD55+R6eJCwaRNRN3BdlySJxcuX05WRQdvICJw7Z5Ps8ePHWbVqFUFBQbKX68AABATIxjudnahUKtauXcvAwAAtLS02aQkhyM7O5r7ERFxSUiAo6OoCGg3qJUtYGRBAXV0dfX19NumZzWbqP/mEpIcewvUG5tVO0dGkPPMMPbt3o7/o+D5R9L29DB09Svovf4nTDbpWboGBJP/85/Tu2IF5bMwmvf7aWsbKysj6n/9Bc4NWt3dMDFN+8APa3n/f5rxhc3MzHsXFJP3gB0gXTc6vxffee5mWkEDh9u02aQFUVlbi5OTEfD8/pNRUcLvCHFmSYM4cQrRa5s+ff9khzwaKi4sJDw8nMzNTdtdTq2WHPWdn2W+xtZWkpCRSUlLIvY7B0VeBPQYoZgF1Qoh6IYQR+Ai4xw6fe/s0NmLUajlnNMq+lTdBkiRmz5nDKScnOHVKtj+cAH19ffT09DDtUiAYGwMnJ/kiu7vLTuyASqUat7WzhaamJiRJIlSngxuZBcXFoWlrIz01lYKCApv0KisqmDI8jPfSpTct5zJnDolCUGKj3oXt23GeMQO3wMCblvNPSkITHk793r026TVs3Yrn4sU43CKHFL5gAahUtJ0+bZPe+WPHmOrnh+pmZkiSRMiaNahKSmyurPLz85k9ezZSY+P1XfQiI6Gjg/TUVGpqamyurM6dO3fZpUynkw1xL6U2vL1heBiQLReLioqw/A0GLuwxQBEGXNlsaQXsk3S4Dp9+KtumXkWLBn3/cipMJsaMLrf8DIMhloKCAapUKug1gcvVP8PmzTeOJ5fo7e0lNDSU7Gw1OTnAqAbOLwAd0BkOWje4+Pw/80wExbfwJ70Vvb29REREILW2yr6cwPPPXz7+yCMwdaozODkR6e/Puet5hX4J+jo7iXR1lWvlK3j+efj3f5djOgDu7ngEBtrcctU3NeF5gxbktbhNncpIU5NNemMtLYRs2HDLcpJKhUt8PEP19bBgwYT1Rlpa8IiPv+KHg7Iy2L0b/vVfL5dTR0QQ7OREb28vfn5+E9a7dL+QnQ0+PlfdKwCPPOLIVBcXXKxWfHx8GBgYmNDgQU4OHD4sOH48ld7ecDm+9XlAWwZcukRVKeDpCaEAvpw+vQCt1sz8+Wrs4Bp523xlo7GSJD0DPAMQaYPhcHg4aLXXvGkwMWLV02Y0cDu5z9FRC15eI/JvHyLgmmt8OyZIkiRhtVoJDETWHLFCg06+oGYjqMYgFBwdZYs5W31VL+khSeOm1VFRcu8Zxk3mQQisQtg8YCCp1ZdNjq/4rOsNZAur1eYBA0mtvu0pQsJiQWWjL+6X1ZNsHVFXqb6g5+UFSUnXlLNa5fySPe8XIa66V+DiPX7xuNVqnfD9EhAg3/+enjpCQgQqlQRqM4zoLwY3oHsUfF3H/+3hMUxIiLitZ9We2CPYtQERV/w7/OJ7VyGEeBV4FeTR2ImKzZ0rv66iyw3zm8d52WLhwQdn4u3tfdPPOHeunFipkvWSBN9dPqHOfEhICG1tbWzaNEZqqjPoBJiL4JkVcK4LurpgvewXe/RoDWFhYV9e5ArCw8M5fvw4logI1B0dEBrKU09dU2hoCMxmqlpbCQ8Pt0kvLCqKttFRYpqakKKjx99//PFrCvb20tfZSVB8vE16XtOm0Xv8OF88qasRViu6oiKivvUtm/TcEhLoPXOG2Fs0LSxGI6OlpUx55BGb9HyTktDu34+vwSCnO4CICPl1JcbqalrMZlJDQmzSCw8Pp6amhiw/P+ju5qmnrvk8vR6MRgbMZoaHhyfcikxMhMRECbW6kwULamTP4qYxOFIBT8+RC31aB8mOMA1aW1sZHa3ie99bdSccTW+KPXJ254B4SZJiJElyBB4GPrPD594+QUFo4uJYotFw9uzZmxY1m83knT7NnJERWLIEJliDenh4EBsby/gUGhcXMBrl1+DgePPQYDBQUFDArFmzJqRziaCgIHx8fKiTJKisvH6hqipGw8OprK6+Ze7yVsTGxtIZGkr3LXJjA4cPU+fuTsqMGTbpTdmwAVNTEz1fyFFcTcuJEwijkchb5BJvRdyDDzJaUMBwe/tNy9Xt3IkmKMjm+XYZixZRMTqK8WZTrsxmWnfvxnX+fNzHm+oTY9asWeTm5mKOjIQLF75YoL4eoqI4k5fHjBkzcLSxpTxr1izOnDkjz87w8YHeXrlXANDTA97e46bdWVlZd8Rv+FbYHOyEEGbgH4DPgUrgEyHEze/YO8HKlaRKEvodOzh35sx1i5hMJj57912yKivxi4sDG2/gJUuWcObMGSoqKuRcTEAAdHZCezuEhDA2NsaHH37ItGnT8L+YZ7OFlStXsrumhr7qaqiuvvrg8DBjhw/zaWMj8+fPx+3K0bcJIEkSM596irJDh+i9QcAbOHmSko8+IuGJJ2ye1+fg6krwli1U/Pu/019be90yXcXF1P/610R++9s2d5vdAgPxWbeOon/6pxsGvJYTJ+h4+21in33WJi0Af39/XFevpuS3v2Wsru6LBSwWWn73O0oHB5lz770260VHRxMQEMDO6mos1dXQ3X35oNkMOTmUqFRUVVUxb948m/UuDdTt2bMHq7u7XPl3dMi9jeFhRHAwx44do7e3l4yMDJv1JsI3a1KxXo/uww8p2bMHXXg44StW4BcdjcVkoq24mO7sbKKAxL/7OzSLF9tlFUVnZycffvghvr6+LDQa8R0dhfZ2ChYupLCigtTUVFatWmVzDuYSjY2N7H/tNebU1+O7ahUu6emY2toY3LGDIrWaiEceYeHChXarOavPnqX5v/8br4gIAtevxzUsDENPD1179zJYXY3/P/4jM+66yy5aAJXvvUfXe+/hkpZGyF134ezri76ri479+zFUVhLx3e/esut5uwirlZI//hHtvn24zZ5NyIoVOHp6MtzcTOf+/ZgaG4n713+VR2TtgNVq5eSbbyK2bcNr1iwCVq7EwcODoYoK+vbupU8I0v/nfwi+tm87QcxmM5999hkjp04xd3QU940bUXl5Mbp3L3UdHVSlprL5kUfw9fW1i97Y2Bhbt26lv7+fpSoV4UIgXFzoHRriiIsLDg4OPPzwwza3Wm/GzSYVf7OC3UWsfX20HjxIR04OBq0WSa3GLSyMqNWr8Zs71y4rJ67EbDZTVVVF6blzBGVnMxgRgfvixaSnp9s0onYjjEYjlbm59G/bhqqrC+HmhtOKFSSvWYPXDeZw2cLYyAi1u3YxcOwYQqcDFxc8588n/v77cbtFfnQijHR3c2HbNgbz8hBjY6jc3PCZP5/Y++7D+Q7oDTY307B9O8NFRQijEZWHB/5LlzJlwwYc78CD2dfSwoVPPmHs/HkwmZD8/Qlcv57YZcvQODjYXa+zs5OKfftQnTiBZDJhTEoi8v77iU9IsFslfAkhBG1tbRTk5eHy+eeoTCaGV61i5uzZREdH3/Hu66QLdgoKCpOTmwW7b/yuJwoKCgqgBDsFBYVJghLsFBQUJgVKsFNQUJgUKMFOQUFhUqAEOwUFhUmBEuwUFBQmBUqwU1BQmBQowU5BQWFSoAQ7BQWFSYES7BQUFCYFSrBTUFCYFCjBTkFBYVKgBDsFBYVJwVdmuPNVYrFYqCku5sLRo4z09SGpVPhGR5O8Zg2hdtoY8UpMJhMVFRWcLy5GVVuL0deXkKQkMjMzCQgIsLuewWCgtLSUuhMnkC7uZ+c/Zw4ZWVn4+PjYXU+v11NSUEDr8eNYhodRuboSPH8+M2fPxuN23Im+JMPDwxSfOkXX2bNYRkfRuLsTtnAh02fNmpAD1q3QarUUnzhBb0EBVoMBjZcX0cuWkZKWhtNFvwh70tPTQ1FODgOFhQiTCYfAQGKXLyd52jQc7sB+du3t7eTn5jJSVITKZEKKjydlzhwSEhJQ22okdA1CCJqamigsLERXUYFkNuOYlER6ejqxsbF23z/vy/DN2s9OCAZOnyb/lVfwNhgIzMjAMzQUq8VCb3U13eXlqKdOJfNHP8LBRgOcS7S3t/PRRx8RGBjIXA8PgvPyMLm5UThrFoXFxSQlJbFmzRq7XeT6+np2ffQRczo7iXV3xykhAUtXF52NjWT7+JC0YgVLliyx2yaJ5aWllPzud6QYDASlpuIUFISxv5/eoiLK1Gqi/+7vyLLDtt6XKDh0iLY33yTewQH/zEwcvbwY6+2lp7CQWiDxH/+RJBv9PC4hhOD0tm1ot24l3tUVv8xMHNzd0Xd20l1czAUnJ9J+8hNivmABNjGsVisHd+zAuGsX05yc8MnIQO3qiv7CBVrr66kMCmLFD39IqJ1st0wmEzt37qS/uprlfX34R0YieXigLy8n19eXFm9vHnnkEbttMDs6Osqnn37K0NAQ84OCiC0tRVKraZk6lZyhISRJYvPmzXekgrzEzfazQwjxlb8yMjKE3TEaxcjbb4vDGzeK0q1bhTAav1DEpNWKw//1X6Jo82ZhzcuzWbK7u1u88MILorKyUn7j7beFqKgQ4pVXhGhuFmNjY+Ltt98Wu3fvtllLCCGam5vFC7/6leh56SUh9uwRwmSSD1itQpSVibH/+i/x+ssvi+zsbLvoVZaXi8+2bBEDf/iDEP39Vx8cGhLDb70lDm7eLPLPnrWL3vl9+0TO3XeLwf37hRgbu/rgyIjo+/RTcWzDBlFz5oxd9M689544c999YiQn54v3y9CQ6HrjDXHonntES0WFXfT2ffqpyN2yRRj27BFidPTyAatViOZm0fmv/yre/e53RXd3t81aVqtVfPDBB+LTDz8U5t/+Vohz52QdIYTo7BTihRdE8YED4qWXXhKDg4M265nNZvHXv/5V7N27V1gsFiFef11+FlpahPjtb4XVYhHZ2dniD3/4gxi98tztDJAvbhB3vjk5u6NHqa2owPL006Tcfz9cpzug8fZmyb/8C/kzZ9K/axc0NNgkmZ2dzfz582X7OCGgrU02c42KgtZWnJycePjhh6mqqqKnp8cmLYBDhw5xd3Iy/q6usGYNXDK5kSSYNg2n2bPZHB7OmTNn0Ol0NmkJISh8+23mTpuG13e+IztGXYmHB+6PP87sxYupeustTFeakk4Ak8FA95//TPKPf4zn6tXjdoPjuLriu2kTU596iqbf/U52sbIBXX8/+vffJ/UXv8B1wYIv3i8eHgQ+9RRT1q6l9ve/t0kL5K7r2N69pD30EI7r1l1tDSBJEBFB0D//MwutVk7t22ezXkNDA/39/dyXmIja2xsyMy97rgQFwcKFzNDpmDZtGqdPn7ZZr6ysDLVaLfdiDAbZSjQ+HsLCwGxG6u9n8eLFBAUFUVBQYLPeRPhmBLv+fswFBRxxdWX2LcxR1Go1M5ctI9fLCz7//LLd25dkeHiY+vr6y05Jer3sMObqCv7+0N8PgKOjIxkZGeTl5U1I5xKdnZ0MDAwQbzLBzJnXt4BMS8OlsZHkxEQKCwtt0qurqyOsrQ2/e++9ysX+KiQJzw0bSNTpKCspsU1v927cg4LwvcX1C7n7blzMZhpPnLBJr/aTT/BMTcXtFl3UqMceQ93cTNeN7Ctvk/ycHGY4OOBwMwtILy9C1qxh7ORJhoeHbdLLy8tj9uzZqC9cgOTkLxZIToa6OmZnZXH+/HmMRqPNenPnzpXTJz09stOeRiMH2LAwOfgB8+bN49y5czZXVhPhazdAceIEnD9/jTFY0xAjncspMhnRvC0bzlz6LS/9eam8JMHY2DTOnhmkHmBoVA5QF7Fa4b77vmhefC0dHR2EhYVRVOREXh5IYxLi7Cys/wtSWyiqAWeoB3d3mDNnKidP2lZbt7W1yQnejg6YPZueHti5U46xKpVsgZuaKudeEsLCKLyeXd+XoL25mQgHB6SpU8ff6+iAHTtg9WqYMuXim6GhBPj5UVlbCzZY5A2XlOB5jfu5yQSffAKPPnr5PUmtxjUri8HiYli8eMJ6o+XlBF/jijY4CEePytf/EmoXF5xTU+kvLCTIhtzdQGUl3omJcIXFZU4OVFTAI4+M2wzjmJJC1Gef0dnZaVNuq62tjTVr1kB+Pn2J89n5OoyMyM+DWg1Ll3oyTaPBW6PB09OTvr4+QiZgzH3+PGRnCz7/PIzR0XgOHQLR5YxonIG4qCeVJqEq9ESKAAglO3saZrORefOcsGO695Z87YJddzf09V3zplaDXueMzqS+1KC6KQaDCt2IC70qFfRJoL/6uF5//f93JUIIVCoVWu3FRtyoBHpnGACGNTDkAH3yd83KUmG1Wm/vBG+hhxCgUjE2JveaLzE4ePEvKhUqSbK55hRWq+zNekWtMjoq//4jI9cUVqsRtp6f1fqFFqTVCte1kL1Dekbj9f2kUasRFotNegiBdI3ewIBsM3xVo0qtRpIku94vY0YVLS1XHx8aQr62VisqlWrC98vAgHz/6/Wu9PVJ8u0yoIYRJ9BeLDTiKLfyXOR/6vVu9PXJPtpfJV+7YLdpk/y6inYVpnf28xuTme/+IBlXV9ebtuzKy2vJ8DvNJo0GvpcFExh99/f3p729nQcfNLNmjQZ0Fqx/zMH6ozlI+S2oerqQNsgtgbNnm2yeghIQEEBubi4iIACpvZ2I9GD+4z/kgDAek4aHwWiksbfXZj3/4GB6jEZiWlogMhKQW3M///k1Pej+fgZ7evC+WGaiuMTGoisqgscfH3/PyQmef/6agkIwWlqK//3326TnGB3NYH6+nPu8SEAA/NM/XSNnNmOsrMTznnts0nOLiWH49Gl8DIbxfOT69bBu3dW/p6W2lnaLhal2uF+am5uZ5uNDmLqT558PxGodryuRRvWQbUCvUqHVaic8ZWnxYli8WOIPfyjj7runEBkZibVBB0fyEU9Nl1t220qRkpKQUkPo7+/Dze0UP/zh7BtmR+4U34ycXWgoDvHxLDSMUVxUgEolV9pqtVyhaDSX/y1JgoKTOcwfGoIVK26cj7oFfn5+BAYGUl5eLr/h4oLKbERjMaAe0iJ5eQLydIO8vDyysrJsOsXIyEgkSaLVwwNKSuSWgnTpnC4WKi3FFBtLUUmJza7rScnJ1Hp7M7hv31V5zWtThaOHD1Pm6MgMG/Xi778fXXU1I9XVNy3Xd/o0+oEBYlevtkkv9uGHGTxzBmNn503Lte3ejcHNjbDM689muF1mLlxIuV6P9dy58fck6Zrfc2yMrn37sKSn22xcnZmZKVeOcXFQVQUw/lxIEnKTOTqawpISEhIScHFxsUkvKyuLs2fPyjr+vqj6elBLVvnZ6+lC5e+LJMm5vbS0NLvP77sdvhnBDmD1alJ9fdG+8gpNN0jOC4uFM+++S/zx4wTNmQPTptkkuXjxYg4ePEhHR4d8FwUHQ2srtLRAeDhWq5Xdu3fj6+tLeHi4TVqSJLF06VK2lZcz0tMDublXD650dGA5cYI9fX0kJCTY/LCo1WoSHnmEwhMnGN2+XU6gXYnFgvHgQYp37SJk40abHxYXT09cH3yQ8n//dwxlZV8cOBIC/dmzVL/4IgFPP41aY1unxDciApYvp+zHP8ZcX//FAhYLg4cOUf/mm0Q884zN8xYjIiIYnjWLytdfx1pY+MXz0+kYeOUVTmu1zN6wwSYtgMTEREwmE9k9PYjmZrjyHEdG4OhRWkJDOX36NAtuMSh0O8ycOZOOjg55IM7DA7y8oLlZzuOMjUFICOXl5VRUVDB79myb9SbCN2tSsdlM59atVL33Hn7h4YQuWoRPRARWs5mOsjK6Tp5kVKMh40c/wjU93S6SlZWV7N69m+nTpzNLCLyrq7EajVSsWEFuQQFOTk489NBDdpuJX1BQwKk9e7irt5ewqVNxS0vD2NZGz6lT5Hh5oZk+nY0bN9ql5hRCcPLwYQbeeYdpbm4EL1+OS0gIhr4+Og8fprq/H+67j1X332+XScxCCLLffBP27SM6MpLgZctw9vZG391N59Gj1Hd24vHoo8y5cgTBBiwWC4d+9zvcT50iIj6e4EWLcPTwQNfWRufRo9RptYR85zvMXLbMLnoGg4Fdr71G6JkzxEREELBkCRo3N4Zraug8dYoijYYZzz1H0vVGTyeATqfjgw8+wHdoiIWdnfjNn4/Ky4vh7GzKXVw4pdHwwAMPEB0dbRc9rVbLe++9h7+/P/Pd3AhvaAAnJ7r9/DilUtHU1MQjjzxCcHCwXfSux80mFX+zgt1FdMPDlH3+Oa05OYxptaBS4RkezpTVq0mcMweNja2CaxkYGKCgoIDzRUX4VFQw5O+Pb2oqmZmZJCQk2H2JTE9PDwXnztF5+DDqnh4srq64L1jAzLlziY2NtdvqiUt0dHRwPjub3hMnEDodkosL3nPnkrpsGVFRUXbVAmhqbKTi0CH68/IQY2NIrq74z5/P9JUrJzRieDOEEFyoq6PqwAEGiorAZELl4UHQkiVMX7rU7sv9rFYr1VVVVHz+OaOlpQiTCZWfH6GrVpE2bx7e3t521TObzVRUVFB06hTk56MymzHExTF18WLS09Nxd3e3q57RaKS0tFSeS1dUhNpiYWz6dNIzMpg5c6bNPYBbMemC3ZVcOj97B4Cb6X1VWoqeovdlteCrfRa+Sr2LWjcMdl+70dgvy1f5Qyt6it7/n/W+yed2O3xzBigUFBQUboIS7BQUFCYFSrBTUFCYFCjBTkFBYVKgBDsFBYVJgRLsFBQUJgVKsFNQUJgUKMFOQUFhUqAEOwUFhUmBEuwUFBQmBUqwU1BQmBQowU5BQWFSoAQ7BQWFScE3dteTvr4+iouL0Wq1qFQqwsPDmT59Os5X+nXakc7OTkpKShgcHESj0RAdHc20adNwdHS0u5YQgtbWVsrKytDpdDg4OBAXF0diYqLd9+q7pNfQ0EBFRQWjo6M4OTmRkJBAfHy83ffqA3nPt9raWqqrqzEYDLi4uJCcnExMTMwd2UnDbDZTVVVFXV0dJpMJd3d3UlJSCA8PvyN6RqOR8vJyGhsbMZvNeHl5MX369Du2qeXY2BglJSW0trZitVrx8fFh5syZ+Pn53RG9kZERiouL6ezsRAhBQEAAM2fOxMvL647o3S7fuP3sRkdH2blzJ62traQnJxPs64vFaqW2tZXahgbmzZvHwoUL7XYTDw8Ps23bNvr7+0lLSyPQwwMDUFVTQ0tLC8uXLyfTRv+CK+nr62Pr1q0YjUZmpqbi5+zMqNVKWW0t3d3drFu3jmQ77XQL0N7ezrZt29BoNMxMSsLLyQmdyURJTQ1DQ0Pce++9TBn3VbSd+vp6du7ciaenJ9Pj43F3dGRwbIziqirMZjP3338/oaGhdtMrLy9n3759BAYEkBobi7NGQ79eT2F5OU5OTmzatMmuQSE/P58jR44QGRFBUlQUjmo13cPDFJaW4uvry/3332+TheKVCCHIycnh9OnTxMXFER8RgUYI2oeGKD5/noiICO699167NQCsViuHDh2iqKiIpKQkYsLCkICW7m5KS0tJSEhg3bp1OFzHwN5e3LHNOyVJehHYABiBC8BTQoiBW/2/OxXsjAYD2198kTiDgTQ/P9R6vezkJAQYDIx6enL0wgVcFyxg6Rcsyr48IyMjvP7668ycOZMFCxagamqCd9+FmBjYsoW+/n4++OADMjMzmXuNJ+pE6O/v580332TJ3LmkDw4ilZbK3hcGA0yZQmdyMh8cPszKlStJTU21Wa+9vZ33332X+6OiiNHpkLq75d/TYAA/P9p8fPiwvp77HniA2NhYm/UuXLjAnvff58GICEJ0OtDpZL2xMYS3N01OTuzs7OTBp56yS8ArLS0lZ8cOHoqKwq+/Xz4vR0dZz8+PaknigFbL49/+ts2eHgBnzpyh6PRptsTE4NnaKnt2OjiAwYA1MpJ8lYqzvb1861vfwu0Kf9mJcvDgQRobG3l49Wo8T5+WfSg0GvDwwLx0KQfr62ltbeXJJ5+0uQcihGDHjh2MjIywadMmXPr74f33Zfu7TZswRkby2WefMTo6yiOPPHLHDHfu5Oadh4B/FUKYJUn6FfCvwD/b+JkTY3iY+v/+b6Z2d5P2zDNI0dEQGHjZestkwqWtjRUVFeS+8gr9ZjO+Dz74RbusL0F2djZTp05l0aJF8hvHj8sOyzk50NyMX1QUjz/+OH/+85+ZNm0anp6eNp3iwYMHmZORQUZ5uez798wz4O0tG48WFRH8+ec8tmYNb+zdS0JCgs038P6dO3nIYCDSYJBduKOj5YfFaoXmZsLOnuUJs5lPtm7l//z4xzZ1aa1WKyf/+le2WK34RUTIZkjBwePeplJbG9GlpTxYXs6Jd9/l4X+27TYzGo0UvPYaj3l54RETA2vXgr+/rGexILW0kFhcjGNZGSc++YR7v/Mdm/SGhoY4t28f33ZxwcXRER544PL5jY2hqqlh1rFjSDod2dnZrFu3zia9zs5OSktL+funnsLl3XchLQ02bpSDa20tml27WLNpE1tHRjh79uzle3iC1NXV0dnZybe//W255bZvn2xT6e4OO3fi+NxzbNy4kXfeeYeSkhLS0tJs0psINgU7IcTBK/55FrC9uXSbDA3JJruDgzA8aGVoxymOlscw5Z5/prTKG2uF/Exe8hpWqRxQq6NRqaKpTQ4n7+08preV4z43FQ8P8PGR7/XbbdGPjY3JN9Pff5fGRqgqM9O9xxfjWBKqejVufx0mZgOkpHiRkpJCQUEBS5cunfD5DgwM0NTUxP1RUeDqCvfcQ26ehBz3HFm1ajZOkkRASQlRUVGcP3/eJvvGtrY2vEtLCV+6VDbqVanQ62HnJ7BmjQqf6GiIiiLgwAGm7tlDTU0NiYmJE9arKyoiqbYWv9/+FsLCADCb4fBhWL1aBREREBFBcFwcIT/5CW319YTZ0H0uP3aMmf39ePzHf8DFbqpOB/n5sGSJWg7s0dFEhIZS99//zcADD+BtQ3e2ID+fJcPDuGzYALNmAbKb4fnzsHGjM6rp0yE+ntTf/543jx9nbPlym7qXl+w7XSorISKCmuBF5H4s/6axsVNZcNcaVNnZLFyzhg8++ID58+dPuLVlMMBnn1Xg67uCvXsdGO7QYc6OwCKmISQVmqIZaP63D7cof5ycVrBrVw4JCTNxdf1qdzK2Z3b5aWC/HT/vupw8CX/4A/zlL3DiBDQ1gbG2EWdpAJdZbqxe483ChbB0KaxcKVcua9bIf1+yBObPh/X3R9AXL+FWW8RQj4GqKrkievlleOutG7jCX0NrayshISGcPOnB7t3gph5j/tQe7lqnYdliC8kBPbS2wiuvQEhIKhdu50NvQkNDA/Hx8ThUVsKsWdRdkMjNlc/JYIAjR5Br76YmUuPiqL+ePeCX4EJtLdMNBlSrV4+3fuvqoKYGKisvFpIkWLaMqVYrTRUVNulpDxzAff788UAHMDoKF61Ix1FNnYp3airdBw9iCyMHD+KxevV4oANob4fs7KvLOWRl4RsWRsexYzbpdRQUEO7jA1fkb3NzoaxM1gXAxQXnu+5i2uAgra2tNulduHCBlJQUqKqi0T+TPXsgPV2+Xxoa4Eh7EnR2EuzpiaOjI729vRPSycuDl18WnDoFAQExRETA3IR+lmbpuGuNijVrYOlcA3PjeoiJAT+/MCoq3HnpJdMXfus7zS1bdpIkHQauN0z0MyHErotlfgaYgfdv8jnPAM+AbPg8UY4dAxcX+aIFBcm9OLfSbrRORurHxoiLu/VnBAU5cCK8j/kODpjmjDDs4ER/v2xzeeKE3Mq7VQrKbDbj6OhIbS3Mng1ZcSbU1cMQAfRZwDxAxFLo6ID+fhfMZvOEz/lKPQwG8PBAK1vTMmWKnPo5fx65i+LkhJMk2axnMRjQSJLsAXoRo1H+02C4oqCTEyo3N6yjozbpodcj3eZ9IXx9ESMjtumNjqK6nZaaJCF8fbHaQ8/H56q0icFwOeU6jo8PTkLY734xGukbdSU0FJKT5fpJq4XqarXcjTEacXR0nLBecTEEBgqioupZuVKDkxNQMwYdBvlZAAg1Qqge0sBkkjh5sp3ISDPnzjmyZIlNp/mluGWwE0KsuNlxSZKeBNYDy8VNRjuEEK8Cr4I8QPHlvuZl/umf5Ob/hQvyAz4wAPqeFByKdRRqxpAkMw4OGlSqyw7oQlzu0los0Nmppy47mf9x9sei88bdA3x95RTf44/D7bgDenl50d3dzYMPCvbtk8g+6EZQ6VQc/QWWWg+Gu+PR1UBWFnh7t9k87O7l5UVpaSmEhMCFCyTNCObUKXj7bejuhnvuQf6L1UqnTmeznqefH/1qNTGVlfJTgpwmvPJPAJqb0Q0P42qjxaE6Lg7LuXPw6KPjAeG6KUCTCVFcjIOtA0xTpmA8c0Zu9l/kuta+IyOIqiqcbcyhaSIi0J8/j/fAgFxDI6fsWlrk++4S4vx52jUaIu1wv3R3d+MeGEiySwMFTf785S9yBqSrCx5aPQAtJkzOzmi12gnnk7dsgbNnVezbl8L//b96AgLc8DL7oakMQ40cXM05gVjCghk6CX19Bs6fj2LOHCfsZP9729iUs5MkaTXwE2CxEEJvn690c1xcYPp0+XUJq9UdfY4Pp373BmqLmtjlq7EKaTy4SdLlwKcyGTjzyrusjewj4ec/wClcxURmoQQHB+Ps7MzIyAW+9a04RnQO9PxPG4a4AdQDtbjNCyVopaz72mvnbE4Ax8bGsmfPHrozMgg8dAj3hASefdaftjY5UPt6mOCD/VgzM8kvKuLBBx+0SW9aSgpv+fgwbccOnN3cICqKyEj41rfkFiUAXV2YP/2U066ubMrIsEkv7t57ObV/PwmfforD3XeDiwtubvD881cUGh5m9KOPaLRYWLtqlU16MQ8+SPUPf0j83r2oVq0CBweioq7R02oZfOMNWnx9ybyYZ5soM+bNo7CigtBPP4WHHgJPT1askLuWHh7INXJBAb2nTtGXlGTznLv09HTy8vKYMns2Lp99xt99axrNva6YzRAWKnA5cBRmzKC0ooKIiIgJT3dxdYVly0CSNOh02cyfv47hfk/M3VVYkjIRDo5ois6jvjcV92AoLc0lK8vE2rV3ZjT2Ztg6GvsHwAk4dHHe2lkhhG3DVhNApQL3xRlMk0ao/N3vCOrJxzUxUX4qXVzkJt3QEDQ301lQgMfgIEkvvoijDQbIkiSxYMEC9u/fz1NPPYW7uztuCyOgZjeMdMD8BaCSpxuYTCbi4+NtOke1Ws28efPYmZvLk4sX4/j667gkJxMXHg5tQ1BUhIiM5PDYGL6+vjZPzXB2diZ2xQo+Ly5m/SefoPbzQ5o6lQh3d2gdhdparB0dHHd0xHfRIptbkt4+Phg3beLc+fPMqa9HNWWKPEjg5CQn7xoasDQ2cmp4GPctW3C6bjPs9gmLjOTYXXdRcvYsM8rKkOLiIDJSTgXodFBfj7m5mezhYcKefNLmydPx8fEciY6mzGwm5ZVXICYGp5gYQhwcoKIfqqoYs1jY6e3NvGXLbJ4HOn36dE6cOEGpTkdqaiqqV/9MdFaW/DwcPw+SRP+8eRx7/33uv/9+m7QAMjMz+fOf/0xyciKxcbGwIgbKtstd5dn+kOJOe3s7+fm5PPHEEzbrTYRv3KTiwoICTu3dy5IpU0hwd8dRCFCpGLJYKO7vp7ivj4efeorAK/sONpCTk0NBQQGLFy9mWnw8jidPQmwsnR4e5Obm0tTUxOOPP24Xp3chBAcOHKC+vp6lmZlMHR1FMzCAcHam3c+Pk/X1DAwM8Nhjj+Hq6mqzntVqZdu2bQz29bEsJoZoiwWVwYBwdKTVwYHjra1YNRo2b95sl4miJpOJDz/8EM3YGIvCwgizWpHMZqwODjQBx5qa8AwKYuPGjXZZuaHX63n33XcJcHRkXmAgQRYLksWCxdGRCxYLR+rriU5IYPXq1XaZhD4wMMA777zDlOBg5vj64j86CmYzJhcXqoHDlZVkZGaycOFCm7UAurq6eP/990lOTmZWeDi+zc1gMmGIiOC80ciJkydZtmwZ6enpdtFramrik08+ISMjg4yZM/EqLQWTiZHMTIrKyjh9+jR33323TaP2t+KOTSqeKHcy2AG0tLRw9uxZ6urq8PT0xGKxYDAYmDlzJnPmzLHbDPVLXLhwgdzcXJqbm/H09MRoNGK1WklPT2f27Nm4uLjYTUsIQVVVFXl5eXR2duLh4cHY2BgajYaMjAyysrLsukRNCMH58+fJz8+nv78fd3d39Ho9bm5u8k2dkWHXCaIWi4WCggLy8/PR6/W4urqi0+nw9fUlMzOTGTNm2HUJl9Fo5Ny5cxQUFGA2m3F2dmZ4eJjg4GBmzZpFYmKiXfVGR0fJzc2lsLAQlUqFo6MjQ0NDREZGMnv2bLtMzr6S4eFhzp49S3FxMU5OTqjVaoaHh4mNjWXOnDlERETc+kO+BP39/Zw9e5bS0tLxidE6nY7ExETmzp1LUFCQXfWuZdIFu0uMjo4yNDSEWq3G29v7jqwbvZKRkRF0Oh0ajQYfH587sm70SoaHh9Hr9Tg4OODj43PHHdgHBwfH18Z6e3vfUT0hBAMDA+NrY+/0ukohBFqtFpPJhKurq90rxGuxWq1otVrMZrOcArHDiombYTabGRgYwGKx4OnpadcK+HqYTCYGBgYQQuDl5WVz2uF2mbTBTkFBYXJxs2CnbPGkoKAwKVCCnYKCwqRACXYKCgqTAiXYKSgoTAqUYKegoDApUIKdgoLCpEAJdgoKCpMCJdgpKChMCpRgp6CgMClQgp2CgsKkQAl2CgoKkwIl2CkoKEwKlGCnoKAwKbizex79DTGZTFRXV6PValGpVISHhxMZGXnHtiUyGAxUVVUxODiIRqMhOjrars7116LX66mqqkKn0+Hg4EBcXBwBNuy8fCuGh4epqqoa3+Jp6tSp+Pj43DE9rVZLTU3N+BZPiYmJd3TbpZ6eHurq6jCZTLi7u5OYmGiXDVCvhxCCjo4OGhsbMZvNeHl5kZiYeMe2QRJC0NzcTGtrK1arFR8fHxISEuyy4er1sFqt1NfX09nZiRCCgIAA4uPj75gx9u3yjdviyWq1cuxYNmfOnCcoKBR//yCsVguNjRdQqcysWbPMrjulms1mDh06xPnz54mMjMHNLRirdYympkpcXFy46667iI6Otpve2NgYBw4coKqqiri4OJyd/RFihJqaKnx8fFizZg0hNprfXIlOp2Pfvn3U19eTkJCAp6cnIyMjVFVVERoaytq1a/H19bWbXn9/P/v27aO9vZ3ExETc3NwYGhqiurqaKVOmsHbtWtzd3e2m19HRwf79+9FqtSQmJuJ80YCmrq6OxMREVq9ebZN/67U0Njby+eefMzo6Om5k3tPTQ2NjIzNmzGDlypV23XexqqqKw4cPI0kSUVHxCKFhcLCd9vZ2srKyWLx4sV33XSwuLiY7OxsHBw9CQmKQJInu7haGh7uZP38+c+bMuaP7IH6j97PT6WQ/085O6OuzcvRoMYODEikpCXh6uo47VJnNgs5OLVVV5aSlRTFjRiS+vrL3cnS0bD3wZTGbzbz33ns4Obnj4rKWmhpXNBrZGi8oSBAefoHz53dwzz33MHXqVJvPdWxsjDfffJPIyEiWLVtGWZkL+/ZBXBw89JCFsrJSDh48yObNm+2yA+3Q0BBvvPEGM2bMYN68eRiNTrz0EnznO+Dvb+bcuXOcOnWKJ598En9/f5v1enp6ePvtt5k/fz5ZWVmYTBp+9SvZBMdgMHDq1ClKS0t56qmnJuyGdSUtLS18+OGHrFq1itTUVLq71fzlL7KeXq/n2LFjNDc389RTT9kl4FVXV/PZZ5+xfv16EhMTyc+X2LsX/uM/QKcb5sCBA4yMjLBlyxa7BLyioiKOHTvGfffdh0YTzUcfSZjNsg1pYqKW3bt34+zszKZNm2wOeFYrvPdeATk5nURGzket9ubS/qBjY2Cx6GhtPcO0ac78n/+zAI3mzgS8mwW7r2U31mqFkhIoLJTdA6dMkb11hocrSEmp4tlnH8TV9dpTkxDCl5aWZP78548JDt6C2ezJyZOwdStMnSrbHn4ZS9ucnBw0GheGh+/H2Vni29+WPWctFqiqkti/P46MjMfZseMtvv/979v8wBw8eJCIiAjWrl2LxSJx9Ch897vy929qUjNz5kxcXV359NNP+f73v29zt2HPnj2kpaWxePFiAC75Nnd1QXCwhrlz5+Lk5MS2bdt45plnbKqxhRBs3779Kk+EK61onZycWLZsGWq1mj179vDII49MWAvk7d8//fRT7r333vGKaHj48nFXV1fWrl3L3r17OXToEBs2bLBJb2xsjJ07d7JlyxbCLhqBXzLHHhoCLy8PNm3axMcff8zJkydZYqOh6sDAAAcPHuTv/u7v8PX145VXYO1auXL/y19g6lQfHnnkEd555x0KCwvJzLxufLgt2trg7bcHKC7u5R/+YSmJia4EBDDu2icE9Pe7U1e3iFdeOcHPf97Dt74VeEtvZnvztRugGB6Gd96RA928efDjH8ODD8LcuYLurmzuW5GKa1fL5Wh47hzk50NREVJ5GZHqMRbPCWdsLI8lS+Cpp+D735dvgq1b4dAhOZjeCrPZTEFBAb6+q/D0lLj3XvBxHoWiItQtjUybBo88AgUFQURFxXL+/Hmbzluv11NRUcHSpUuRhKDxTAcBo834N5wjxbGG6mPtYDCM59Kqqqps0uvr66OtrY15c+dCXx9UVKA7VwltbegKqmUr++5u0mbMwGg00tLSYpNeS0sLRqORtGnT5KhaUiI7MLe1ydextBTa25k3axatra309/fbpFdVJXf7p0ZFye7o58/L59TWBkVFUFaG1N3NkoULKS8vZ9RGE/Di4mJiY2MJCwqSo1xJCUPnG6CtjaHTZVBTg6TTsXz5cvLz87FYLDbpnTt3jpkzZ+Ln50droxl6ekgeK8SzJp+Z3o0UnxlFo9GwdOlS8vLymGgPT6uFDz4AV9d8vv99DxYtciUwECSjYfwaSvoR/Pxg9mwnfvSjIHx8TrJtm2wg/1XytWrZCQGffiq3vpYtu8JEeXSUoV27mH7wIFF6Pfj7g5cXaDSXXbItFtnSXqtlXlMTBbW1cpnMTFxdJWbNgmnT4OOP4fRpWLDg5t+lpaUFb29vGht9WL8eJKsF3nhD1m5vh+XLCZ0+naAg8PLKoqLiKLNnz57wudfV1RETE4NbWxt89hmDfVH4Ew5dffjrB2kpc4CetyEri5kzZlBZWcm0adMmrFdVVcU8R0ccfvc7+XcMDsbUGgwjakztPVDRDseOIen1LHJ1pbKigsgv0yy+9vzy8ljZ3Y300kvg5ye/zC4w4io7SRuN0NuLg1bLiuFhqgsKmLty5YT16k+fZllbG7z0kuz67esL3d4w4igHP4MBurtxHxpivlZLXVkZqVlZE9arKi9nFcCLL8om2QEBGHvi0Iw5Y2psg95uaG8nwNOTMIuF5uZmYmJiJqxXWVnJQw89BJWV9P7pLGHWCKTWEVCpCBvoovRYMaidiL7rLoxGI319fRNKRezdC/PnC44dyyUt7Qfym3o9vPoqBAXJ987hw/D00+DrS3JyMnv27GHVKgO7djnxna/QePVrFewsFvm+f+yxa9ziy8uR8vLonjkT6bnn4GbuWkIgdXbS+7OfyVcqIQEu5n/c3GDOHCgouHWwGxsbw83Njf5++blEp5Mv8oMPyq3JhgaYPh0/PxDCDYPBYNO5X9Lj+HFITcXksRKHQRWsAYcLYPIEFv1/7Z15VJzlvfg/z8wwA8ywrwlL2LJIyE4Ws2AW1GjUGG1sza0arVZrb609/n73dDm3vb9z23p7enur7b23Wm1rrEs1pnGJMXtIYjYwIZCwBEogBEhg2JdhgJl5fn88QEAwEGaAk/B+zslJwjLf533f5/0+3+f7fJcp8MYb+G3YgN1ud0teh81GQnY2PPkk3Hor6PXILKAVXEunwWqUCZyTQ/grr1Dhps/OJzcXc3s7PPecWjCEgBagEFjf7e+UEi5fJvDf/o2G/HxwQ9kF5ObiExYGzz6rlA9AEVD9JXllZYT/67/SVVSk/BwjRH/5Mn4NDUpeQgIIgWwEXQ24bp8BSah9+7ZtxOfmem6+fPQRnckLMcbMhXVqX2m8BTq9G+HkS4gVKzCbzSOeL3V1cOedkr17HVeb+Fy+rF6mb3xDPcd331ULSHAwBoMBb29vYmPt7No1Nk14erihlJ3BoHxrn3wC99zTR6fNnQt1dfi9/jquX/0Kndl8TcvO2dREgNOp9pl9HN11dXDwoFJ4Q2E2m2lqaiIwUB2OJMb7qZf0tdegqQnuvx9Qzz0qqsntMIYeedx9N+zYgTHvTTplNNRdobPcjPG8N1jzYd06Gjo73Zbn6+dHyeLFxBUUKAUbEoK4Eg25sejsVfCPcrBaITiY8tRUjG4qO1tqKvVnzxKzZYt6VqGhyrLLTYEt2dDVBbW1YDJRHRWFbt48t+Q1LlpE0+XLhP/xj2rlDA6G2iDITVTyOjqUPIuF8rg4JqekuCVPxsRQn5iI36efqkUxNBTdiWScjWZ0hmLwvaLmTXw8hYmJrPbQfLHceSem/z1Gx8lLUNsAOh0dRV6YLvjAd+/A5etLc3PziOfL5MmQk6PDZDLR0tKiDo6io9U79+qr6h1sb6fHQdfZ2Yndbuf8eV9GMTJrUG4oZQfwwAOwcye88gosWgQpKWCxGPC/804ulpdTvHw50yMjlXPP4VAvjhBK6Xl5QVAQh/btIzAoCKZNQ0p1yJGTo1xEq1bBcHoGR0dHY7fbmTGjhsOHw4mL06F/5BG1ggUEQEgIJSVqGLW1J5g1a5Zb1z116lR27NhBo9lM4NNPE3yulS8+tsPiBqr1FoKTfGDjWiRw6tVXSU9Pd0tecnIyfzh0iOXPP49JCLBaMeW6oM4X44IQuDUFwsJwGgwcffll/mn2bLfkzVy0iHf+8Q9mPf88OpsN6uuh0Qnn/GGFRT27kBDsOh2HX36ZZ91UdrcsWcKBAwdIeuopRGurcj4VC7hkhjQ/JS80lEa7ndOvvsptt9zilrxZs2dztKCAKc89B21tUFeHscmEs8yAaUUQJJggLIzKy5dp3LqV6Oho9+TNmsWpU6eIuu8+Ip+P5eCf2nAtq0GHizIZSOTqIFiqp6iwkICAgBGHD919t9JpOl0amZmnSE9fBSaT2hFcuqSs/5gYpfSAnJxcdLpUTpzw4skn3brE6+aGO6AwmWDDBrj3XuUa++//Vu6BnTvBx2c17/wtm/IWHzojY3HFJSCTpiITk3DGxmMLjiYrv4mMQ3W0ty/kww/hpZeUla3Xq+ezcOHVU6RrodPpWLx4MZWVO/HycvLWW1BWYcAVl0CbdwhHj8K2bTB3bik1NVdIcdMyMBqNzJs3j927d+NyuYi5xUKTVyhlXlPJtU5ixpJAEIIzZ87gdDrdbrbs7+/P1KlT2bdvH9LLC6KisMyIgZAQLNOj1OptMnH06FFCQkLcbn4cGRlJSEgIn3/+OVgsyjEbH698BAkJEBOD9PFh//79TJ061e0A46SkJBwOB2dycpR1P2WKkhkSouRGR+MyGtm9ezfz5893u/F4SkoKly9fpri4WG3xYmMJmBYBISH4p8RCRAQOl4s9e/awZMkSt0NBFixYQGFhIRUVFUROEvhFWsisTeCKJYm8K6HMXaDHbrdz4MABlgxnK/MVmM2weTNYLCn87neSv/+9iaIiaGvXIWOnIOPiae8yUFICO3faePHFZnS6BTzyiIpcGEtu+Di7Hj+eirOTHDqUy8WLzcTGpmA2q0bOUoKUThoaqqmoOMttt81m5sxJBAWp+d3jIrpeXC4X27dvp7GxmcjIe7h4MQyrVRkFSUldWCw55OUd5OGHH3Z7pQZ1AvzOO+/g5eVFeno6VmsYH3ygLNFVq2xkZWVy6tQpHnvsMY/EvdntdrZs2UJ4eDgrV67EZAripZfg6afBaGzh888/p7i4mMcff9wj2Q0tLS385S9/Ydq0aSxbtgyj0Y9f/Qp++lOVUZGRkUFNTQ2PPfaYR+Leamtr2bJlCwsWLGDx4sW0tfnw17/CD36gYv727t2Lw+Fg06ZNHol7q6io4N1332XFihXMmzePoiIT+/eraIDLl6vYtWsXAQEBbNiwwSOBvsXFxXz44Yekp6czefIstm410NwM994r8fcvZ+fOncTHx3PnnXd6JNB3z548tm/PIyZmKTCZri51DQaDxGCo5uLFY6xeHcuDD6aO6H0bDjd1UPGXkVKSnZ3NsWPHEEIQFhaBlC4uXixj8uTJrFy50iOKp6+8EydOcPLkSXx8fAgJCcXh6KKsrIz4+HhWr17t0TQup9PJ4cOHOXXqFEFBQQQEBNLZ2UF5eTnTpk1j9erVBPY43D1AZ2cnBw8eJCcnh/DwcPz8/LDZbFRWVjJz5kzWrFnj0bQqm83G/v37ycvLIyoqCl9fX1paWqipqWHOnDmsWrXKbSurL42NjRw4cICioiJiY2MxmUw0NjbS0NDAggULSEtL82iak9Vq5cCBA5SWlhIXF4eXlxdWqxW73c7ixYs9nmFQUVFBRkYGVVVVxMXFIYSOmppqpJQsXbqUefPmeVReSUkJhw8fpr6+npgYlZ5ZWVmBj48PK1asIDk52WOyBmNCKbsepJRUVFTQ0NCAXq9n8uTJo5rL6XK5KC8vp7m5GYPBQExMzKjmcjqdTsrKymhra8PLy4spU6aMWi4nqFzjsrIybDYbJpOJ+Pj4UcvlBJUxUVpaSkdHB76+vr2KYbSw2WxcvHiRrq4uzGYzcXFxo5rL2dLSwqVLl3A4HPj7+xMbG+vRtK0v09DQQFVVFU6nk6CgIKKjo0c1bctqtVJdrZRqaGioR1MYr8WEVHYaGhoTj2spuxvugEJDQ0NjJGjKTkNDY0KgKTsNDY0JgabsNDQ0JgSastPQ0JgQaMpOQ0NjQqApOw0NjQnBDVcIYCiqqqCwUFUbuXJFFa8QQqVbTpoEUVGqeICn432lhIwMVd0pOFjl7rqZLjokzc2qhN7tt6tafKON06lykZ96CkYxfrmXzk74n/9R6VtjQX29ymd+6qmxkVdaCkePwje/OTbyPv5Y1UV94gnwYFuNARQXqzJpFy+q9yI6GubNg+TkkaVleoqbRtkVFMCRI6p6zqxZkJqqlI2Pj7rhzc1KAZaVqRcoPl4VAPVUJtfx4+ohP/kkXLigigt8+9ujqxTy8lR9/y++GBtl19Cg/tTUqL4do01Hh6p6NFbU1qpCxWNFaanqnyLl6CuBujo4f14t+GfODK+M2fXidKrya+XlkJamyrDpdOo6Dx9WhYsffPDa5SZHkxte2bW2qhqcVivceacqmzVY1o23N4SHw5w5sHatqvT9l7+oh758+eC/M1waGuDzz5VyCwzsLo1Wq0q8r18/8s8diuJiZUF+9JFSDKOYvQUoSwuULA336am87nCMrOHT9ZCTo8o+TpsGn33meWUnJXz4oZobzzzTX6HNnAkzZihF+N578PDDvRWfxpQb2mdXVwevv66q8jzzDEydOjylZTKp4rtPP61WnffeUxNupJw+rZRo3/z7FSuUtelmweBrYrWqLUJQkNqCjTY9Sq5H6Wm4R8/cGIvFo7JSVbGKilLvjaefYWamWvQ3bhzcctPr4b771N8ZGZ6VPVxuWGXX1ARbtihzOT19ZCtFQIDylxgMqrfFSNKEpVR9WubM6f91s1lNrqKi6//M4eBwqC27v79Sdg0NoyOnL11d6m9N2XmGnvs4FvfTalU7G4NB7Tzq6jz32TabKmZ9//3XtlB1OqXwTp0am/k6QP7Yi3SfHpM5NfUaVYVbW9VpwcGDymGQlzeo+abXq+rH7e1w8uT1j6W2VhVjjYjoHlhmpnJqodpbnD9//Z85HFpawNJRhziUgV/1P2htcq8b1ZB0duLIyYPSUpy5ef37HI4Gzc3qgZSWqntqs42uvLo69RaWlqq/R9vcamjAkXceyspwnCscXku7EeJwgK3ViX9hJhw+TJCxjcZGz33+0aPq8GFACcWCAuUg7IPForbQ42Hd3ZA+uy++UA9w0KY41dVqmblwgabISJp1OnRAaFERpp07lQmWltbvOEqvV6vS66+rrXBIyPDHcuWK2kqCxPr554itW5Hh4fi98AIxMT4cPeretQ6Ky0XL3/ehz7VzaWoDjvNXaCzJg1tu67+X9hQ5Obj27qW2Poqm5mSs+RdwvvwJ+pUrYfFiz3rXOzpg3z6cubnU+E2mqdkb65kzhBw4gC41VdXN92TppbY22L0bR2EhNXIqTc0G6rOyCNq3D7F0qZpknrw+pxP27aMrK4vaS8tpagykbn8mYecOIO69V5Uw9zCNlW345p6ixpyF098fU8ZFGgLT4RbPlF0qKICvf73/11ry87Fv2YLU6zHa7QT2cRKmpsLvf6/0+yhWtRrADafsXC51GPCNbwxyo0pKYNs2SmNiOBgQQGN9PRERETidTqpqa5kREcHKy5cJ/POfVYuyPvEnwcGqp8Xx4+oUabjU1krq6or5wx/2MSUrC11SEiHnznHsl78kZm4qV67cgcvl47GH6nK5yH/1VY7vLCUnaCWhXl6cD/Om5UQlkT/7GQk//zkWD8bVOLKzKfvTn9gfGkq5MFCu05GBgVK7nTXvvEOi3Y7RzYbOvTiddL35JvkVFRw0GtFLSblOxzaXC4fTyZqMDKbV1qL/+tc9o4A6OrC/9hq5zc0c1uno1AnKdTredTrxcjpZ89lnxDc3o1u3zn1Z3bS+9x6FmZkcCgqiQBpo0Ov5m9Rzy+VLLP/Nb4j68Y8R4eEek1dTU8PB//cnLtSEsCc0FL3BQIGhiaCX3iAw8S6S58516/ObmpTvsWfIFRUVHD58GN+dOzFOnYrDxwev//ovatatY/ny5SQmJmI2K/eLakbl/jUOlxtO2Z0/r3xtA2oBVlfDtm0cnzKFrOpq1q5dS1JSUm9BRLvdzpkzZ/jjoUM8MmUKk95+W8WJ9HH2paaqOLL09OHFIUkp2bPnC/T6i3zrW3cR53QiHnoIMjJISUggs62Ns2dPUFQ0kxkz3J/ATqeTv7/1FvEHDjBl838QIhJ44AFBXh5kxbWhy/4Rf//FL7jvhz/0SLXizro6cl58kYrVq7l/wwYqKiL45BNYuXIWs2Yt5fiuXTT+7nfMiYvD1wOxKPZduzhy7Bht993HI2lpGI0h1NXBM8/Morq6mox9+6jftYtFMTF4LVvmtry2Dz5g/7lzGB98kKeWLqW6OoDOTnj22RQqKys5+NlnNG7dyry4OHQeiO2xHjtG7vvvY/jud3lm6VLee89MRQV885spCFHGyddeY+q//zuzXn4Z4YHVsaysjI/feIPp7UaWPvlNNj2q4qDOzHSR9fJOzr75JjWNjax0Y7EqK1NhSEJAfn4+n376KWtWr2bOpUvon34azGZc//Ef5M+Zw0cffURaWhqpqanExyuPwVgqO4/YG0KIF4QQUgjhfuODISgshEEbWR05QllMDFnV1XzrW99i2rRp/Sq/ent7s2TJEr62cSNvlZfTqddDfn6/j+jp83LhwvDGcurUKSor29m8+T7iY2MRTU1qDxwaim9bGytXrmTJkqm8+eYOHO4c93Zz+PBhfKqqmL9hA6HxiRgMyrrR68Hbx0zK5s0sCQjgvffeG3GH976cfP11HImJ3P/000RERPQ7wAkJCWHdpk14LVnC8VdecVsWDgcFf/0rhvXrWX///YR8yZcQERHBQ5s20bx8OYVvvDGy06Q+yNZWzn3wARGPPsrau+4iICCg93tCCKKjo9n0xBNUJidzfssWt2SB6h+S9Yc/MOWRR7jt9ttVT1d6DFRBfHw89/7sZ7RareTs2eO2PJvNxtatW3lw7lwiFt2Kj9/VgE8vLx0Bs+ayPiWF3NxcCgsLRyyntFTFrNbX17Njxw4eeeQR5iclqSrPAQHg5YUuLIyU0FAef/xxDh06REVFBfHxSlGOJW4rOyFEDHAHUO7+cIamqqrHR9aHlhYoKeFwSwtr1qzpnUiDkZCQQGJSEnkWi3J8f4moKCVjKKSUHD9+nClTZhEaalS2vMmkLEU/P+ULApKTo/HxCaegoOB6LnMAXV1dZGVlcduUKegSEnA6r27jdbrumK24OKZ6eeHoLqHuDm1tbbRkZTFv06YB5bt79IwQgrmbNiEKCrB2H8qMlPrMTKqlJO3ee7+yXLgQgtsefpgrV65gKylxS17Vvn00hISwaMWKr/wZvV7Pssceo/rcObpqa92SV5CTQ6TdTtLdd/d+TUr17Hrup9FkImndOi58+qnbi1V2djZJSUlESYkzLLKfm1OvB2dgCN5WK2tWr+b48eMjllNdrXrHZmZmMn/+fCIjI9XeNijoqqshKAiamggKCmLZsmWcOHGCyZOVv3ss8YRl91vgX4BRr+/ucqlDswFZD8XFtE2eTHVTEzNmzBjyc1JTUzlRX6+OUruVUg8REb2HqdekoqICvV6Pn1+g2gk7HFcd5wZD78mvaux9Czk5OcO4wq+muLiYSZMm4dfWBlFR/Zy7Ol33YV5QEMLpZFFKitvyzuXmEu/lhXeffqmDvX+GqChiwsPJG8lRdh8uHjpEyK23Dtn3wddsxnfuXMoOHnRLXuXRo0xeuXLIPgwhERGIhAQuHTnilrziw4eJnDVLpfR0M1jmRNjixfg3NlLpZipHTk4OqampYLXiDAgeqOyMPiAEM2JiqK2tpXGEx7OdnWqN75UHKkapbwyKl1fv+zB37lyKioqAzt5QprHCLWUnhFgPVEop3XuzhkmPPhnwPrS3YxOCwMDAYTVJCQ4OptVmU8FwXwqhMBoZ1kNobW0lKCgIKYVSOk7n1YHp9b3h8TodWCwBtLa2DuMKh5ZHVxcYjYMrOyHAZCLIbHZbnq2pCW+LZdAAxn5KTwhMgYG0uxnL0NnSgmWYuXvm0FA6mpvdktfV2or/MJOXfYKDsbuZt2ZvbsZ3kEbUQvS/n8LXF39vb8/NF4cDl96r3wFZ7/Q0GtG7XAQEjHx+Ohyg07mw2+1XXQEOR/954+XV+1J5e3tjMplwONrHXNkNeUAhhNgHRA7yrZ8AP0ZtYYdECPFt4NsAsbGx1zHEq/Q8pAErotGIl5TYbDaklEOu1jabTbXj6+gYEO7dV2ddC5PJRHt7+9VtSK/God+ZussFXV12t9v/9cjruQl9X5J+98PhoL2ry+3OX14+Pjjs9mElbjra2/HqY7GMBL3JRMcwX7jOtja8/f3dkqczGrG3tAzrZ7tsNgxuXp/B25vOQWIFB9zeri7sDgehHpovFp0OHa5+CtXl6p7jTidSp6O9vX3E80WvB5dLoNfr6ejoUP18+yz2oOT0KD+n00lHRwc6nXHMU8aGtOyklOlSypQv/wEuAPFAjhCiDIgGTgshBlOMSCn/KKVMlVKmjrSPql6v3GEDoq9jYgioqUEnJZcuXRryc3JycpgdEqIegMXS73u1tSoMZShius1/u92mLHSDoX+yY+/DhZKSIqZPnz6MK/xqEhMTKSkpocNigZqafvOpV0G3tUFXF9lF7subnpxMeWsrzj73s+el7PtyysZGrlRUkDhvnlvyIufNozozc0hflcPhoP7MGaIXLnRLXtjs2VQMIwjS1tZGe2Gh2/Ji5s/HevZsv8D2L1t1AM35+dQIQYyb8XbTp09XrozAQHQtjQN0j87ZBR0dXKqvR6fTjbiputqhiqvyer7Y12zr6up9HwoLC5k0aRIGg8+o5wN/mRFvY6WUZ6WU4VLKOCllHFABzJdSjqrbcfLkQSpTREYigoJICw8nIyMD1zWi0RsbG8nOzibV6YSFCwcE61VVKRlD4eXlxfz587l06TxtbVI5Lux2tWy2t/fGrlRVNVFVVcL8r0z1GB4Wi4Xp06eTXV8PZWWDG5IXL2L18aGmttbtZsRhYWG4pk3j/IcfDvheX2VX8umnNEVEEJeQ4Ja8qPR0Ampryc/OvubPnT5wgDAhCO7xD42QuHvuwXD+PGVDHL1nbd9O2KRJ+MbHuyVvzrJlXGxvpzYrq9/XXa6r91NKSfEnnzBp1Sq3e+QuWrSI06dP0xIQgN5aPUDZ6ZvqcYWHk3HkCAsXLhxxD9mgIJWKtnjxYo4fP47NZlOlfvpa6S0tYDbT1dXFkSNHWLRoEVar+t2x5IZLF0tIUOEnA1i+nFlXrmDs6OD999+n7UsHDwBVVVVs2bKFO+Lj8bNaB+SadXWpuOThhoylpaUB9WzbloHd6VQ+wMZGqK1FhoRQWlrKnj1fsH79cnzc3AYB3HHHHeS2tVG8cyfO9rZ+yk4IScWuXewuKeGBBx7A4IE9wsInnsC6dy8nDhzA4XD0U3Iul4vszEzKtm5lwebNbjdcFr6+TL/nHs698grZ2dkDFiyHw8GxY8e4/O67TNu40e0sCkNEBMlpaXz+299SUFAwwKLs7Oxk3969dOzezTQPBDH7+voy/WtfI+t3v6P0woVud8vVbazdbmff66/TVV/Pwq99zS1ZoPzSaWlpvJ+Zia3gHE7H1etzOsF5qYyMsjJ0Oh0L3bBae+LlYmNjmTlzJm+++Sa1Uqpdhs2mJueVKzT5+vLWW28RGRlJcnIyZWXqd8eSG65JdkcHvPQSfOc7Kgq7H0eO4PziCw6Fh5N56RKJiYlERkbicrkoLi6mubGRe2JimFZerlIwvrRVOH1aBS0//PDwx7NzZyfZ2SfR64+SXlODmDcPy6lTnIiIoMHHTFnZJn7961CPmextbW2c/ulPySzxwTr9fu65105+vhdn917gG3IbMb/6FbGJiZ4RBrRu386Zzz7jZHw8Rksa2dkxJCdXo5cZzC4pYcHixQQ+/rhnhLW10fKb37C/s5MLQUEkJM7l44+nsnFjHudyc5nd1MSK4GB8n3vOM0XR6utp+M//ZLfBQE1oKAEBqRw6FM0DD+SSf/YsixsaWJKQgOnb3/ZMXpPLxZUXX+RYVRXVM2dSdnEVVquZxYsLsFUdI728nOkvvIAxJcV9Wd3knDlD1o+2kOe9lPufD0en05G5r4H2T7JZ/JMUVq1f79bCWF2tqgY995yyTE+ePMmRI0dYUlyM9/LluHx9ETt3cnD6dBYtWsTK7hPwP/8ZbrtNlWTzJNdqkn3DZVCYTKrq6YEDKp+1HytWoPfzY/X+/awIDKS4o4P60lKMQnCHyUS0ToeuuRkefXRAGeGODlUvYMBnDkFkpJGZM1dw++3zKX3/fQzHj6OXkhUbNxIYnMiWLcKjvgmz2cyKn/+c0J+/zfb8SihpxHjOm1UGO0t/+WuEh5dLy/r1LNfrmZedzc6aKmS9maCaKjZa2vFftUpVY/QUZjN+zz7L/Vu30tTSwpnKSmR9CJFVVaQB5sREeOghz1V/DA4m6Lvf5esffEBDVxcHqi5Dg5nYy5dZIyU+c+ao6/NUrp9OR+T3v8+Gd96htqaG/62vgfoAplVXssxgwPjss6qMtgeZM3cuYS9GUv9/j2E5c4YOX18mn+si7PH7SX9wztAfMATh4VeLrAYECJYsWUJqaiqlH3+M89AhnF5eeKWl8YNNm3oP6To7VYzdCM8pR8wNp+wAVq6EV15R29kBYXVz58Ls2XgVFZF87pwyp4VQmQ3p6YPkmSl27VKrzPVmPYWHq9hks9lMSk++7cyZkJREQYHnKiH3w8eHsO9txvKLCyznOK0B0QTcOwcRbxn6d6+X7ro85oULmfn+OfKAlEAL/v/0mKph5WlCQ+GZZwgoLGT+yXwOAvP8/VUBgPh4z5f0jYpCfO97BJ89y+z9lzgnpTq8uuuuQaLXPYDFgnjqKcLy85n+SiMSSE6MxXjv1wbZqniG4BmROJbcxfxJOxAddqpuW0fEymE4poeBEJCUBGfPXi3MYTAYmLphgzr8s9uvlizupqBA3dqxPqC4IZWd0QgbNsDf/qbmx4ADBZ1OacFhBBiDSv4vL1eVhq+XyZNVNSK1shmgj7+lqEhVURkN/IIMtEROQz46jZYPINozBSy+mkmT0K+dBA1guBMYBT3XixBwyy0QfQuUARvnjqIw1HyZMwd85kAz8MAoyxMCZs7EcBtwDgxrgdHRc4A6KzP4+WBbtxGzGRpe8+zhwIoVqhfKggV9YqaFgDsGRqU5HKrq2oYNnpM/XG64A4oeYmJUIcC33x55gUynE/bvV2XvHn10ZGXNdTpVt+7cuf5f7+pSlqebESBficmkfPQ2m1K0o2QU9KNnJR6Pkto3Iz278bGwcEJC1KmplMMPrxouoaFq971799Apy4cOqc3VaGwKhuKGVXagFMlDD8HOnbB9+4DMr2tSWQmvvabKzDzxhMpZHikLFiiF2bfi7JkzKs92NMrL9RAaqiZwbe311eAbKT0v52j3upgo9NzHsbifkyapzmJWq7K+PN0Ias0a5Yc7fPirf+bUKWUUeLBi1nVxw6/RU6bAs8+qA4vf/15tG+fMUdvLvg9UShUVcvGiOnVtaFAuvNmz3XcDRUWpcezYoQ44qquVqb55s3ufOxTx8UpOQICKehltel7K8eoOdbPRcx/H4n4mJ6v52dY2Op3oTCbV4uDNN1VueXr61a1yc7Oy6EpK1A7KMgqu5eFwwys7UJNl7Vp1lJ2To1oqXrmiHkDfVopGo1KCt96quix5quCtEGq1evddFRbT1aV8sh6swTgoM2eqa129enTl9NCzVR6rYFBPFiQeDmOxYPSlZzcxFr1Up0xR2+Xjx+H73x8dGRaL8nsfOqSqfptMys3T1qbam37nO+O7K7jh4uyGS48l19Mk22we/RWlxx9isfQrbjGqtLQoeePZfFjjxqCzU/0ZC8uqp0KRy6XcLWO1cN1UcXbDRYixT0cRYpRCTa6BByuwa9zkGI1j54LQ6cb+XRiKG/qAQkNDQ2O4aMpOQ0NjQqApOw0NjQmBpuw0NDQmBJqy09DQmBBoyk5DQ2NCoCk7DQ2NCYGm7DQ0NCYEmrLT0NCYEGjKTkNDY0KgKTsNDY0JgabsNDQ0JgSastPQ0JgQjEuJJyGEFbg4hiJDgdoxlDfW3MzXdzNfG2jX52mmSCkHrbcyLspurBFCfPFVNa5uBm7m67uZrw206xtLtG2shobGhEBTdhoaGhOCiaLs/jjeAxhlbubru5mvDbTrGzMmhM9OQ0NDY6JYdhoaGhOcCafshBAvCCGkECJ0vMfiKYQQvxZCFAohcoUQ24UQgeM9Jk8ghFgrhDgvhPiHEOKH4z0eTyKEiBFCHBRC5Ash8oQQo9TgcPwQQuiFENlCiB3jPRaYYMpOCBED3AGUj/dYPMxeIEVKORsoAn40zuNxGyGEHvgf4C4gGXhYCJE8vqPyKA7gBSllMrAE+O5Ndn0A3wcKxnsQPUwoZQf8FvgX4KZyVEop90gpHd3/PQFEj+d4PMQi4B9SygtSyk7gb8D6cR6Tx5BSXpZSnu7+dwtKKUSN76g8hxAiGlgHvD7eY+lhwig7IcR6oFJKmTPeYxllngA+G+9BeIAo4FKf/1dwEymDvggh4oB5wMlxHooneQllWLjGeRy93FRNsoUQ+4DIQb71E+DHqC3sDcm1rk1K+VH3z/wEtT16eyzHpjFyhBAWYBvwvJSyebzH4wmEEPcANVLKU0KIleM8nF5uKmUnpUwf7OtCiFlAPJAjhAC1zTsthFgkpbwyhkMcMV91bT0IITYD9wBr5M0RT1QJxPT5f3T3124ahBBeKEX3tpTy7+M9Hg+yDLhPCHE34A34CyHeklJ+czwHNSHj7IQQZUCqlPKmSMAWQqwF/gu4TUppHe/xeAIhhAF12LIGpeSygE1SyrxxHZiHEGrV3QLUSymfH+fhjBrdlt3/kVLeM85DmTg+u5uc/wb8gL1CiDNCiFfGe0Du0n3g8s/AbpTz/v2bRdF1swx4BFjd/czOdFtCGqPEhLTsNDQ0Jh6aZaehoTEh0JSdhobGhEBTdhoaGhMCTdlpaGhMCDRlp6GhMSHQlJ2GhsaEQFN2GhoaEwJN2WloaEwI/j+GOSEuwL+UGQAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "f, ax = plt.subplots(1, 1)\n", + "compare(ax, scale=0.2, index=-1)\n", + "compare(ax, scale=0.2, index=-2, color='r')\n", + "compare(ax, scale=0.2, index=-3, color='b')\n", + "plt.gcf().set_size_inches(5, 5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ] +} diff --git a/docs/examples/notebooks/learn/minuit_errors.ipynb b/docs/examples/notebooks/learn/minuit_errors.ipynb new file mode 100644 index 0000000000..4e8754a76d --- /dev/null +++ b/docs/examples/notebooks/learn/minuit_errors.ipynb @@ -0,0 +1,227 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2-final" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3", + "language": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# MINUIT-like errors with alternative pyhf backends\n", + "\n", + "This notebooks explains how one can compute MINUIT-like parameter errors compares how those errors compare\n", + "to the \"standard error\" given by the square root of the diagonal elements of the covariance matrix\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import jax\n", + "import jax.numpy as jnp\n", + "import iminuit\n", + "from jax.config import config\n", + "import pyhf\n", + "import scipy.optimize\n", + "\n", + "config.update('jax_enable_x64', True)\n", + "pyhf.set_backend('jax')\n", + "\n", + "\n", + "def toinf_single(x, bounds):\n", + " lo, hi = bounds\n", + " return jax.numpy.arcsin(2 * (x - lo) / (hi - lo) - 1)\n", + "\n", + "\n", + "def tobnd_single(x, bounds):\n", + " lo, hi = bounds\n", + " return lo + 0.5 * (hi - lo) * (jax.numpy.sin(x) + 1)\n", + "\n", + "\n", + "def _calc_minuit_errors(infmin, minim, inf_inv_hess, barray):\n", + " '''The core routine for MINUIT-like errors from an internal Hessian'''\n", + " # https://root.cern.ch/doc/master/classROOT_1_1Minuit2_1_1MnUserTransformation.html#ad900f367f4d2c5df13f899dd55bdf212\n", + " errs = jnp.sqrt(jnp.diag(inf_inv_hess))\n", + " infmin = jax.vmap(toinf_single)(minim, barray)\n", + " up = jax.vmap(tobnd_single)(infmin + errs, barray) - minim\n", + " dn = jax.vmap(tobnd_single)(infmin - errs, barray) - minim\n", + " up = jnp.where(\n", + " errs > 1, barray[:, 1] - barray[:, 0], up\n", + " ) # it's unclear to me why this is done\n", + " fn = (jnp.abs(up) + jnp.abs(dn)) * 0.5\n", + " return fn\n", + "\n", + "\n", + "def calc_minuit_errors(objective, minim, barray):\n", + " '''This computes MINUIT-like errors'''\n", + "\n", + " def internal_obj(x):\n", + " ext = jax.vmap(tobnd_single)(x, barray)\n", + " return objective(ext)\n", + "\n", + " infmin = jax.vmap(toinf_single)(minim, barray)\n", + " internal_hessian = jax.hessian(internal_obj)(infmin)\n", + " inf_inv_hess = jax.numpy.linalg.inv(internal_hessian)\n", + "\n", + " minuit_errors = _calc_minuit_errors(infmin, minim, inf_inv_hess, barray)\n", + " return minuit_errors\n", + "\n", + "\n", + "def run_via_pyhf_scipy(objective, data_pdf, init, barray):\n", + " '''This version runs the standard pyhf interface but computes minuit-like errors'''\n", + " minim = pyhf.infer.mle.fit(*data_pdf)\n", + " minuit_errors = calc_minuit_errors(objective, minim, barray)\n", + " return minuit_errors\n", + "\n", + "\n", + "def run_raw_scipy(objective, init, barray):\n", + " '''This version runs the raw scipy optimization and computes minuit-like errors'''\n", + "\n", + " minim = scipy.optimize.minimize(objective, jnp.array(init), bounds=barray).x\n", + "\n", + " minuit_errors = calc_minuit_errors(objective, minim, barray)\n", + "\n", + " external_hessian = jax.hessian(objective)(minim)\n", + " inv_hess = jax.numpy.linalg.inv(external_hessian)\n", + " sqrt_inv_hess_err = jnp.sqrt(jnp.diag(inv_hess))\n", + " return minuit_errors, sqrt_inv_hess_err\n", + "\n", + "\n", + "def run_pyhf_minuit(data_pdf, grad=False):\n", + " '''This version runs the raw scipy optimization and computes minuit-like errors'''\n", + " result = pyhf.infer.mle.fit(*data_pdf, return_uncertainties=True, do_grad=grad)\n", + " return result\n", + "\n", + "\n", + "def raw_minuit(objective, init, barray):\n", + " '''This version runs just raw minuit without pyhf'''\n", + " m = iminuit.Minuit(\n", + " objective,\n", + " use_array_call=True,\n", + " forced_parameters=['p1', 'p2'],\n", + " errordef=0.5,\n", + " p1=init[0],\n", + " p2=init[1],\n", + " error_p1=0.01,\n", + " error_p2=0.01,\n", + " limit_p1=barray[0],\n", + " limit_p2=barray[1],\n", + " )\n", + " m.strategy = 0\n", + " m.migrad()\n", + " m.hesse()\n", + " return m.np_errors()\n", + "\n", + "\n", + "def run_error_analysis(pdf, obs_count):\n", + " data = jnp.array([obs_count] + pdf.config.auxdata)\n", + "\n", + " def func(x):\n", + " return -2.0 * pdf.logpdf(x, data)[0]\n", + "\n", + " bounds = jnp.array(pdf.config.suggested_bounds())\n", + " init = jnp.array(pdf.config.suggested_init())\n", + "\n", + " pyhf.set_backend('jax', 'scipy')\n", + "\n", + " min_errors = raw_minuit(func, init, bounds)\n", + " pyhf_scipy_minuit_errors = run_via_pyhf_scipy(func, (data, pdf), init, bounds)\n", + " scipy_minuit_errors, sqrt_inv_hess_err = run_raw_scipy(func, init, bounds)\n", + "\n", + " pyhf.set_backend('jax', pyhf.optimize.minuit_optimizer(errordef=0.5))\n", + " result_nograd = run_pyhf_minuit((data, pdf), grad=False)\n", + " result_grad = run_pyhf_minuit((data, pdf), grad=True)\n", + " return {\n", + " 'sqrt inv hessian': sqrt_inv_hess_err,\n", + " 'raw scipy + AD minuit-like': scipy_minuit_errors,\n", + " 'pyhf scipy + AD minuit-like': pyhf_scipy_minuit_errors,\n", + " 'raw minuit': min_errors,\n", + " 'pyhf minuit iface bo AD ': result_nograd[:, 1],\n", + " 'pyhf minuit iface AD': result_grad[:, 1],\n", + " }\n", + "\n", + "\n", + "def run_scan(scan):\n", + " pdf = pyhf.simplemodels.hepdata_like([2.0], [50.0], [5.0])\n", + " data = {}\n", + " for o in scan:\n", + " d = run_error_analysis(pdf, o)\n", + " for k, v in d.items():\n", + " data.setdefault(k, []).append(v)\n", + " for k, v in d.items():\n", + " data[k] = jnp.array(data[k])\n", + " return data" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:absl:No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n 2020-12-22T15:56:49.413352\n image/svg+xml\n \n \n Matplotlib v3.3.0, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAE/CAYAAABSE1d1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAACuWklEQVR4nOydd3iUVdr/P8/U9F5ISKVDEpKQ0DvYVrCgYsOCdbH83F1Xd3X1XXVX9/VddYtldS2ra8OOvdIURJHQISAQUgnpvU09vz+GDIQkpM3kmSHnc11cJE855zuTZ+65zzn3uW9FCIFEIpFIJBKJpCMatQVIJBKJRCKReCLSSZJIJBKJRCLpAukkSSQSiUQikXSBdJIkEolEIpFIukA6SRKJRCKRSCRdIJ0kiUQikUgkki6QTpJEIpFIJBJJF0gnSTIoKIpyqaIomxRFaVEUZb3aeiQSiaS3KIryuKIoBxVFaVQUZb+iKNeorUkyOOjUFiA5vVEURQEUoAb4BzAOWKCmJolEIukNJ9ivZuA84AAwGfhSUZRDQohNauqTuB85kyTpFkVRChRFuVdRlFxFUWoVRXlZURQfRVFCFUX5VFGUymPHP1UUJe6E+9YrivKIoijfAy3ACCHEaiHEO0Cpai9IIpEMGVxsvx4QQuwXQtiFEJuBDcB0tV6bZPCQTpKkJ5YBZwMjgTHA/Tiem5eBRCABaAWePum+q4GbgUCgcLDESiQSyQm43H4piuKLYzZprzuFSzwD6SRJeuJpIUSxEKIGeAS4QghRLYR4XwjRIoRoPHZ87kn3vSKE2CuEsAohLIOuWiKRSNxjv54DdgJfuV++RG1kTJKkJ4pP+LkQiFUUxQ/4O3AOEHrsXKCiKFohhK2L+yQSiUQNXGq/FEV5DEgF5gtZHX5IIGeSJD0Rf8LPCThiin4LjAWmCiGCgDnHzisnXCsNiEQiURuX2S9FUR4CfgGcJYRocI9ciachnSRJT9ymKEqcoihhwH3A2zjW6VuBumPHH+ipEUVRtIqi+OCYvdQcC6DUu1O4RCIZ8rjKft0LXAmcIYSodqdgiWchnSRJT7wJfA0cBvKAh3Fs5fcFqoAfgS970c7VOAzTs8DsYz+/4Hq5EolE4sRV9usvOGaiDimK0nTs3x/coljiUShyWVXSHYqiFAA3CiFWq61FIpFI+oK0XxJXIGeSJBKJRCKRSLpAOkkSiUQikUgkXSCX2yQSiUQikUi6QM4kSSQSiUQikXSBdJIkEolEIpFIusAtGbcjIiJEUlKSO5qWSCQeyNatW6uEEJFq63AF0n5JJEOP7myYW5ykpKQkcnJy3NG0RCLxQBRFOW2KGEv7JZEMPbqzYXK5TSKRSCQSiaQLpJMkkUgkEolE0gXSSZJIJBKJRCLpArfEJHk6FouFkpIS2tra1JYikfSIj48PcXFx6PWyHrDEgbRhEm/B2+3XkHSSSkpKCAwMJCkpCUVR1JYjkXSLEILq6mpKSkpITk5WW47EQ5A2TOINnA72a0gut7W1tREeHi6Ni8TjURSF8PBwOWMg6YC0YRJv4HSwX0PSSQKkcZF4DfJZlXSFfC4k3oC3P6dD1knyZnbs2MHnn3/e5bmcnBzuuOOOAfdRUFBAamrqgNvpjhkzZritbYlE4tlIGybxFoZkTJI3Y7Va2bFjBzk5OZx77rmdzmdnZ5Odna2Csr6xadMmtSVIJBIVkDZM4k3ImSQVaG5uZtGiRaSnp5Oamsrbb78NwJdffsm4ceOYNGkSd9xxB4sXLwbgwQcf5Oqrr2bmzJlctWwZf/zjH3n77bfJyMhw3tvO+vXrO9x3/fXXM2/ePEaMGMGTTz4JwD333MMzzzzjvOfBBx/k8ccf76TTZrNx0003kZKSwllnnUVraysAeXl5nHPOOWRlZTF79mz2798PwLvvvktqairp6enMmTMHgL179zJlyhQyMjKYOHEiBw8eBCAgIACApqYmFi5cyKRJk0hLS+Ojjz4CHKPA8ePHd9m/RCJRl4HYsGVXXiFtmMR7EEK4/F9WVpbwZHJzc1Xt/7333hM33nij8/e6ujrR2toq4uLixIEDB4TdbhdLly4VixYtEkII8cADD4hJkyaJlpYWcfTQAfGP/3tU3HbbbV22vW7dug73TZ8+XbS1tYnKykoRFhYmzGaz2LZtm5gzZ47znvHjx4uioqIO7eTn5wutViu2b98uhBBi6dKl4rXXXhNCCLFgwQJx4MABIYQQP/74o5g/f74QQojU1FRRUlIihBCitrZWCCHE7bffLl5//XUhhBAmk0m0tLQIIYTw9/cXQghhsVhEfX29EEKIyspKMXLkSGG320/Z/1BE7We2J4Ac4QZbosY/T7dfQqj/PPTXhh0tOCyOHjogXnrxRWnDhhBqP6+9oTsbJpfbgMv+/UOnY4snxnD19CRazTaWv/xTp/OXZMWxNDuemmYzt7y+tcO5t385/ZT9paWl8dvf/pbf//73LF68mNmzZ7Njxw6Sk5MZPXo0AFdddRXPP/+8857zzz8fH6ORekCj6/2fbdGiRRiNRoxGI1FRUZSXl5OZmUlFRQWlpaVUVlYSGhpKfHx8p3uTk5PJyMgAICsri4KCApqamti0aRNLly51XmcymQCYOXMmy5cv59JLL+Wiiy4CYPr06TzyyCOUlJRw0UUXOV9fO0II/vCHP/Ddd9+h0Wg4cuQI5eXl3fYvkUg64y02TK/TYbFaoQ/BvNKGSdREOkkqMGbMGLZt28bnn3/O/fffz8KFCzn//PNPeY+/vz9WixkAHz//XvdlNBqdP2u1WqxWKwBLly7lvffeo6ysjMsuu6xX97a2tmK32wkJCWHHjh2drn/uuefYvHkzn332GVlZWWzdupUrr7ySqVOn8tlnn3Huuefy73//mwULFjjveeONN6isrGTr1q3o9XqSkpKc20W76l8ikahPf22YsNsx+vmj0fQ+0kPaMImaSCeJU4+afA3aU54P8zf0OOo6mdLSUsLCwrjqqqsICQnhxRdf5He/+x0FBQXk5eUxcuRIVq5c2ek+q9nhJPn7+1FfX9+nPk/msssu46abbqKqqopvv/221/cFBQWRnJzMu+++y9KlSxFCsGvXLtLT08nLy2Pq1KlMnTqVL774guLiYurr6xkxYgR33HEHRUVF7Nq1q4OBqa+vJyoqCr1ez7p16ygsPG2KyUskg4Y32DAhBFaLGZ3egK/RSGNjY5/6PBlpwySDgaqB25s/OczKP21WU4Iq7N692xkI+NBDD3H//ffj4+PD888/z6JFi5g0aRJRUVFd3qvV68mcMJ7cvXu6DHrsLSkpKTQ2NjJ8+HBiYmL6dO8bb7zBSy+9RHp6OikpKc5Axbvvvpu0tDRSU1OZMWMG6enpvPPOO6SmppKRkcGePXu45pprOrS1bNkycnJySEtL49VXX2XcuHH9ej0SyWBTWdTIf+/9npL9NWpLGXT6Y8OEsKM3+tDW3MSk1Ank5uZKGybxeBRHvJJryc7OFjk5OT1et+mVLWz/sYEVz8xHqx08f23fvn2MHz9+0PrrD+vXr+fxxx/n008/7XSusqgAvdGHkOhhKiiTqIGnP7OKomwVQnj+vu1e0Fv7VZNXzsrH9jJvSRwpZ48ZBGXH8fTnAbq3YU011TTV1RCdNBKlD8tuEu/FG57X7myYqk+ocmAHoNBca1JThtehMxiwmr3/PRNCYLNacIejLpG4G31jJQB1B4pUVuJd6AwGEDhjLL0Zm9WK3W5XW4bEjagakxQYEQA10FBaS1CEr5pSPI558+Yxb9485+82q4XqI8UERUShMxgxtTQj7HavHok119bQVFuDoiho9Xq0ej06vZ6AsAgURcFut6MoitentZecnvjGx6A359FY5b2fQXdysg2rPVqKRqvFPyQUcMRY6o0+KqkbOFazmapiR/yRVqdz2jC/oGD0Rh+EsIPAq220RGUnKSg2BA5AfUEFcRNj1ZTi8VjNZuxWGxqNFr1zJGZBf8LuCW/DJyAQm82KRqPFZrFgtZixmkwEhkcC0FBZgam56ZjzZHD8bzDgGxiksnKJBLShofiY62hulM9jTwghsJjaMPr7o9XrURQFq8kEgWor6z8arZbA8AjHbLjdjtViwdTcjI9fABjB3NpK7dFSh/OkcwwAtXo9PgGBaPuQxkWiLuo6SUnRRFWswWieoqYMr8ByLI+HzmAADIQNj0On16sraoDoDAaCI6M7HDtx6c0nIODYll+HA2VqaUarP+4k1R49gs1mcxofnd6AzmDw6tGpxHtQNBqizfnoLdE9XzzEsdus2G029AYjiqIQGjMcrZfbrxNnxU6k3YZpdXoCQsOwWizYLBbamhux2+wYfP3Q6nS0NjTQVFdzzH4ZnDPpBh9fOfvkQajqJPknDCM19z+E2xPVlOEVWM0mtHo9Gq0WAIPWu5cn7TYbppYWDH6+aLXHH8MTl9Z8/APw8Q9w/i6EwG6zOX/XG33A1IbFZKKtuQkEGP38CY1xzErWlpWiKBqnE6XVG9Cd8B5KJANlnCEPUXsIuEVtKR6N1eSIP9IZHDPfBl/vtl8AbU2OWe6TZ/PbbZjOYCAgLNx5XAiB3e5YDQDQ6LTojUZsFgvmtgbEsdimqKQRKEBLfR2mlpZOTpRGp5MhCIOIqk6SLiqKxJVvoktMVlOGV2A1m4/NIjkwtbRgs1rwCwpWUVX/Mbe1Ul9RRtjwuA5O0qlQFKXDNPXJBshmsQDC+TtCYDG30dZ0PB+LX1AwQZFRCCFoqKxAq9c5nSetTjpQkr4x7IE/IvQGhF2gaOQXV3dYzCfOhHNsaaoJ38Agr/zMOexHOT4Bgegju07XcjKKonSwdUY/f4zHEgO3DwBtFovz/RDCERhubm1xzk4pGoWopJGAw4myWa0d4jk1WulAuRp1d7fpdHz7k46Pnj+kpgyPRwiB0c+/w6xKW1MjTTXV/W7zxhtvJDc31xXy+sw//vEPQsIjaGhsdI4s169fT3BwMJmZmYwdO5Y5c+Z0mf6gOxRFQWcwONtTFIW7/+cBKptaiE4eSUR8IiHDYpxLdXabDXNrC001NdSXl1FdUkxFwWGa62oBKCku5sLzz6etqZEtP/10Si3z5s2jfcv4ueeeS11dHQUFBaSmpvbr/ZF4D8UNwfznr4epr5SZlE+FTm/ALyjY6QDYrBYaq6ucYQT9QU0b9re//Y2EcRNoPpZZGwZmw9oHgCfOsPmHhHDPQ3+iqtVEZGISobHDCY6MdjpBFlMbLfV1NFRWUFt6hMrCAqpLip335/28nyUXXIC5tZWtOTl89tln3fYvbVj39GoIryjKr4CbAAV4QQjxD1cJ0DRU0XjU1vOFpyntRfROlaZfURQCwyM6HNMZjLQ2NjhGEv0IAnzxxRf7fE9PJCUl9ao20cqVK8lMT+fL1Wu4I2OS8/js2bOdRmXHjh1ceOGF+Pr6snDhwn7pOfE1Ohyo4zNxWp2OyMRk7HY7NosFm9WCzWLG4OMwUlGRETz39yeoKy9j0/p17Ny9mylpKQRHRmH088dmtWIxtaHVdYyr+PzzzwGoq6vrl2aJ63Gn/dK11CDsgvqSGkKi/VzVrFfRGxvmExCAT8DxQZ5zRslswujXv/dNTRv21ltvkT4xjU+/+JKbbr7ZedydNuxkWxMcNYygSIHdanXGPXHCJFKQrw/P/u1xakpL2Lh2DTv37GH2lMkEHZv5amtqQqPTdooNkzasIz3OJCmKkorDwEwB0oHFiqKMcpUAbf4+WtsUbLahk2uioKCAsWPHcs0115CamkpxcTG33HIL2dnZpKSk8MADDwCwZcsWLrroIuw2Gx9+uApfX1/MZjNtbW2kZmYCx0uVALz77rukpqaSnp7OnDlzALDZbNx1112kpqYyceJEnnrqKaDjyCEgIIDf/OY3pKSksHDhQiorK8nLy2PSpOMOzMGDBzv83l/y8vJoamrint/+hg9PMcrKyMjgj3/8I08//XSncw8++CDXXnsts2fPJjExkQ8++IDf/e53pKWlcc4552CxWLp8jffddx/p6elMmzbNWYDy+uuv56NPPsHHPwD/kDBCIxzOaGlZOWdcsITAqGE8/tTTfPzFlyxcdB7vfbAKcOxcqSs7SnVJ0bFdLEeoKT1CUlISVVVVHWKnDh8+TGZmJlu2bCEvL49zzjmHrKwsZs+ezf79+wf8nkq6x932S19TCkD94aOuatIr6I8N++ijj5w2zGKxMnX+wk753rzGhjU28vvf/IZ33n232+sGw4YpisINN93EJ59/jl9wMH5BwQQcc0abbIIzzr8Q//AIHn/qKT7+/AtmLVjI22+/jRCC+ooyao6UUFmQj6WtlbryMloa6klKSqKyshLrMQ0wtG1Yb5bbxgObhRAtQggr8C1wkasE+IcYQFForvP+5Ih94eDBg9x6663s3buXxMREHnnkEXJycti1axfffvstu3btIjMzkx07dtBUW8PXn31GamoqW7ZsYfPmzUydOhWgg5H505/+xFdffcXOnTv5+OOPAXj++ecpKChgx44d7Nq1i2XLlnXS0tzcTHZ2Nnv37mXu3Lk89NBDjBw5kuDgYGcRyJdffpnrrrtuwK/7rbfe4rJLL2VyZiaH8g47nZWumDRpUrcfwLy8PNauXcvHH3/MVVddxfz589m9eze+vr5dTis3Nzczbdo0du7cyZw5c3jhhRd6pdc/MJA///nPXH755ezes4dlV10FgNHfn/C4eIKjh6HV69AbjY68KMdoa27Eajazac1qLjz/fJ7++99IGTuGm2++maeeeoqtW7fy+OOPc+utt/ZKh6TfuNV+BSU5RuWNZQOrpeiN9NqGbd9ORcFh1q1d08GGZU+ahMXcMaGkt9iwJeefx6yZMzhw4IDH2jBFUUBRCAwJ5c9/fpjLL7+cXbt3O4sBh8clEDoslsDwSEcsk0bTHtKJ3WajtrQEq9nMj9+u48ILLuDZJ/9JZvrEIWfDerNOswd4RFGUcKAVOBfoOWd/LwmM8HcklCypISh8uKua7RsvL+p8LOVCmHITmFvgjaWdz2dcCZnLoLka3ulYy4frul/7bScxMZFp06Y5f3/nnXd4/vnnsVqtHD16lNzcXCZOnMjIkSPZu3cP23fv5s477+S7777DZrMxZ84cNDpdh6y1M2fOZPny5Vx66aVcdJHje2D16tWsWLEC3bElubCwsE5aNBqN84Nz1VVXOe+98cYbefnll/nb3/7G22+/zU8//dTp3kceeYR3j42mSktLycjIcGp55plnOl2/cuVKPvjgA6KTk7no4ot59913uf3227t8j06VifsXv/gFer2etLQ0bDYb55xzDgBpaWldTpcbDAYWL14MQFZWFt988023bfcGjUaDxuiD3ujj2OobFkH48Hjneb3Rl5q6OpavuIVXnn+OkYkJlBUWsGnTJpYuXYrdZkPY7ZgtFloa6p3pC7wxiNXDcav98o2PRW/Oo0nthJIebMOSkpI4cOgQW7dt72DDZs6cgc1iRgjhjLPxFhv2/vvvERYznIu91IYdj+E0YMRREzQ4Mgq/4GDn+YCwcGrqarn6hpt4+bl/kRQbQ211NZs2beKSSy7BbrWCojhWN5qb0BmMaE/DnXc9OklCiH2Kovwf8DXQDOwAOgURKYpyM3AzQEJCQq8FhCWGEL9mNfrWaEAlJ0kF/P39nT/n5+fz+OOPs2XLFkJDQ1m+fDltxwICZ8+ezTfffIPBYOCMM85g+fLl2Gw2HnvsMcLj4p3bSQGee+45Nm/ezGeffUZWVhZbt27tl7b2h/ziiy/moYceYsGCBWRlZREeHt7p2vvuu4/77rsPcKznt4/aumL37t0cPHiQs846CwCz2UxycnK3Bmb79u3d1vsxHtt2q9Fo0B9LTtf+u9Vq7XT9idc4ci85rtHpdM6yAna7HbO551IJZ599NuXl5WRnZ3cbF6E3GgkJCSEpKYk9B/OYPm8BdbW1hISEsGPHDprramlrbsJqNtNQWeHQdSxOCqClwTEz0e48SfqHu+2XNjSU+KPfER7v2XWp3EFvbdiMaVNZ992GTjbs/x59lKjEER2+VL3Fhp19tsOhOV1tmEarxTcwiJCQUJKSksg9XMCM+QtpaGwkJCSEnM2baaytxmY2Y7NaqStzLDeHxg7H6OuHxdTmSF/QvpnGi0tP9SriVwjxEvASgKIofwFKurjmeeB5cBSI7K2AkBHDGJ23Cn/T2b29xfWcatRk8Dv1ef/wXo26TkVDQwP+/v4EBwdTXl7OF1984UznP3PGDK655hquWnYlkZGRVFdXU15eTmpqaiePPS8vj6lTpzJ16lS++OILiouLOfPMM/n3v//N/Pnz0el01NTUdBqJ2e123nvvPS6//HLefPNNZs2aBYCPjw9nn302t9xyCy+99NKAXiM4RmAPPvggv7rNMT3rFxRMcnIyhYWFna7dtWsXf/7zn90SnHkiSUlJbN26lUsvvZSPP/7YGQtwIoGBgTQ2Hk8j8NVXX/WqbYPBwKpVqzj77LMJCAjgyiuvJDk5mXfffZelS5fiFxzCzp07SUtJwWoxO/OkALQ21HfY+dNYXcWa/zzHwutXAFBZmE/QsSByyalxp/1SFIXRtj34NvZ8rVvxYBs2JSuLW3/1a5Zfd10HGzYxPd0rbdj/3H8/v7rtVvyCg9FqdUPShn34yScsXboUIQQ7tm8nZcJ4R5mZY7uLza1tHXZfN1RX8do9v+Liex/CLziEhirHwDAwPNLjZ556u7stSghRoShKAo71/Gk93dNbfFJSSPp6DSKoc+bSoUJ6ejqZmZmMGzeO+Ph4Zs6c6Tw3KSODqqoq5syZC8DEiRMpKytzpPU3m2muq8U/NBSd3sDdd9/NwYMHEUKwcOFC0tPTSU1N5cCBA0ycOBG9Xs9NN93UadTj7+/PTz/9xMMPP0xUVBRvv/2289yyZctYtWqVc/ZnILz11lt8/vnntNTXo9Xp8AsKZsmSJbz11ltMnTqVDRs2kJmZSUtLC1FRUTz55JP93hXSW2666SYuuOAC0tPTOeecczqMjtuZP38+jz76KBkZGdx7773Oaf3e4O/vz6effsqZZ55JQEAAb7zxBrfccgsPP/wwFouFyy+/nIyMjE47TMKGxx/btWJ25MiqrnFm9xV2Oyv/+Dssba0EhkcSkZBIREISyRlZxE9IG9gbchriTvsFEP/yy5i1Q9tZ7c6GCSFIT51AZVWVMxD7RBvWWF3lrHcGeIUNe++tlTTX1uAfHAIgbdjll5M5aZJzZzA40hf4BgY67Zehphb/4BB8Ahx1aH768D12fvM5Bl8/IuITHf8Sk8g4a5HHOU1KbyqwK4qyAQgHLMCdQog1p7o+OztbtEfk94Y3H/yRsBh/zvnl4Bj4ffv2dTsF6mlYLWZMzc34BgV1WFoDR6mS6pIigqOH4RvQ/yJIAQEBNDU1dXnu8ccfp76+nj//+c/9bv9EhN1ORcFh/EJCCAyL6PkGCdDxmbXbbRTs2EZlUQFVRQVUFxdSfaSEKRdczMzLrsbU0syb99/lMDwJiU4jFBw9rNMz5CoURdkqhMh2S+MDxN32K+eLAjZ/dJibn5yL3jA4MWXeYsOEELQ2NqDTG7rMsl1VXIRWp3Nmye8vg2nD6srLsLS1OpfGJT1z8vNaWZhP6YF9VBUXUlVUSFVRAQY/P256+j8AfPXckzRWVxIRn0BEfBIR8YmExyWg93FfyanubFhvl9tmu17ScYxttdQdbgDkKPhkdHoDupCuY1J0hhMKRQ7ASeqOJUuWOHdguArrsUDN9mlZSd/RaLSMmDSZEZMmO4/ZrFZsVsc0u7m1ldCY4VTk53Fg8/fOeIAzbryN9DN/QWN1FT//sIGIBIfx8Q8J9bjRmytxt/0y1JcB0FTdQmiMF1dsdQOKopyyKoDeaMDc6r5EnG6xYWYTOi8uLO4JRCYmd3AyhRCYmpudv/sFBVFZeJidX3/h3JwUO3YCV/zprwDs+PpzfAMDiYhPIjQm1q0bXjyiFLGuvIBaQ3zPFw5BzK0tjro9XSSMVBQNWr2hQ66k/tDdCGzVqlUDarcrnIV6pZFxKVqdzvmMBIZHcOHd9wNgaWujqqSQquJC4sc7BiFleQf49rXj8Rk+gUFExCew8LoVRCQkYWpxGCsZ79Q79DUlQBj1hZXSSTqJ9nIk3Q2KHElxG7HbbAP6ohssG2a327GazR2qH0gGjqIoHZKNzr5yObNxzJrXl5dRVVSI5ph9E3Y7G9582elca3U6wobHkzr/LCb94jzAEcMZEBbuksGfRzhJfn4KJqsvNpsdrVZWP27HbrdTU3qEgNCwDnXKTkRvMGBu856SCA5jqOmUPVbiHvQ+PsSMGkvMqLHOY6OnzOCWF95wTHMXF1JV7Fi2M/g6Mh/vWbea/B05XHKfa5YnTneChofBLmgoroZpI9SW41E019ZgMZmITEjq8vyJmbfbnz9Pxm61omg0cpA3SGg0WkJjhhMac3znu6LRcMvzb1B9pJjq4kIqj4UctNPa2MDzty5nxb9fc8ZxDgSPcJICgvVQ40goGRTu/dWhXUX7DNGpPpA6oxGL2YTdbj9lWQBPISA07LRf3vEG/IKCSUidSELqxE7n4lPSiEhIVEGVdxKcHA2U03i0Tm0pHofVZD7l0rrOYESj0zq3sHs6OoOBqCTpCKuNzmAgOnkk0ckjO53TaLWcefP/c4mDBB7iJEXHGxn903tozemAdJLasTorZ3dvZPxDQl32MAwW0kHybOSXQN/wiY9l1KFniUybpbYUj8Jut2O1mDsso5yMVqcjKtG7njdpvzwbo58/Exe6LqWQR0w9RCRHEl/6LbrmWrWleBRWswlFo+lXAVtPxGoxU1NagvmEytkSibejDQkhsXIjIdbuy1MMRXozE+5t1FeU01wnv6eGEh7hJAUsmE/0Nz9gDotTW4pHYTWZ0RkMjhTx3YzGKisryZ40ifSJaWzYsKHffc2YMaPf9/YWq8mEubWVkwdiF154YYfyBuAoADl8+HAyMjIYPXo0F110Ebm5uQPqfyCv8eOPP+bRRx8F4MMPPzyllva/VWlpKZdccgkAr7zySrdZeSXejaIoxK3ZgObi69WW4lGcPBPenQ0ryj9MVmYmmZmZHm3DhBC0NTVi6yIbtrRhpy8e4SQpej3v/nU7O1cXqy3FowiKjCQwPPKU16xZs4bx48ay9ovPmT27/zudN23a1O97u6KgoMCZcbcdi8nkqBmkP57SoK6ujq1bt1JfX8/hw4c7XP+b3/yGHTt2cPDgQS677DIWLFhAZWVlvzUN5DWef/753HPPPUDPBqad2NhY3nvvvX73KfEecr4u5aO/71Bbhkdh9PcndFhsjzPh69evZ9zoUWzZvNmjbZjNYnGkLzlpZkzasNMbz3CSFAVfWyO1uflqSxkUCgoKGDduHMuWLWP8+PFccskltLS0sHbtWi688ELndeu+/Y7LrrjC+ft9991Heno606ZNo7y8nB07dvC73/2OL77+hrlnnkVLS0uHfu655x4mTJjAxIkTueuuuwAoLy9nyZIlpKenk56e7vzQtY8c1q9fz5w5c1i0aBFjx45lxYoV2O12/vOf//DrX//a2fYLL7zAb37zmz69bqvZhFZvcFSbPsYHH3zAeeedx+WXX85bb73V7b2XXXYZZ511Fm+++Wanc/PmzeM3v/kN2dnZjB8/ni1btnDRRRcxevRo7r//fud1J77GefPmcckllzj/Du1JVZOSkqiqqgIgJyfHaSTbR1GbNm3i448/5u677yYjI4O8vLxuNRcUFJCamtrp+Geffcb06dOpqqri66+/Zvr06UyaNImlS5d2u5VZ4tnoywtoa7ZgNXcqC3da0hsbptXq+G7TJmexWejaht3/xwf4cvUasrKzaT0pZ5In2TBn+pKTYkSlDTu9bZhHOEkA+voyGitPrzf3VPz888/ceuut7Nu3j6CgIP71r38xf/589u/fT2VlJRaTiReef57ly5cD0NzczLRp09i5cydz5szhhRdeICMjgz/96U9cctFFrP7kYwwnjNiqq6tZtWoVe/fuZdeuXc4P2h133MHcuXPZuXMn27ZtIyUlpZO2n376iaeeeorc3Fzy8vL44IMPuPTSS/nkk0+cdYFefvllrr++b8sLFrOp0yhs5cqVXHHFFVxxxRWsXLnylPdPmjSJ/fv3d3nOYDCQk5PDihUruOCCC3jmmWfYs2cPr7zyCtXV1Z2u3759O//4xz/Izc3l8OHDfP/99716DTNmzOD888/nscceY8eOHYwc2Xl3xalYtWoVjz76KJ9//jkADz/8MKtXr2bbtm1kZ2fzt7/9rU/tSTwDfb2jwGdjdUsPV54+nMqGVVRU0FxXy39eetFpJ7qzYQ899BAXLDqX79evw/eErNyeZsOs5mMz4ScVnJY27PS2YR4TEeyns1BlVSd3znVfXtfp2NlJZ3P5uMtptbZy6+pbO52/YNQFXDjqQmrbarlz/Z0dzr18zss99nlifaOrrrqKJ598krvuuourr76a119/naVLLuDHH3/k9TfeABwfoMWLFwOQlZXFN99842xLcyy3lNVsdn6Ag4OD8fHx4YYbbmDx4sXOe9euXcurr74KOCpJBwd3zoY7ZcoURoxw7Di54oor2LhxI5dccgkLFizg008/Zfz48VgsFtLSOmdIX7JkCfn5+ZjNZoqKisjIyADg//2//8eSc8/pkFa+vLycgwcPMmvWLBRFQa/Xs2fPni5HLgCnKqFz/vnnA5CWlkZKSgoxMTEAjBgxguLi4k7Vv6dMmUJcnCMGLiMjg4KCAmdRTHexdu1acnJy+PrrrwkKCuLTTz8lNzfX+RyYzWamT5/uVg0S9xAYFQBl0KBSQklPs2Gvvvoq5y2czw8//Mhrr5/ahikaDYpW60w82Y6n2bBf3ngDV1xySYfdbdKGnf42zHOcJH+FNosvdpvd+aV/OnPyNtL236+77jrOO+887GYT5y86F8Mxp0ev1zuv0Wq1WE8IHlQ0Wgy+fiia423qdDp++ukn1qxZw3vvvcfTTz/d69T83Wm78cYb+ctf/sK4ceO47rrORhmOZ7gtKChg+fLlrF+/vtt+3nnnHWpra0lOdqSnb2hoYOXKlTzyyCNdXr99+3ays7suD2Y8NkOl0WicP7f/bu0i0PLEa058P3U6nTNnS1svduEVFxdz3nmOLK8rVqxgxYoV3V47cuRIDh8+zIEDB8jOzkYIwZlnntnj6FPi+QTFtSeUrBoyCSVPZcMWL1qEraWZiy++GN2xGe5T2TCtTtchVhGkDWtH2jB18RgnKTHKjHH9q9jF/EFfAzzVqMlX53vK86E+ob0adZ1MUVERP/zwA9OnT+fNN990jgBiY2OJjY3l8b//gw/feadXbSmKQljs8A7HmpqaaGlp4dxzz2XmzJnOUdXChQt59tln+fWvf43NZqOpqanTSOynn34iPz+fxMRE3n77bW6++WYApk6dSnFxMdu2bWPXrl19er1CiE6Ga+XKlXz55ZfOkUd+fj5nnHFGlwbm/fff5+uvv+aJJ57oU799JSkpia1bt/KLX/yC999/v8trAgMDaWxsBByj6R07dvSq7cTERB577DEuuugi3n33XaZNm8Ztt93GoUOHGDVqFM3NzRw5coQxY8a46uVIBomQ5GGM3/d/hJ+1TJX+Pc2GRUdH8Y9//YvVa3rn1Bh8fAkM71jw2pNsWFf2C6QNGwo2zGOmbCKSw4ixF6N4UYmNgTB27FieeeYZxo8fT21tLbfccovz3BVXXEHssGGkpHZeaz8VJ07lNjY2snjxYiZOnMisWbOc68T//Oc/WbduHWlpaWRlZXW5w2Hy5MncfvvtjB8/nuTkZJYsWeI8d+mllzJz5kxCQ/uWwLK+opzao0ecvxcUFFBYWNhh22xycjLBwcFs3rwZgL///e/O7bOvv/46a9euJTLy1Lv9BsoDDzzAr371K7Kzs9F2U0vq8ssv57HHHiMzM/OUQY9dMW7cON544w2WLl1KQ0MDr7zyCldccQUTJ05k+vTp3cYrSDwbY1wMcW0/468dGvYLTm3DLrnwQobHxnYZL9QdQgiPtWGmlhYqCg93WBKUNmyI2LD2B9OV/7KyskRfsZptoii3WtRXtvT53r6Sm5vr9j5ORX5+vkhJSen2/C2//KV44i+PiNamxl632VxfJ8ryDgqbzTogbevWrROLFi3q9vyiRYvE6tWr+9xuZWG+qD1aOhBpQxq1n9meAHKEG2yJGv/6Y7+EEKKyuEEcOVjbr3v7itrPQ0827PprrxFPPvF4r9uzWiyi/PAh0VxfN2Bt7rBhjTXV4uihAwO2r0MVtZ/X3tCdDfOYmSSL2cbH/9zB4R39zyFxOpCVlcWe3FxW/OpXfSr4qNFqEUI4s9y6mrq6OsaMGYOvry8LFy7s0712uw2rxYLOaOj5YonES/nxo8NsePuA2jJUJysri4OH87nhl93HtpyM5tiMh9Vk6uHK/jMQG2Y1mdDp9Wg0Xc/MSE5fPCYmSWdvQyus1Gz/Gc5IUFuOW0lKSmLPnj1dntu6dWu/2mwvImk1mzH49L/+3bx58zolgQQICQnhwIH+fQFYTcfKE5yiBp1E4u1ojxyiodZfbRmDgqttmGNrvRGLCwZ57rBhXaUvkQwNPGYmSevnh7G1msaKRrWlqE5jTRWtjQ19ukej06FoNG4difWX9vIE0shITmd8mqswCwNWy9BIKNkdpuZmGqoqnTuseovOaMBqNp1ym7wa2G02bBaLHOQNUTzGSVK0WnxEC81DJxdblwghaKmvx2LqWxFYRVHQG4xuW24bCFq9Ab+gYDRaj5m4lEhcjn+oIwdYU9XQCd7uClNLM22NDV3uBjsVOoMRYbd3WRtNTYQQ+AWH9Cn8QXL64DFOEoCf3kKrRZ2Ekp6CzWpF2O39GrX4BgXh000RSTUx+vkRFBnVZ6MpkXgTgdGOz159YYXKStTFYjahMxj7/Hk3+PjiHxraqQC22mh1OoIiIjGckAhXMnTwKCdpdOARMo92nddhqHBy5ey+4BsYhF9wiIsVDQwhhLMwpERyOhM1IpTMHf8gRKlTW4pqtG8e6c8mDZ3BQGBYBFqdZw2UHfarb0uHktMHj3KSosbHER7uYcOIQcbqLKLYdyMjhMBmtfQ4XX3uuedSV1fXH3nk5ORwxx13AI4iiz1VpbaazVQWFdDWPHTq8kmGJgEj4hkWrUGvG7oDgoHMhMOxnbC9CBkYTBtWW36UurKj/epL4v14VJCI/1XXUTnxfBpr2ggMGxpTm85cDBqN83ed0ej8vW9t2aksLCAgLJyA0LBur2svTNgfsrOznWn1169fT0BAADNmzOj2emfQdj+cPonEmzCOHo3ypxeoNmoZStErJ9owu9WKRqvtt5PUUFGB1WImIj7xlNcNlg0Two7NbMboYTP0ksHDo2aSmuvMrH11H+X5fdvZ5W0UFBQwduxYrrnmGlJTUykuLuaWW24hOzubaXPm8uTzLwKwZcsWLrroIgA++ugjfH19MZvNtLW1OVP0n8j119/APQ8+xPwzzmTEiBGsX7+e66+/nvHjx7N8+XLndUlJSVRVVVFQUMD48eO56aabSElJ4ayzzqK11RF0Om/ePHJycgCoqqoiKSkJcBiVxYsXU1BQwHPPPefMKLthw4YuX6vV5KicrdVLJ0ly+rP543x2rS1RW4bb6c6GzZg9m/mLzuPhv/wF6LsNu+03d/Lbe+5l2rRpHmHDrGazc+AqGZp41EySvqEMgOpt+xiVFaWyGvdy8OBB/vvf/zpT2j/yyCOEhYVhs9lYuHAhu3btIjMz01lTZ8OGDaSmprJlyxasVitTp07tst2GxkY+X/U+m7bv5Pzzz+f777/nxRdfZPLkyezYscNZ0fpEHStXruSFF17g0ksv5f333+eqq67qUX9SUhIrVqwgICCAu+66q9vrLGYTOmPfgzglEm9Ed/QwdRV+wES1pbgdd9gwjUZDfX0d361bxxdff626DbOY2mfCpZM0VPEoJ8k3LBCNzURT+eBuAS28+ppOxwJ/cQ5hV16JvbWV4pt/2el88JIlhFy0BGttLUfu+FWHc4mvvdpjn4mJiR1q/rzzzjv8+9//xtzWRkVVFbm5uUycOJGRI0eyb98+fvrpJ+68806+++47bDYbs2fP7rLdRb/4BTaLhZSUFKKjo0lLSwMgJSWFgoKCTgYmOTnZeSwrK4uCgoIetfcWRxCnCR//QJe1KZF4MkZzHbWawX/ePcWGPfvMM9jsdsorKvplwxStljMXLMBqMZOWlqa6DbOazSgaDVq9ZwWTSwYPj1pu00dG4GOqo6nOorYUt+Pvfzwzb35+Po8//jiffvghaz79mHN/8Qva2hx5kubMmcMXX3yBXq/njDPOYOPGjWzcuLFbJ8nX37ENWdhsGE+YItZoNFi7COg+8RqtVuu8RqfTOZPBtWvpD4ERUfgESidJMjTwD9Bg1vgOiYSSXdmwt//7Mj9u3MCiRYv6ZcM0Gg1GowGr2XzsZ3VtmG9AIEERkXImfAjTq5kkRVF+A9wICGA3cJ0Qov/fnN31cyyhZEvr4MavnGrUpPH1PeV5XWhor0Zdp6KhoQF/f3/8fYyUFJXx5VdfMX/BAgBmz57NNddcwzXXXENkZCTV1dWUl5eTmpratR69nuCoYbRUDCxXS1JSElu3bmXKlCm89957XV4TGBhIQ0P38WOKouAbIB0kiboMlv0CCAg1wlFoqmohJGbwnn1PsGF+fn4EBQZSXVvHF1984SwN0lcb5hccgm9gEDQ1D0iTK2yY3scHvcyPNKTpcSZJUZThwB1AthAiFdACl7tLULr9J7Iav3ZX8x5Jeno6mZmZZE2fwa2/+S0zZ850nps6dSrl5eXMmTMHgIkTJ5KWltbtyEaj1eIbGOgsGNlf7rrrLp599lkyMzOpqqrq8przzjuPVatWdRv0aGlrwzyAWSiJZKAMtv1KHOHLtB8fwNc+tFJepKenMzE1ldlnncN1N944IBtm8PF1SQmjgdowm82KqaUZu/30nxWUdI/SU5K/Y0bmRyAdaAA+BJ4UQnTryWRnZ4v2XQV9pfLJp7A1NTLsD3/o1/29Yd++fYwfP95t7fcHIQQVBYfxDQwiKCJyQG1ZzCbsFitGf3WLbdaWlWKzWHrczivpGU98Zk9EUZStQohstXWczGDbr5atW6l+4UWi778PQ1xcv9roDZ74PDRUVtDW3Ehk4ogBLU/ZbTbMra0YfH0HPNgbCG1NjdSVlxEeF4/eKGeTBoInPq8n050N63EmSQhxBHgcKAKOAvVdGRhFUW5WFCVHUZScysrKfgvVXXo9xelX0NZ0+sclnYiw2zH4+rok9X1LfR31leWqZ7m2mkyyKKREVQbbfvlOmkT1JfdS3jSUMiU50Oh0GP0DBhy/YzWbqSs/2uf6la7GYjaDAjqZvmRI05vltlDgAiAZiAX8FUXptL9SCPG8ECJbCJEdGdn/mZD6ylZ++iSfuoqhVelWo9USOiwWHxfE8OgMRuw2G3abetPEdpsNm9XqkmlziaS/DLb9UhSFnM8LOLy9/46WtxIQGkZwZPSA22mvNtCeiFYtrCYTOr0RpR+JfSWnD735658B5AshKoUQFuADoPsUywNEW/QzALW789zVhUfiylkfvQcYGcsAatBJJC5kUO0XgL7uKNVb9rqzC4+jPeu2K9BotWh1OqymnsuTuBOr2YS+HzXoJKcXvXGSioBpiqL4KY551IXAPncJCohybGFvKK1zVxceSV35UWpKj7ikrXbHpDc1kNyFswadNDISdRlU+wXgY2ukpdWdPXgepuZmKgoOu8zm6AxGx3KXStisVmxWqxzkSXpOASCE2KwoynvANsAKbAeed5eggMQYNLajNFYNrZgkq9nssqUp50hMxZkk38Ag9D4+aLUela9UMsQYbPsF4GewUWYbWl+uVrMJYbej0bnm864zGDC3tiCEHUUZ/OUujVZLeFyCqoHjEs+gV0+0EOIB4AE3awFAFxGB0VxHc/3QyXBqt9mwWSyO3CAuImRYLFoXGaz+oNFqMWh9VetfImlnMO0XgL+/BnObLzaLHa1+aMSzWMwmdAZDvwpzd4VfcDC+QcGAOkkcFUWR8ZQSwMMybgMoGg3TjrxGFpvVljJotE9Rn6o+UEBAQJfHKysrmTp1KpmZmR3yfOiNxl6NgkpLS7nkkkv6qPg4zz33HK++6khE98orr1BaWordbqepprrDTNYf//hHVq9eDThqOKWkpJCRkeEsRulKXnnlFW6//fYBtbFjxw4UReHLL7/scFyr1ZKRkUFKSgrp6ek88cQTzqy+EgnAuMQ25m74DRpl6DwXVrPZGXDdHX2xYVqdHp1e36udcu6wYa2NDbQ1NXa4TtqwoYlHroVEnn8OusgItWUMGu3ORH/id9asWUNaWhovvvhih+M2q4XWhgZ8AoPQnaLuUGxsbLfZaHvDihUrnD+/8sorpKamEhkWRlNtDTqD0bmm/6c//cl53RtvvMG9997bqyKUarFy5UpmzZrFypUrOeecc5zHfX19nQU7KyoquPLKK2loaOChhx5SSanE0wjKzkSpX4IwmVBUnM0dLAY6E96dDWtpqEej0fS449cdNswQHYlWr+/Qt7RhQ5T2XQmu/JeVlSUGQvH+GrH29X3CZrMPqJ3uyM3NdUu7vSU/P1+MHTtWXHnllWLcuHFiyYUXiqOFBWL16tXiggsucF739ddfiwsvvFAIIYS/v7/4wx/+ICZOnCimTp0qysrKxPbt20V8fLyIiIgQ6enpoqWlxXmv2dQm4oYPF3fd+RuRnp4usrKyxNatW8VZZ50lRowYIZ599lmnlpSUFCGEEC+//LJYsmSJOPvss8WoUaPE3Xff7WzP39/f+fO7774rrr32WiGEEA888IB47LHHxLvvviv8/f3FmDFjRFpaqji8Z5ewmM3Oe6699lrx7rvvihdeeEGEhoaKpKQkceWVV4rGxkaxYMECkZmZKVJTU8WHH37ovOe///2vSEtLExMnThRXXXWVEEKIiooKcdFFF4ns7GyRnZ0tNm7c2On9ffnll8X5558v5s6dK0aNGiUefPBB57knnnhCpKSkiJSUFPH3v/+9y7+P3W4XycnJ4tChQyImJka0trZ2+T4IIUReXp4ICwsTdrt7ntV21H5mewLIEW6wJWr8G6j9ams2iw1vHxBHDtQOqJ1TofbzcLINu+C8xaKuulqsWbPGZTasqrhQxMfFiXvuuWfQbVjK+HGioqS4w2uWNqz/qP289obubJhHGpnd35aIp3+5RjTWtPZ8cT9Q+w+Wn58vAOeH47rrrhOPPfaYsNvtYuzYsaKiokIIIcQVV1whPv74YyGEEIDz57vvvlv8+c9/FkI4Pky33XZbpz7sdruIGz5c/O2vfxVCCPHrX/9apKWliYaGBlFRUSGioqKcWk40MMnJyaKurk60traKhIQEUVRUJITo2cAIIcTcuXPFli1bRH1FuSg7fKjDh67dwJz8s8ViEfX19UIIISorK8XIkSOF3W4Xe/bsEaNHjxaVlZVCCCGqq6ud78mGDRuEEEIUFhaKcePGdXrtL7/8shg2bJioqqoSLS0tIiUlRWzZskXk5OSI1NRU0dTUJBobG8WECRPEtm3bOt2/ceNGsWDBAmd/7733nvPcyQZGCCGCg4NFWVlZp+OuRO1ntiekk3QcU6tFPP3LNSLn00MDaudUqP08DIYNqysvE/HDh4t//etfQojBs2GbNm4QRw8dEK1NjR30SBvWf9R+XntDdzbMM+eCd20GQqgvrCAgNMHt3a16YlunY6OyokibF4fFbOPTp3Z2Oj9uegzjZ8TQ2mTmy3/v6XBuyW8n9dhnfHw8M2fORAjBFZddxjPPPstdd93F1Vdfzeuvv851113HDz/84FwrNxgMLF68GICsrCy++eabU7avKAqKonDWwvkApKWl0dTURGBgIIGBgRiNRurq6jrdt3DhQoKDgwGYMGEChYWFxMfH9/h6TsRiNqE3GnsVTyCE4A9/+APfffcdGo2GI0eOUF5eztq1a1m6dCkREY5l17CwMABWr15Nbm6u8/6Ghgaampo6xTuceeaZhIeHA3DRRRexceNGFEVhyZIlzurlF110ERs2bCAzM7PDvStXruTyyx3lvS6//HJeffVVLr744j69B5Khi9bSis7SQvXm3bBo5KD0qaYNs1osXHnlFTz99DMutWE6gwEBLDr3XGDwbJjNYgVOHSN6ItKGnd54pJMUEB0Ie6ChsJLhGe53ktSg3YGwWSzUV5Zjtzk+mNdddx3nnXcePj4+LF26FN2xmAb9CUGMWq0Wq9Xai05Ae+wejUaD8YTdGhqNpss2TrzmxH5OdHjaTlG0VgiBzWrBx793mcPfeOMNKisr2bp1K3q9nqSkpFO2b7fb+fHHH/HpoXzLyQ5ab0sl2Gw23n//fT766CMeeeQRhBBUV1fT2NhIYGDn13T48GG0Wi1RUVG9al9y+qMJCMDHUk9z4+m9O6r9M1VfUUZTTY3zd1fZsPZ4xsG2YTarFY1W2+t0BtKGnd54pJMUnBQNVA1aQslTjZr0Bu0pz/sGGHo16jqZoqIifvjhBzLTUln18SfMmjULcAQhxsbG8vDDDzt3UvQXBQW73TXlSaKjo9m3bx9jx45l1apVXX7YAgMDaWpqIjI727GW2wvq6+uJiopCr9ezbt06CgsLAViwYAFLlizhzjvvJDw8nJqaGsLCwjjrrLN46qmnuPvuuwHHDo6MjIxO7X7zzTfU1NTg6+vLhx9+yH/+8x80Gg3Lly/nnnvuQQjBqlWreO211zrct2bNGiZOnMhXX33lPHbttdeyatUqrrnmmg7XVlZWsmLFCm6//fYB16uSnD4oioKP0kpz2+ClwFDLhm3atImRw6L4wA02rH0ji83WiwFhL+itDbNrtUQkJPb6My1t2OmNRzpJAYnD0FqLMdW55sPhiYwdO5ZnnnmGLT/9xKgRydx22/HtnsuWLaOysnLAVZMVjYbIhGSXJER79NFHWbx4MZGRkWRnZ9PU1NTpmuXLl7NixQp8fX354Ycf8PXt+Uti2bJlnHfeeaSlpZGdnc24ceMASElJ4b777mPu3LlotVoyMzN55ZVXePLJJ7ntttuYOHEiVquVOXPm8Nxzz3Vqd8qUKVx88cWUlJRw1VVXkZ2d7dQ4ZcoUAG688cYup6mXLFnS4djFF1/Ms88+yzXXXENraysZGRlYLBZ0Oh1XX301d955Z+/eRMmQwc9go8aqboFpdzN27Fiefvpptvy0mZQJKdxyyy3Oc66wYVqtDq1Oh5+L8sdJGyZtWH9Qejvi7wvZ2dkiJyen3/cLu5196ZlELL+WqN+6/o+3b9++ATsgA6GgoIDFixezZ88eastKsVksRMQnOs/ffvvtZGZmcsMNN6imsb+01NdhNZsJipRTt65E7We2JxRF2SqEyFZbhysYqP0COHLvfbRs+p7R3653jaiTUPt5aLdhOT/+QF15GeFx8eiNx5ePvNWGWc1mmmqq8Q8Nk8kkXYjaz2tv6M6GeeRMkqLREHXrCnxSU9WW4nasJhN6n+OjlaysLPz9/XniiSdc0n5jdRWKRkNAaJhL2uuJtpZmlyzvSSTeTNBZZ2AckaS2DLdjMZtBAZ3+eI43V9owU0szLQ31hETHDMpykMXURltzE/6DZC8lno9HOkkAlekXcOTnOs6YrbYS15OUlMSePXsQQhAYEdlhOWzr1q0u7ctiMiHstkFxkoQQWE0mjH7+bu9LIvFkbBOmknMggqyiRiITereJwZtot2EWk8mRGfuEciSutGF2mw1TczM2i6XHjN6uwGo2oSjKoPQl8Q48rixJO3WljRzYUobdfvqu6yuKgo9/AAYf9wV46o0GrGZzrwOpB4Ld5ggS18lparcyGH9LycCwW23kba+kuqBGbSluRW80urTm5Mm073CzDFKxbovJhM7Qu/Qlkv7hbfbLY2eS2PkDwp5AS10bAWGnZ6FUi8mE3W7D4OPrtg+lzmB0bMsfhJFYe3mV3uYXkfSdr+9/j4OVIeixoNdD7DCFuRclYBg1ih8/LcJuExj9dBh8dRj9dIRE+zEs2ZEzprnOhN5Hi96olV8CbkZfewSAmu37YU5iD1d7J3a7DXNLK3pfH7Ra93yVtNdvc9gW987ICSGwms0Y/eVMuLsoXL+bz948ikYR6DU2DD5azr0giOD0cRQWWDiyvxaDnw6jrx6jvw6jr47k9Ag0Wg1tzRYQYPDVotEO3vyOxzpJAZEBUAkNRVUEhPUtmaG30FJfh6mlmcjEZLf10T4Ssx6r0u1OhF2g0+vlVLUbqdLHEWisJqzuIKYqE/YDR8h//RuGP/UkRXuDaKhowWI5PlIbMyXa6SS9/j8/YLXYUTQKRl8dBj8d46cPI/vcZIRdsP7Nn53OVXisP8npkWq9TK/HL3E4OsshmqpP3x26VpOJuvKjhMbEovVzz1eJotGg1euxmsxuaf9EhN2OVq/vEIAucS1VbYEITSUJlr2YGtuw2DQcvfW/tC6cS805d3IgpxxzswXBsUGcArc+40iI/OOHeezdUAqA3keL0VeHX5CBpfdOBmDvhiPUlDZj9NNh9NOTMjsWnWHgO7s91kkKig2BXKgvqCA24/R0khyVs907tavTO6ppD8YUp09AAD7dVPqWuIa4cQFExicwfsYihM2GubAI04Fz8Zs0icvPDKfu/fc5cv8fsep8ser80O0yUrA6iti//h+zLxtDa3UDZrPAbNVgarHiF9y+nGGjYHcV5hYrVoudkZmR0kkaAJqAAIyWeppO44SSFrPDcdG5eebY4OM7KFXqNVot4cNPz+8aT8E/FCbMimH+VQsAsFZVYTowHcXHl7hJyWTNi+Ln6TOw2jQOG2bw5/D5fyP8uusZM2U+odG+tFbWY9H6YG61wglfa+UFDeRtq3QcB1Jmx7pEs8fGJAUlRuPTVo2ltlZtKW7BMbVrQt/LWZeTU9a3U1lZydSpU8nMzGTDhg2dzisaDREJSd3GDZSWlnLJJZf0XvhJPPfcc86yA6+88gqlpaVdXvfHP/7RmVhuw4YNpKSkkJGRQWtra7/77olf//rXDB8+vIOBfeWVV4iMjCQzM5PRo0dz9tlns2nTJrdpcCWmwkL2v3Mpd286m52VO1G0Wowjkgk65xx0x8oXhFx8MeO2bGb0qy8w4ve3EX3OHNAo6EJDmTArlvhDnxPyPxcx/IVbGb/laSJ+eof6zz5Dr1e47v9m8cun5rHiqXksuNazt+t6OoqiECTq0bY1qy3FbVhNJkdm6l7mYeuvDQuKjCIkeli37Uob5j027OC/r+CD7Zfw5r43AdBFROA/YwZ+kxy5njT+/ozbtpUxH7/HyEf/h8RlizAkJKLx9SF2dCjjkiwEP3QZUY9dxciv/8KEwnepfestLKWlLLh6PDf9fQ63/Gs+NzwxG63eRe5NVwXdBvpvoAUihRDCUlkpcseOE9WvvT7gtk7GE4rtWUwmcfTQAdHSUN+r67sqSiiEECtXrhQ33HCDK6X1C5vVKmZMnSo2fLu+x2t/+ctfitdee829emw2kZCQIKZOnSrWrl3rPH5yMc21a9eK6Ohoj3gmTkVubq7Ie+MFsWdcqjjv0RTx0KaH+tVOy86dovK5f4uSO38r8hYvFrkpqWL/5CnOYsQV/3xSHPnd70XtqlV9ahdZ4LYThdddLw4vvdQlbZ2MJzyvVcVFovpISa+v93QbVld+VMycPl1s2bKlx2ulDesbubm5wmaxipyMLPHYVePF9DemC7PV3Od2LNXVomblSlH64IMi/8plYn9WtsgdO040HHt/mrduFUW33CrK//53Ya3v3XdrO93ZMI+dSdKGhRH9h3vxmzxZbSkup6CggJTUVG6987dkTp7CJZdcQktLC2vXruXCCy90XvfNN990yJx63333kZ6ezrRp0ygvL2fHjh387ne/46OPPupyRJOUlMS9995L+sSJZExMI2fLFs4++2xGjhzpzPBaUFBA6rF8VK+88goXXXQR55xzDqNHj+Z3v/uds60TR4Hvvfcey5cvB+DBBx/k8ccf552332bH7t1cf+NNXWpZvnw57733Hi+++CLvvPMO//M//8OyZctoampi4cKFTJo0ibS0ND766CPnPa+++ioTJ04kPT2dq6++GnCMOi+++GImT57M5MmT+f7777t8j9evX09KiiML8MqVK7v9W8yfP5+bb76Z559/vttrPIXdPzXw7ezHaYsKZl3xOuyi70sQvhMnEvHLmxn+xOOM+OQTxm7bSvK77xyvJVhXR/OmTTR/13lEL+kboddcTfiN3pVMsbfk5+czbe48VtxxB+PHj3erDbvn978nNSWFSZmZbNu2zW027P33P2DHzp0sW7ZM2jA3UL23gB+n/pXW0Kk0WhrZUralz23owsIIvfxyYh54gKQ3XmfMlp8YtWY1/lOnAmCrr8dcVEjNf15GcVVsbFee00D/uWoktumDQ+Kbl/e6pK0TUdvjzs/PF4BYv3aNsNtt4rrrrhOPPfaYsNvtYuzYsaKiokIIIcQVV1whPv74YyGEEIDz57vvvlv8+c9/FkJ0HlWcSGJiovjXv/4l2pqbxE3Ll4vU1FTR0NAgKioqRFRUlFNLSkqKs63k5GRRV1cnWltbRUJCgigqKhJCdBwFvvvuu+Laa68VQgjxwAMPiMcee0w01dWK6VOmiB9/+KFLLddee6149913O/1ssVhE/TGPv7KyUowcOVLY7XaxZ88eMXr0aFFZWSmEEKK6utr5nmzYsEEIIURhYaEYN25cl/3deOON4tVXXxX19fUiNjZWmM3mbt+vVatWiXPOOafLdjyF3Nxc8dp1T4rnr31TvL79OZH6SqrYXr7dbf3ZTaY+XY+cSepE8b5q8c7/bhEN1a0uae9E1LZhhw8fFoD4dr1j5tidNuyZZ54R5fl54tZf3izS0tLcYsP++n//J44eOiBmzZzZ7UyStGH9Jzc3V+Q8/754+pdrxKuP3iImvz5Z/PmHP7utv77aLyG6t2EeG7gN0Fhay9GCJmCCW/t5+6F7Oh0bO202GWcvwmJq44NHH+x0PmXuGaTOO4OWhno++fv/djh32QOP9thnfHw8c+c7gteuuuoqnnzySe666y6uvvpqXn/9da677jp++OEH51q5wWBg8eLFgCOj7TfffNOr13b++eejMxgYP3YMFrudwMBAAgMDMRqN1NXVdbp+4cKFBAc7dkNNmDCBwsJC4uN7Dma0mhxJ2PpaJ04IwR/+8Ae+++47NBoNR44coby8nLVr17J06VIiIiIACAtzJMNcvXo1ubm5zvsbGhpoamrqMEo0m818/vnn/O1vfyMwMJCpU6fy1VdfOd+/rjR4AyYRjhBHOX/CTTy++znWFq8lIyrDLX25bBQ2hLG2tFFR0ED9kVoCw2Lc2tdg2zBFUYiPj2fO3LmAe23YBRdcgE4RjB09GrPNPTasvYiuoun7Jhppw3pH6YEiIISkrNHM0vmwrmgdf5j6BzSK6xe0XGm/PNpJUvZvp9mchN0u0PTj4fVohMDc2orhWAHF9uWO6667jvPOOw8fHx+WLl2KTuf4E+mP5QsB0Gq1WK2921psNBrRaHVodVr0uuN/bo1G02UbxhMSQZ7Yz4k78Nra2jrdZzWbUDRKn3fqvfHGG1RWVrJ161b0ej1JSUldtt+O3W7nxx9/xMen+226X331FXV1daSlpQHQ0tKCr69vtwZm+/btHl9XSAhBmyGScO1hAg2BTI+ZTr2pXm1ZklOgK80DoDa3gLg09zpJg42ppZkOW4twrw3TIRB2O4YTvvxcacPszmv6/oUtbVjvsNgiMFhqmJBxLnX1BzhQe4DKlkqi/aPVlnZKPNpJ8g8xICq1tNS3ERDqvoSSpxo16Y0+pzzvFxTcq5mjE7HbbBSXlLBxw3csOOts3nzzTWbNmgVAbGwssbGxPPzww86dFAPFMcOjG1BNtejoaPbt28fYsWNZtWoVgYEdE7sZfP0ICg6msbGxT+3W19cTFRWFXq9n3bp1FBYWArBgwQKWLFnCnXfeSXh4ODU1NYSFhXHWWWfx1FNPcffddwOwY8cOMjIyOrS5cuVKXnzxRa644goAmpubSU5OpqWlpVP/3377Lc8//zzr1q3rk+7Bxm4ToGiZdN2NADy98Gm3jMAkriN4RDRQQmNZg9v7Gmwb1tbURHFxCT/88APTp093uw3TGQwgBKIfcXjtnMqGKVotvoGBBAUFSRvmJsxhYxiWbCQ8YiyLwkezeMRir0hq69FWNjDCkfm0oaBCZSWuxWoxM3JEMi/852XGjx9PbW0tt9xyi/P8smXLiI+Pd+nIQG/0QaPrf2KtRx99lMWLFzNjxgxiYjqPigPDI7jhxptYsWJFn7bFLlu2jJycHNLS0nj11VcZN24cACkpKdx3333MnTuX9PR07rzzTgCefPJJcnJymDhxIhMmTHAGb7bT0tLCl19+yaJFi5zH/P39mTVrFp988gkAb7/9NhkZGYwZM4a//OUvvP/++x4/CkOxM3aeICLBMfpsd5AsdouaqiSnwC8hFp21habqzl9s3o7VbGb0qJE888wzg2LD9EYfR5LHAawqncqG6Q1GgqOGsXz5cmnD3ERMWj0jJzsmOzSKBkVRvMN+dRWoNNB/rgp8LHp/tXjtsn+Lwm+2uaS9dtQOety7c6cYO3q0sFosXZ6/7bbbxIsvvjjIqvqPzWp1biGXuIftmzaIlWePF9u2v+I89vAPD4srP71SRVXHQQZud8k7S/8m1v3uZZe1146aNsxmtYqf1q8V47sJOBbCu2yY3W4XNqtVbRmnNXt37RKfzx0nnvnfOc5j3x/5Xkx/c7rIq81TUdlxurNhHj2TFDF2GFk7/k6IqFJbikuxmk2ggFbXebUzKyuLXbt2cdVVV7m8XyGEWzLXNtXWUFl42CuCB70Vu8VOSHMQI5PmOY8N8x/GrqpdlDWXqSdMckomtaxhVMtWtWW4lPZis90tlbjLhgkhBhQy0B1Ws4mKgsO0NTe5vG2JA6upjYjGWIYFHw+gHxE8gkZzI2uL16qorGd6dJIURRmrKMqOE/41KIry60HQhjEpieH//Ce+6emD0d2gERcbw6b1Xa8fb926le+++65D8KErEHY7FQV5tNS5PoO51WxCqzd4xfqyt2JV/CgesZSgkOPFUhckOHZHri3ybCOjJmraL4Bhf/gD4b9cMVjdDQo2i4X4uDh27drV5Xl32bCGygqqjxS7tE1wFBoHZM1JN2Ix2/lp8n0MGz/deWyY/zBSw1M93n716CQJIX4WQmQIITKALKAFWOVuYeBIUf7dwWg2fl0zGN0NGqExwwmJHtzdLopGg1arw2p2baFIIQQWkwm9m+s3DWXsNjsoWoShY2xecnAyI4JHePxITE3UtF8ABbZE3n69DpvV/bXHBgu/oGCikkd2ORPuTrR6PTaLxeWz4Y6duRq0Or1L25UcR9hBb6pibMrCDscXJi5kd9VuypvLVVLWM31dblsI5AkhCt0hpitMNfVUHXT9coKaS0OKoqDRDP5Kp85gdCz1uRCb1Yqw29G5eNQoOY6luRUhQBfSeTlgQcICcspyZDqA3jHo9sveUE9znYmmStfXcFPThqljvxwzPa62YRaTGb2bC40PZRxhHhoU+1HCI8Z2OLcg3jEbvq7Yc3fm9fVJvxzoPj+6G9AW/UzjUdd+Afj4+FBdXa2KkTG1NFNXXuaWtfWe0BkMWF08ErMem6qWM0nuQQhBVU0tLTVWJk6f0un8ouRF3Jl1p0wH0DsG3X7pSg4AUJfv2oGeWjZMCEFtWemxPEmDi+6YjXHlbLgQjkLjcpDnHoQQVFVV0VwrCIsATnJEk4OTuT3jdjKjMtUR2At6PV+qKIoBOB+4t5vzNwM3AyQkJLhEHICfn0KpyQ9hF/3KhtoVcXFxlJSUUFlZ6ZL2+kJbcxPm1hYCq2sGfeRiMZlobainqrkVrd41U8t2mxWLyUSNySJHYm6itc7OoW+buf6vV3c6Nyp0FKNCR6mgyrtQy34FDg+H7RYai6uA0S5rVy0bZrNaaa6twTcwCP0pkiG6BSFoqK7CUFOLT0Bgz9f3qkmBpa0NTWMzusrTa4OQp6BFz4F1zcy9/NJO5xRF4Zfpv1RBVe/py6LyL4BtQoguFw+FEM8DzwNkZ2e7bHgTEHw8oaS/ixJK6vV6kpOTXdJWX3n/fx+guaaaax57etD7bqqpZs/6n0kYP56gyKhB71/SP376/l3iZ7Wh1XU9W9RobmR98XrOSDwDX537kq56OarYr+BkR0LJBhcnlFTLhu3buJ6NzzzONX99isjEwe9/2xefEBroT5KH5wSSHKey9BCRM3IJjonr8rxd2NlavhU/nR8pESmDrK5n+jJHfwWDPFUNEB7rS1R5DpZq1+/KUoOqwnxVjAtAQFg40y66zKUOUuHuHbQ2uj+j8FDG9vuHKHzvf7s9v6dqD3/Y+Ad+LP1xEFV5HarYL7/E4URVbMXXfHpsPqksKkCj1RE2vOsvPHcz6RfnkZSR5bL2KgoOU1Na4rL2JJ0peubPRP/1aUor1nd7ze+/+z0v7Xlp8ET1gV45SYqi+ANnAh+4V05nYseGk7rvZYyt1YPdtctpaainqbZGNSepXUNZ3kGXtfXew/ezd71rSg9IOmNubKFJPxWDb/f1jbKHZROoD2RN0ZpBVOY9qGm/tAH+TCx6hxjT4cHu2i1UFuYTHhev2k4wq8VC+eFDmLooz9EfNqz8L5/+vW8lWSR9o6xQR33QKEaNOqPL8xpFw/z4+Ww8spE2a/c179SiV06SEKJZCBEuhBj0LTR+WVkkvfM2+hEjB7trl9PaUE9kQhJRyerFkGx653Xee+R+lwR8VhQ4DH9Usvf/bTyVsi37ODB2GUrEhG6v0Wv0zImfw7cl32K1965o6FBCTfsFkPDSi4TecIMaXbscg68fceNTVeu//PAhXr/315Ts2+OS9iry86T9cjNlugUciVtIcGj3kwMLEhbQam1l89HNg6isd3j8lhhNUBArX2/gpy9L1ZYyYMLjErjmsadJSJ2omoaIhGRMzc00Vg88SLHymJOk5szY6U5+znYAwkYGnPK6BfELqDPVsb1i+2DIkvSBrQf8WPmPQ2rLcAnn/fr3LLhOvUDbiHhHMtWqooIBt9VcV0tLfR2RiSMG3Jaka6wmMyZDZKccbyczZdgUAvQBHpnzzeOdJEVR0FrbqDt0RG0ppwURCa4zMhUFhwkMj8Q3MGjAbUm6pqqoDsVuJXnypFNeN2v4LAwag3SSPBCloZrmetNplVBSLYx+fgRFRlNZmD/gto7PhEsnyV1UbD+I0OjQB586blWv1TM7bjbbyrd5XHkrj3eSAPTVJTQUDv52fVfz7p/v47s3XlZVQ2RCEoDLjIw0MO5FEz4RP30zYyece8rr/PR+fHnxl9w88eZBUibpLbrSQ4BCU6V31wbb/uUnvPq7/4elTd24kcjEJCpdMcjLzzvWnpwJdxf1DY60MJMX/qLHa++Zcg8fXPCBx6WSGdy88v3ET2+hxurdKeNtVitH9u8leoS6OW2Mfv4ERUa5xMgs/tXvPM7rP91osgUQkxGLwdhzXphIv8hBUCTpK4FRgXAE6vPLCY7x3lnX8sOHaKmvG/z8SCcRmZDE4a1bsJrNA6q3ljr/TKKTR+Ljf+qlbEn/aTD5oCgw7oxzerw2zCdsEBT1He9wkvwVSttcm1BysKktLcFmtXrEqOXMm/8fAaEDfyA94bWczgiLBTHiRfxGzgJ6Dpa1Czv3briXcWHjuC71OvcLlPSKwLgw2G6hwcUJJQebChXTl5zI+NnziRufNuDvAv+QUPxdmE5A0hmz5m3851Sj1c3r1fUfHvqQzw5/xvNnPu8xM0pesdw2LEIQf2QdVrP37txpX95qX+5Sk6SJmc4AyP5yZH8ue9avVqW8ylChae9OJv/1B46sf6tX12sUDeUt5Xx6+FM3K5P0hZARw4grWY+vyXtzvdmsVmpKijzCSQqLjSNxYsaA0hCY21rJ+XQVdeWurwsqOY7uf9/E543PUHpZ689mt/Hj0R85UHvAzcp6j1c4SfGjAhh1aBXUe6+RqSwqQKvTERqrThK2E2lramLvt2toqDr1joNTkbthLetffaHXD7+k7+xZu4nDSecSOjKt1/csiF/AgdoDFDcWu1GZpC/4xccy5tC7BJu8d/OJJ82EAxTs2ErBrv5vUqgsyOfb116iumTQah0POazNbZSHXEBLVO9TLMyNn4uCwtoiz9nl5hXfcEGLFpHwzVpEYIjaUvpNWGwcaQvPRqtTf4WzpaGOL//1d4r37u53GxUFh4lKHOExU6KnI0fyzBQmnEV8xpxe37MgwVFV25OMzFBHG+BP8hdf4nfxFWpL6TeKRsO4mXMZNtIzlgu/f+d1tnz0Xr/vryhwBG1HJckcSe6ibPvPHIlbgBLWe8c6wjeCjKgMj0oF4BVOkgkfXnlkH/s3d1l2yStInX8mC6+/RW0ZAIQMi0GnN/R7h5vdZqOqsIDIJLmzzZ20NPuhN5czatT8Xt8TFxjH2NCx0knyML7+pJbP/r1PbRn9JjwugUV33E1ozHC1pQCOfG+Vhfn93jhSUZCPT2AQAWHhLlYmaSf/p60AhCb79em+hQkL2V+zn5JGzygX4xVOko8RNIqd2r0D37auBjarBYvJc9KtazRawuMT+73DrfZoKVaLmSjpJLkVkyYSRBkGn77tiLp07KVMip4kdx56EIaWKhpKvTdcoK25yaOep8jEJFobG2ipr+vX/ZWFh4lKkjPh7qS6sA6EjRHTMvp034L4Bfwi+RdY7Ba36OorXuEkKQY9htZa6vO9cyapOHcPT167lCP7c9WW4iQiIbHfCSXb1/FlOn/3YW6zYjaEM3ZKRp/vvXTspfxq0q/kF4AHoa8oos2swWbzzoSSL/9mBWv+85zaMpxExCcB/cv3ZrfbqDlSIgd5bkYXN5VAPzvjJy7p033xQfH8dc5fSQ72jPg373CSFAVf0UxLq9pK+kdlYT4IQWisZ0xVA0QmJNNSX0dzXd9Ht2OmzWLFv18jfHi8G5RJABpr2tAZNMTNzOzX/Ra7hf01+12sStJfAkKNoGi8MqFke/mO0GExaktx0l45oD+z4RqNlltefIOpF17qYlWSEzErPkSOi0Wn719erYL6AhrNjS5W1Xe8wkkC8NVbafHShJJVhfkEhIbhFxSsthQnE+Yu4JfPvYpfcEi/7vcPCUWj1bpWlMRJbd6nNMbch81vR7/uf2rbUyz7bBnNlmbXCpP0i8AoRzLQ+sPet+W83RHxlJ1tAH5BwVz39+fIOveCft2vNxjxCZBJJN2FMJuparsTc1T/KkwcqD3AeR+ex+rC1S5W1ne8xklKDKojqWKj2jL6RaWHJGE7Ed+AQAJCw/q8JCOE4Mt//YPD27e4SZkEoOKdNznr9RoU+peHanbcbMx2M98f+d7FyiT9IWJkOCPzPsTYVqO2lD7TvqQV4QE53k4kLDauXwO1nd98wffvvO4GRZJ2mg/sY/brFbRu39Wv+0eHjCbGP8Yjdrl5jZMUF68jNn81wsuSF9qsFqqPlBDhYU4SwM5vPmfH15/36Z6mmmr2frua+grvjA/zFoprJ7F3zNkkJs3u1/2ZUZmEGkNZU7TGxcok/SF4RAyJxd/g66VOkqfNhAMcPfgza/7zLDZr35IM/7zpOwp2bnOTKgnArq83sXvCDQQnpffrfkVRWJCwgB9Kf6DF0uJidX3Da5yk0JtuJvLz7zCbPWeHRW+w22zMveo6RmVPU1tKJw7lbGbXmi/7dI+zcnaiDHp0Jw2GVJqChqE3+Pfrfp1Gx9z4uWwo2YDF5hm7RIYyhsREhq/fDFN6n87BUxg7fTbTl16ptoxO1JUfZcdXn1Fb2vut4kIIKo7tbJO4j6OHm6iKSCcha2a/21gQvwCTzcSm0k0uVNZ3vMZJqq228tafczjys3dto9UbfZh07gXEjhmntpRORCYkUVNS1KeRWEVBHigKkYlJ7hM2xGmtqsdsCEPxrRpQOwsTFtJoaWRLuVwaVRtFq+XT53L5/v1DakvpMyOzpjBxYc8FSgeb9hJPfQnebqiswNTcLJ0kN9PS7IveXMGosQv63cak6EkEG4NVz/nmNU6SD44pt5pdB1VW0jeqigs9dmkqMiEJm9VK7dHel0uoLMgndFgMBt++JQiT9J6jPzlSRfhHDmxpeVrMNF455xWmDpvqClmSAWJoqabuZ+8qF9PSUE/54UPYrJ43GxkaG4dGq+uTk1RReGwmXGbaditmItGIMow+If1uQ6fR8fSCp7ln6j2uE9YPvMZJ8g0woNgtNBR4psPRHev++wKf/P1/1ZbRJe1xUn0xMkLYiRk11k2KJACtvo6t1mdfd++A2vHR+ZAVnYVWI3chegKG+qM0N3pXke6CHVt5/d5fU1fmebvytDod4XHxVPUhV5K5pQW/4BBnCgGJ67GabbQZIxk/v/fllLojIyqDIEPfkum6GvULifUSXVgoRnMDzfVqK+kbVUUFjJg0WW0ZXRIWOxy90YeWPuRKuuCu+92oSAKgGAyExfoTmhQ54LaqWqt4afdLXDDqAsaFed6S71DC31+DqdkPm82OVusd49OKwnx0egOhMbFqS+mSyIQkao+W9vr6lLkLSZm70I2KJK1NFqISAxmWkeSS9t7a/xY2YWPZ+GUuaa+veI2TpCgKvrTQ3Oo9yzztSdgiPWzrbDtanZ7bX35b5jvyMPZ/fQN5SgWwBRhY1my9Rs9b+9/CqDVKJ0llAsJ8oEVDU0UTwTHqjo57S2VhPuHxCR5rI86+5dceq22oUvrT6xws+wejbXcD1w64vR9Kf2BP9R6uGHcFGmXwBxfeMZw5xhjNz4xs2Ky2jF5TeWwnmKflSDqRvhiYXWu+5K0HfudRdehOR+I+L2TU7jYUzcA/nsHGYLKHZXtEvpGhTmySHxNyX0bb5D1pAKqKCk4b+9Xa2MArv72Vw9vkRgZ3Uv3VZ5z3jQ1/P9cUD16YuJCKlgpyq9Up6+VVTlJsrIZIa++DjNWm4thaeaQHb5cv3L2Dtx+6h9amntO/l/68j7qyo+iN/UszL+mZlopadqX8idYo16WMWJCwgPz6fA7XH3ZZm5K+EzZqGMMteWjbvKM0iXMm3IOdJIvZxEePP0zudz0PAioKDlNdUoRW552VG7yFwzWz2D7xWpJGzHNJe3Pj5qJVtKrtcvMqJynsngfQ/PFpLCbvSCg5ftY8Lrjrfo9Ofy9sNkpy9/Sq2G1FwWEi5dZZt1K4MQeTTxiGKNc9M/PjHbl51N5KO9TxmzqVgNc+py3Sc52OEzH6+XPJfQ8zarLn5XhrR6c3cOTnfRTn7unxWufMfpJ3vP/eSqsmHpNRi97oGhsWbAwmOzpbOkm9ofRgHZ88uZO6cnUzcPaWwPAIjzYwcMIOt8KCU15ntVioLikiyoNHlacDRbscU8rDxg1zWZvD/IcxM3YmNrt3DC5OZz55aid7v+t9oLGa6AwGEidmEBQRpbaUblEUhciEJKqKet7hVlGYT0BYuMdlDj+dMNU1YTaEoTEOLMfbyZyZeCZhvmGqZN/ulZOkKEqIoijvKYqyX1GUfYqiTHe3sK7QNzq2/9fsyVOj+z5htVjY8dVn1Fd43tbZE/EPCcU3MKhHI1NdXIjdZiMqWeYXcSetNXo0NhPjZro2M/NzZz7HL9N/6dI2vQVPsV+KouBjbaB6+341uu8zB7f8QNGenWrL6JHIxCSqiouw9zAIqMjPk0kk3Uz5jkOgaAiNce38y2XjLuM/Z/8HP/3gb9zq7Sv5J/ClEGIckA7sc5+k7vEPcMhtKKhQo/s+UV1SxJr/PMvRQwfUlnJKlGPZs3uTK2nEpMlEJ49yv6ghjDJiOuEJIQxPcP0MpBCCJrN3xMO4GI+wXwDGlmqaa71j48P3b73G1s8+VFtGj0QkJGM1m6grO9rtNUIIYkaPJTnTM9OxnC60+EQDMPf6u93Svhr2q0cnSVGUYGAO8BKAEMIshKhzs64uCUqORbFbaaxqVqP7PtEe4+PJQY/txE+YSGB4xCmviR4xiiW/f4CQYTGDpGpoEpXox6gp7slJc8uaW7hz/Z1uadtT8ST7BeBnsNFiM6rVfa+xWizUlJZ4hf2KTh5JzOixWNq6dz4VReHsFb8i46xzB1HZ0MPgK0hOjyA0LsTlbX+c9zGz355NZUuly9s+Fb2ZSUoGKoGXFUXZrijKi4qi9K/q5gDRhgQfSyjpeSnyT6ay8DA6g9Fjk7CdyLSLL+f8O/9wymssZtMgqRm62Boa2LtyCdv2u2dZbEzoGLaUbaHB3OCW9j0Uj7Ff4JgNN2n8sNvsaknoFdUlRQi73SucpMjEZK58+AmiR3Q/y20xmxDCu4qjeyO7XrqcH/ddDrj++Z4QNgGr3cq64nUub/tU9MZJ0gGTgGeFEJlAM9CpmIqiKDcripKjKEpOZaV7PD1FUZhY9zWjzLvc0r4rqSzMJyI+AY0XlYTozogIu53nbr6a7995fZAVDS0qtnzH9N0KESZft7S/MGEhVmHlu5Lv3NK+h+Ix9gtgRIKdzB3/xN7m2YOOSmf6Es93kto5lRP07asv8dIdN0pHyc1E5jSQWqSg0bo+T/XIkJEkBCYM+i633jhJJUCJEKI9i+N7OIxOB4QQzwshsoUQ2ZGRAy+n0B2xY0IICfP8ROGVRYVEJHiHgbHbbbx85y388N7KLs/XVZRhbm3x6F0upwM71h/k29l/I3Ske3ZEpkWkEeEbMdRSAXiU/QofO5yY4QZEc895ydSkqqgAncHoNcvrG996lVfvvr3b8xUFeQRGRKIoA8tgL+keU20jO9IepzH6TLe0rygKCxIWsLlsM43mwfv89OgkCSHKgGJFUdqrmi4E1El9Cfjd+QC1Z93s8SOCG/75ArMuv1ptGb1Co9GCEFQWdp1ssD2/iNwZ4l7qK6wowsboqQvc0r5G0TA/fj4bj2ykzeodwcMDxdPsl++CM7Hc+wxNdtVW/HrFnGXXce3jz3jNTLje6ENVcSGmls5bxO12G5VFBUR5cFLf04HC73NA0eB76vDWAbEwYSFWu5UNJRvc18lJ9HZ32/8D3lAUZReQAfzFbYp6oCi3hnWv7aetybPjkox+fviHhKoto9dEJCZ3u8OtoiAfjVZLeFzC4IoaYrSZgtCZy4iJzXJbH0vHLOVPM/+kSg0kFfEY+2Wz2PnmpVwK91SrJaFXaLRaQqJdl6vL3UQcq49ZVVzY6Vxd2VGsJpNMX+JmCrftBiByrPu8pImRE7lnyj1Miu40Gew2emUphRA7jk1FTxRCXCiE6H3ZeBejK3XkSKrL89yEbAc2f8/Gt15D2D07OPNEIhOSqC8v63IkVlGQR9jweHQGgwrKhg5mfQx+ulqX1GzrjvHh4zkn6RwM2qHzt/Qk+2XQC7TCQtWmHWpJ6JHmulpWv/Rslw6HpxKZmAQcj6U6kYr8vGPXeEf4g7dibg1GsVtInXeO2/rQKBqWjV/GMP/Bc+C9bjjpfyyXVH1+ubpCTsHBzZvYt3GdW7/sXE27kenKMI6fOZdJ554/yIqGFq1NZizaACZcfonb+zradJT/7v2vzMCtAhqDAaOpjqaaVrWldEtFfh47v/6Mtl7Uc/QUAsMjMfr7d5kUN2x4PJMvuITwuHgVlA0d7LHphCeEEpOQ7dZ+zDYznx/+nL3Ve93aTzueHwF9EkFJ0cBRGo/WqS2lWyoL871u1BKdPIrU+Wdh8O28s2r8bNdmf5Z0pq2tnnHztMSODnJ7XzurdvJ4zuOkRqSSFe2+pT1J1/gqrbS0eW5MUoUX7mxTFIXMsxcTHNV5hiEqaYSMpxwEwkbWk+g/fFD6+tOPf+KcpHNImZHi9r68Z6rjGEHJMSh2G41Vnlm/zWo2O5KwHVsj9xYCwsI5e8UdnXQ319VSe/SIVy0deiOH3/xfyl+9hcMlr7q9r9nDZ6PX6FlTtMbtfUk64+kJJSsL8wmKjMLo57mOXFfMvOxqUud33FklhKDs0AEspqGxUUEtbE3N1D2+go3rrnF7XwatgdnDZ7OueN2gzIZ7nZOkDQlm8t5/MlpzUG0pXeJNSdhORtjtNNXWdDi299s1/OfXv6StxfOznHsz1btKSK4IYNSYM9zel7/en2kx01hbtNbjd4mejqREVTD552fVltEt3jgT3k5rU2OHxLfNtTW8cd+d7F77tYqqTn+Obv6e6LpoYgzRg9LfgoQF1LTVsKvK/TkTvc5JUhSF2BkT8E/wzJ0XTbU1GHx9vdLIrHv1BV7+zYoOX5wV+XkERUbhGxCoorLTnyPWM9ibcjMREeMHpb8FCQs40nSEA7WeXVvwdCQ8YyxhaSMRNs+LCbPbbNgsZq+0X2V5B/nXDVdQuGuH81iFTF8yKOzdsJfNU/5IcLJ7crydzKzhs9BpdKwpdP9suNc5SQDixnspHu6ZcTIjs6Zw+8vvEDLM88uRnEz48ATMrS00Vh3POFxRmC8NzCBg1kaDUjZowf7z4udh0BjYX+MdFelPJ/RnLKLygrtpqDGrLaUTGq2WG596iRmXXKm2lD4TNjwOgKoTdri1O0mRMkeSW6ktM6OxmRk7c96g9BdoCGRqzFTy6vPc3pfXBW4DFO6pZve6EiYuiPPIDKqeqKk3tO9wqzgWk2Bua6X26BHGzZijrrDTnIaCMqz6QAw+g7czPcI3gg2Xb8BP7zdofUoctDVZ+OGDPILCfQmOdE8JmoHiTTtz2zH4+BISHdMhDUBFQR4h0TEY/eRz7k7a2oLQiTJi484atD7/Nvdvg2K/vO+TAGjydmOz2mmt9azgbSEE7zx0L3u/9c6A2Ij4ROD4SKyqqACEkEnY3ExVfhUAo9LGDGq/7QZGxiUNLkZzPQCVG3JUVtKZzave4fOnHldbRr+JSEjqkBS3skDOhA8GVp84AvxbBtW5Hiz75ZVOkr+fY6bG03IlNVZXUZy7G3Ob5+ZAORUGXz+Co4c5jUzY8HjOv+s+ho8dnDiZoUoTIQBkXrZ8UPttsbRw7RfX8ub+Nwe136GO77AwtDYTTdWeZycKdm2jruyo2jL6TWRiErVlpc7dbGev+BXZ51+ksqrTG1OLBRP+jDn/3EHv+9mdz3Lj1ze6tQ+vdJICYx3lPuoL3Vetuz9UHXMuvDHosZ2Zl15F2gLHlKmPfwCjJ0/HN9D9uXuGMlb/HYxYUIVf0OCufvvp/WgwN7C6cPWg9jvU0fr6YrQ00NxgVVtKB4QQVBUWeLX9GjV5OmfedDscm1yIm5BKzKixp75JMiBa2iqIm59H5IjBj7Ezao38VPYTR5vc59h7pZMUnOSoRu9pCSXb18K9LUfSiYyfNY+kdEddnH0b1zsDHyXuo+7B+yl7+0E02sEvJrowYSHbKrZR01bT88USl+GrtNHS5lmxi43VVbQ1N3m1kxSVNIKJC89G7+PD0YM/c/CnTTLHm5speOWvhD3xN44UfzTofS9MWAjA2uK1buvDK52koBGxzPr+HpJ9PKt+myPgOdrrkrCdiNVspmT/Xhprqvj6uSfJ3bBObUmnNXa7HYt5IkZDpCr9L0hYgF3Y+bb4W1X6H6pMNm5jSvnbasvoQPsgL+LYBg5vpfpIMeWHD7Fz9ResfvFf4KUbabyFoz83YdOPYsSEwQvabicxKJGRwSNZW+Q+J8krd7dpg4OIPHcBxuREtaV0IDA8Av/gELVlDIjGmirefuD3ZC1egtVilkGPbqYhv5RDo5bjr/9Mlf7Hh40nxj+GtcVrWTJ6iSoahiJh82ZgOXJEbRkd0Gg0xIwaS2SC984kAXz17D/Q6Q2YWlqITEz22t3G3kJF22Sso4zMjU5Tpf8FCQv4z57/UNdWR4hPiMvb90onSVEU6i+4g7ImC5PUFnMC866+QW0JAyYkahg6o5HcYzv0pJPkXvI2bASiCIwd/KU2cHyWrk+9Ho3ilZPKXott1rns//4ogY1mfAMNassBIDkzm+RM9xYnHQwiE5LZ9/232CwWshZdoLac0x6zNhqNfb9qaSPOTjobi92CVbgnxs8rnSSA4twaKgoamHSWZ8wm2Y/VkNFo1PmycxWKRkNkfBJHD/2MTm8gLDZObUmnNaX7ioAo4jNHqabh8nGXq9b3UKWp1sTudSWMnhSBb2CY2nIAsFmtaHVe+5XgJCIxCcuaLwE5yHM3zaWVWAzB+GnUi2kcGzaWsWHuC8733k/Evm00NkYjhBi06VRhtzu95YJd2ynctZ26sqPUlR+lqqgA38Agrn38GfxDQgdFj7uISHQ4SREJiaoEEw8l9GEZ6OrbSJml7jblurY68urzyIrOUlXHUEFX5oj/qdmaS8zoWYPWb7sNa6yuYu/61dSWlVJXdpTaslJaG+o58+bbmbjwnEHT4w5O3DgTKZ0kt1JzpAmAlKnqzkBa7Va2lm9lYuREfHWuTdDqtU6Sf6AOe7Oe1rpW/EJdn3Wz+kgxJbm7qS07St0xQ1JfUc6tL76B3uhDwc5t7PjyE4KjhhESE0tiWjrRI0Z7vYMEx43MvGtvVlfIEKBFE07kKPAPiFBVx2M5j7GueB3fXvYteo1eVS1DgaCECKCRhqMNbmnf3NZK3pYfO9iv2vKjzL7iGiYuPIfWxga+f+d1AsLCCR0Wy6jsqYQMi2XU5Olu0TOYRByzX6nzzyQ0xvvKQ3kT9a2OpeJxi89XVUdOeQ43fX0T/5j/D+eON1fhtU5SYKQ/lEH94aP4ZfU9I3RrUyPlhw5QW37UMRt0zJBc+Ps/EjoslsKd21j33xfQ6Q0ERw8jZFgsSRlZ2CxW9EaYuXQZc5Yt9/rlta4YNWU60SNGET1CvSWgoYAQAlPMKwwfPhlQdwZnQcICPs77mK3lW5kWMzhFKocy/okxaGz7aarpX9UAYbdz9NDP1B4tpe4EGzZ66kymXHAJNquVz59+AhSFwPAIQofFMGbKDEJjhgMQkZDIHa++h97o48qX5RH4+Adw8X1/Jiox+bS0z55Ek+UDgueU4xc0U1UdWdFZBBmCWFu0VjpJ7QTGhqLsbKX5SBX04CTt3/QdpT/vo66slGkXX0HsmHGU7N3Nx3/7CwA6o5HQ6BjC4xOcOTXGz57P6KkzCQgN6zIgTe9z+hmXdgLDIggMU3dmYyhgPlpKxsOr2X3eLph/japaZsTOwEfrw9qitdJJGgS0Pj74WBowNfYcbFpVXMj+77+jtqyUiLgEpl9yBSgK7z58P1aTCUXREBQZSciwWPyCggHwDQhk+RPPEhwVjc7QOTBco9GiMZ6+DkTSxEy1JQwJ2h5/iRCTCd2VD6uqQ6/RMzduLt+WfIvVbkWncZ1r47VOUkzKMObdewGRF5y6zlBTTTWf/fOv6H18CR0W6ywZEjchlcsefJSQYbH4h4R2imuSWaYl7mb/6m8oTTibgHj1y1P46nyZETuDtUVruXfKvXLb9CAwp+Ed9MYIYNkpr1v3yvMU5+4mOCqawHDH4EVRFC6+5yH8QkIJjopCq+u8RBoeF+8O2RKJk1rdQlpCDqgtA3DMhn9y+BO2lW9jSswUl7XrtU6SYfhwIm68AUNS0imvK87dDcBlD/xvh+Uj38Ag4sanulOiRHJKCnaXUTLifKalFqktBYCFiQtZW7yWA7UH3LpbROIg7NJLUfSnjv+yWiyU/ryPzHPOY/61N3U4FzdB2i+JejSVVFA6fBH+Ws9IHzIjdgZGrZENRzZIJwlA4+9P3sgl+BzRk5nS/XUl+/Zg9PMnMsm7E6RJTj+aarToaGT8lF+oLQVwpPjPWJJBQlCC2lKGBPUpC9m36Shn2wUaTdczd+V5B7FazNIhkngcB9d/C4QTEOMZs85+ej/eXPQmI4Jdu6PRa50kgNKfq9Eogsyzujfq8665kfQzz5UBfBKPw2QLRyuO4hcQrbYUAPz1/vjrvbekjrfRVNXC4e2VNFc3ExgZ0OU1sWPGce1jTxMU5RnPiETSTum+QiCcuHTPmYAYEzrG5W16xjxZP9Ec3kvdoVOn9tcbfWRCMYnHIYTAGpDI8LHD1ZbSgfz6fH67/rcUNhSqLeW0R8lzhALU/Vzc/TUaDREJSRh8XJv7RSIZKL5xs9FpbGSecZXaUpwIIfjb1r/x5r43XdamVztJfv4KbYo/Qoguzxft2cnGt15zBmtLJJ5Ca6MFGxriZnjWLhwfrQ9fF37NmqI1aks57Qka7si03VBc1eV5m9XCNy88TdkhzwiMlUhOpNXuQ3hiKEbfQLWlOFEUhd2Vu3n3wLsua7NXTpKiKAWKouxWFGWHoig5Lut9gAQEG7Br9LTVdZ1r5MCPG9n+5cfo9J5RG0kiaafy8BpaEh9EH7lHbSkdiAmIYUL4BLdW1R5sPNV+BScPA6CxrOuEkmV5h9i1+ksaq7t2oiQSNSlruhvdmHfUltGJhQkLOVR3iKIG12yI6ctM0nwhRIYQwmMqIAZF+ePTWklTcUWX54v37mb4uBRZWkPicRx5/3XOfakC0ex5X4AL4hews3InlS2VaktxJR5nv/yTY/FprcLa0LWTVHJsZ+7w8afYmSKRqIC5soIZLxdj/fYHtaV0Yn7CfACXDfS8erkteWIEMzY/iL+lc3G95rpaakpLiJ+QpoIyieTUlJQMJ3f0YpJTz1VbSicWJixkUtQkatrUK1o5FNAajcw+9CQjbfu7PF+cu5uIhCRngkiJxFPY+9XX7B2/HJ84z/t+HR4wnPnx8zFoXbOC1NvdbQL4WlEUAfxbCPG8S3ofID5jxxB9333oh3cOfi3Z51jGkFtnJZ5Ik30c9jATPn6eUQH+REaFjuK/v/iv2jJciUfaL4CoO+9EHxfX6bjNaqX0532kzDtDBVUSyakp2VNCefQUJqeEqy2lS55c8KTL2urtTNIsIcQk4BfAbYqizDn5AkVRblYUJUdRlJzKysGZptdGRLCpPo19+yydzrU01BMQFk50sqw/JvEs7HY7JsMwNNqul4klLscj7RdAYehk1uUYOx1vrK7CLziY+BTPG6lLJA3VGrTWFsbN8Iwcb+6kV06SEOLIsf8rgFVAp3SWQojnhRDZQojsyMhI16rsBkVRqCqso2zP0U7nMs9ezM3/ekXGI0k8jprcAuxaH4zBTWpLGRJ4qv0CaK5ooGhPNXZ7xx26IdHDuPGplxg9ZcagaZFIeovVEobecpSgYM9KYeIOenSSFEXxVxQlsP1n4CzAY7bk6KuKqc093OU5WX9K4ok0mh05b+ZcfovKSk5/PN1+aQ7vQQhoLqvr8ry0YRJPQwiBJWQkCZPGqy1lUOjNTFI0sFFRlJ3AT8BnQogv3Sur9/jpLbRaOgZoHdj8Pf+9+3YaquRyhsTzsAktAaFGIlNlAdJBwKPtV2CUI8dM3eEy5zGb1cpLv7qJ3Wu/VkuWRNItFpONgHA/YjI9J9O2O+kxcFsIcRhIHwQt/cLPX6Gs2Q8hhHPUVbx3F/XlZfiHeF5QrESyZ+0tHDEWYPTdoraU0x5Pt19BcWGQ09IhoWRFfh51ZUcx+PqpqEwi6ZrS7R9xuPYhxuj/H3BTj9d7O16dAgAgNExHUEMhluY25zFHfqQJaHVeXZpOcpoS+vnPpP7QiqLx+o+fZIAEJw8jsKEQUV/rPFZ8LD9SvNyZK/FAjn71EUs+t2C069WWMih4vZUeM8GXSTv+AXXVgGNXW3VJEXHjpYGReB52q43Dcb+jLrbTBivJECQgOZbJ2/5KtO14/baS3N2EDY/HLzhEPWESSTcUFI9k+8SbSM5YrLaUQcHrp1r8p00j7umn0IaEAsfzI8mtsxJP5OiOvbT4xxHi5zn1jiTqoTEYGP6Pv2McMxYAu81Gyf5cJsyer7IyiaRrWq3Dsfva8fOPUFvKoOD1M0m24Cg+2RjAgV2O1P5+wSGMnz2f6BGjVVYmkXQmb9P3AIQm+ausROIpbKtJZvWXjQBYTG2kzT+TUVOmq6xKIumM3W7HrB+GRlOutpRBw+tnkvS+WurKW6jeXwIzYogbl0LcOFnrSOKZNB+xAjB61jSVlUg8BVNVLZUFjiLdRj9/5i+/WWVFEknXNOSVYtP5ERBkUlvKoOH1M0larQaDqY66PXlY2tqorxg6Hq7E+9CNnY9/oJbRk85RW4rEQ9AWHaCl2YbdLqgpLcFmtaotSSLpkgaLI8fbtKtWqKxk8PB6JwnAV7TQ3AIFu7bx4v+7gdIDXReMlEjUJjjKl1GTY9WWIfEgAsKMCEVLQ0k1b/zhTtb99wW1JUkkXaJoBAkpYUSOjlJbyqBxejhJeiutVj3FubvRGYxEjxiptiSJpBPCbmfHyvPYV3Sb2lIkHkRgVBAAhVu2Ym5tYfi4CSorkki65qdXr2D7z1ei97GrLWXQ8PqYJICooDY0RRWU7C0idsw4tLqhkb9B4l3U7d/BrK1wMOm0GJtIXERYUhiRX3xPxSHHF0+8TF8i8VBCN1cwSSPQ6X3UljJonBbWemyyjeS9/6WyuJD4CXLrv8Qz2fnlD3w7+wl842XQtuQ44eOGk7b3BWqPHiI0ZjgBYeFqS5JIOmG32zmQ9DBVceerLWVQOS2cpJAlS9A99EcQgjiZpVbioVQW1mHXGhkxbabaUiQehD46mvj/vkJ5bbW0XxKPpWrvz9j0/uiChdpSBpXTwkmqswWy4dsgJl/4S4aNGqu2HImkS1obfNCba0hOnau2FIkHoej1fLFOYXjKVWSctUhtORJJlxzY8B0AIQm+KisZXE6LmCSjzobNYiRIF41OL+ORJJ6JTRuLj7USrc6gthSJh6FpbcZq8ScqaYTaUiSSLjHVGAEYO2dozYSfFjNJWsWEtW0r5Tv2qC1FIukSu11g8olhxLkL1ZYi8UBair+ltvSQ2jIkkm5REqbiG6hndPZZaksZVE6LmaSjJQVYW7+lvvYMtaVIJF3S1lzP6JkGktJkUK6kI3a7jeqWnaBrRdgFikZRW5JE0omA2DomRg5TW8agc1rMJJXk7gK02G2RakuRSLrk4MdPceTNGykoeFZtKRIPo7KwAJuwoNHH01hWq7YciaQTQghKnriBnzYsU1vKoHNaOEnFuXsI0AYQ1ZSnthSJpEsqcvaRke9L0ug5akuReBgluY4wgdiqYmyVlSqrkUg6U7NvL0lHw4i1hagtZdDxeieprbmJioLDJIf4EVfwtdpyJJIuOVqXzY+T7yE2eYbaUiQeRnHuboJCQkk5+DH6xiq15Ugkndi7+jt+mPYnjLGz1JYy6Hi9k1RZmI+Cwuhl1zD87fex24ZOunSJ92ARkWjtZWi0p0UYoMRFCCGoKsonfmImSV9+hT59ktqSJJJOVOTXADBiRrbKSgYfr3eS4iekcdt/VmLRj+SVh/dSW9aitiSJpAM2kwWTIQqtXi6lSDqiKArX//N55l57E68+cZitXx9RW5JE0onWeiM6cz2jMobe7lyvd5IAjH7++GnMANTmFqgrRiI5iZq8MoRGT+yICLWlSDwQjUaLb0AgPlozNXsPqy1HIumE8EnEV1uDVm9UW8qg49VOkqmlhXcfvp/i3N346iwA1P1cpLIqiaQjDW0Ow5KxbLm6QiQex/rXXuLH998CwNBYQWNJjcqKJJKOCLugVR9N8pmz1ZaiCl7tJB35eS9Fu3cg7ILgkbEg7DRWyeU2iWfRqtnNqPmNBEcNvVGYpHuE3c7eb9dQV1EGgJ/BRqtdPiMSz6KluYbhMwsYnjI083d5tZNUvHc3Wp2OmDFj0QX6Y7Q00lxvUVuWRNKB4v+7h8o37sFglCVzJMepKimirbGB+AlpAPgHaGjT+CPsQ6uAqMSzOfThv/D7+6Mc+fm/aktRBa92kkpydzNs1Fj0Bsfoa2TrNqJbZWp/iWdhq03CT4lE0Xj1x03iYor37gYgbnyq4//hGkbmf4ylvkFNWRJJB0p3FuJrH0nShPlqS1EFr7XappYWyvPziJ+Q6jw2MqiCiOrdKqqSSDpiaWmlKOEmGqLmqS1F4mGU7NtNUGQUwVHRAMSMDiGheA2iRuZKkngOldXj2J1yHcNHz1Vbiir0OmmLoihaIAc4IoRY7D5JvaP12DR1QlqG81j0/z5GY4sj94iiDM31U4lnkb9xI0Kjwy/UrLaUIY2n2S8A/5Awxkw7npzPf+EZxKzdjAjyVVGVRNIRi4gY0jne+jKT9Ctgn7uE9JWQ6GEs/Z9HnOv5ALlb63j74RzMrVYVlUkkx8nP2QFA1NgodYVIPMp+ASy8fgVzr7re+bvZrPDGn3I4sKVMRVUSyXHsVhtm/bAhneOtV06SoihxwCLgRffK6T0WU1unY8YWxzR13UGZkE3iGfgEZoCwk372ErWlDFk81X4J0TFA2ydAhwY71Tm5KqmSSDpSV1KHXWsgcUKy2lJUo7czSf8Afgd0W/NDUZSbFUXJURQlp9LNRRrNrS08c8MVbP/ykw7HfXFs/687VOrW/iWS3tJqHEZwlD+hMUPXyHgA/8CD7BfAl8/8nbf++LsOxzQaDUZzHQ3F1W7vXyLpDfX1jo/M+AsvVFeIivToJCmKshioEEJsPdV1QojnhRDZQojsyMhIlwnsitKf92GzWAiNjetwPCjJEQDZeLTOrf1LJL2lKfR14ubKLMpq4Yn2SwhB8b49hEQP63TOV2mjpc1r99NITjOqGz8hbO4mgqO1aktRjd58GmcC5yuKUgC8BSxQFOV1t6rqgeLc3Wi0WoaPGd/heNCxhJJNMqGkxAOwt7Ux9oGPqfrgabWlDGU8zn7VHCmmtaGeuJS0TuccCSUNKqiSSDpT/eS/iH7qDXx8/dSWoho9OklCiHuFEHFCiCTgcmCtEOIqtys7BcX79jBs5Bj0Pj4djusD/JlQ9AHR1gJ1hEkkJ5D33WpKYxfiO2yM2lKGLB5pv3L3ABA/YWKncyMiGxiZ/3GneCWJRA2aTJOpiRozpHO8ed0rt7S1UZ53kLgT8iOdSFJgNcHUDa4oiaQLDm3ey6FRFxGUnK22FIkHUZy7m4DwCGd+pBOJTQ4kxpyHaJGz4RJ1sVmsVERdQFNEptpSVKVPiQ+EEOuB9W5R0msNduZefQPDx6V0eT78X6/QVNt555tEMtjUl5pB2Bk/70y1pUjwDPsFMGH2fJLTJ3WZyy3w8mWYZl2ASeiR2ZIkapK/8TvsWgO+QSa1paiK180kGXz9mPSL84lOHtnl+Z1ri/nk6V1yulqiOm2tgRhMlUTEj1NbisSDGJk1hdT5XTvOdRWtrHpiO0cP1Q+yKomkIwVbtgMQOSZcZSXq4nVOUsHObTTX1XZ7Xl9zBKvJRltt0yCqkkg6o41IJSzGp+cLJUOGyqICKgoOdzuI89U7EuFW/bhzMGVJJJ0IiJ0HQPaiK9QVojJe5SRZ2tpY9X8PsfXzj7q9xkc0A1Cfd3SwZEkknbDZ7DS36Yibnq62FIkHsXnVO6x69MFuz/tHBKLYLTJXkkR1mq2+BIb5EBQzXG0pquJVTlLpgf3YbbYOpUhOJig2FID6wqGbRl2iPuWHf6B15MMEJu1XW4rEQxBCUJK7m7gJad3WltQY9PhYm2hulKWVJOpS1HgPQdmf9HzhaY5XOUnFubtRNBqGjx3f7TUhMqGkxAMo+vQNzvn3ESzFB9SWIvEQao+W0lxXe8pBHoCv0ioTSkpUxW42k/XcQfhsrdpSVMerPokl+3YTPWIUhlMktgoaGcvE3c8SjVxuk6hHyQEDB0YuIWnK+WpLkXgIJbm7AYjrwUlK8ctjbPnXgyFJIumSvA1rOTTqKjSxnXN5DTW8xkmymE0cPXiAuPFd50dqRxfgR9wwgV9An7IbSCQupaklmYrIVIIjR6gtReIhFOfuxj8klNCY2FNeFzMugvDgbsvMSSRu5/BPOzkaM53g5K5T7QwlvMaT0BuMXP+Pf/cq86fvYy/R2GxhaG9clKiJRRONVshCy5LjnHHjbdRXlHUbj9SO75U3UpN9MeY2KwYfrzHRktOI2hJHrsHxC85QWYn6eM1MEkBwVDRBET0Xn9z+TRGb3j80CIokks6Y6powGyLQ+3SfqkIy9DD6+RGV1PPMYkVhA6tfzqWuXGbdlqiDpSUYg6mKqKRTr9wMBbzGSfrhvZUc2vJjr67VleXLwG2JatRXm0HRkLX4ErWlSDyE/O05/PDeSqwWS4/XGlsd2/+rN+9ytyyJpEs0sZOISu55QmIo4BVOksVsYvOqtznyc26vrvdV2rAqBlprGt2sTCLpjMkEvkEGoid1nRVeMvTYt3E9O77+DK2u5+WzgMgAAOqLa9wtSyLphBACrY+R6PQEtaV4BF7hJB098DM2q7XHrbPtBEb6A1B/SMaESAafHevvoML/1wRH6tWWIvEAhBAU95Af6UQCE6JR7BaaauRym2TwKd27lsONN6ENkzsswUucpJJ9u1EUDcPHTejV9YHDwwCoL5IJJSWDj+GL3Uz5phmd3qi2lG5pNduoaGgjr7KJncV1fH+oio0Hq5zn9xyRtcNcRX15GU011b0e5DkTSjbY3KxMIulM8boPWfKxBX2N55b2strs1DSbKapuYW9pPZsPV7NmXzm1zWYAcksbsNtdU7/VK7ZOFOfuJip5BEY//15dHz1+GJP/dDPhC29zszKJpDPlgTeiDXJ9EkmrzY5Wo6AoCkfrWzlS20qjyUpTm5Umk5VWs43rZyUD8PaWIr47UHXsvIVmkw2NRuGLX80G4M53dvDFnrIO7ccE+/DDvQsB2FlSR+rwYJe/hqFI8bH8SL11kgCyW1djFAqwzE2qJJKuKdoXgG3irfxiytkubVcIgV2AVqPQarbxc3njMdtlobHNSrPJyqzREYyKCuRQRSNPrT1EU5uVRpPjXJPJyl+WpDFzVARr91dw82tbO/Wx8qZpTB8ZzsGKRuLDfAn0Gfhsvsc7ScJux2oyEZ/S+6RWvgmxRI8bhjE0wI3KJJLONFdV0hg4nmBNhfOY2Wqn6ZgzEx1sxKjTUlDVzI7iuhOcHAtNbVbuPHMswX563s0p5rUfC51GoqnNSqvFxu4HzyLQR8/L3xfw/HeHO/V/9fRE9FoNxTWt7C9rIMBHT6BRR1SgDyF+xw3GpZPjmTkqgkAfHQFGx7/gE85fPlnGI7iKloZ6gqOiCRse1+t7hk0eg71FLrdJBp+Wlkgs/pGExIwBwGYXNJsdNsio0xAeYMRktfFNbrlzgNZ47P/ZoyOYNzaK8oY2bnl9q9PutTs6D56fwjXTkyiobubCZ77v1PdfL5nIqKhA2ix2dhTXOW1TTLAPAUYdgcdSYoyPCeLB8yYQ4KN3Hvc36hgV5fjOXzwxFk3PK9u9QumuGvVAyM7OFjk5OS5tU9jtvcqR1M6BLWXo9FpGZMgIfUn/aLPYnB/yJpOVhjYLY6MDCQ8wUlDVzGe7jx4zEBbnNZfZdnPgpySCQlbzD//5NJqsmK3HEwN+dscsUmKDee3HQv7nwz3O41qNQoBRxye3zyIh3I+Pd5ayaltJByMQYNRxw6xk/I06DlU0UlrXRoCPjkCjjoATnJ3exL24GkVRtgohsge9YzfgCfarsqiR4n01ZJ6VoMrfU+L92OzimINicdoxf6OO8TFBAPxnYz51LWYa252cNitTksOwv7gJjaji32NTaGqz0mw+vuz7/9u78/i46zrx46/P3JM5ct9JczZp0qb3Ab2gxUILcsshVlAXUZFlcX2wqz68V32IKO7uTxQRdVERFcFjAUFky1FKD9rSpk3vXM19z0wmmckcn98fM5kmbZI2zaQ55vN8PPpIMsd3Pp/5dt7z/n7Oe9cW8OUPluP2+pn/tVeHvZ7FoOWBjXP5zJVF9PQN8MBv95+5CAvHqSvnpbF0TiJur59dNZ1YjcPjm82kQ6edmlFAo8Wwad+SNGg8AQbgwD9OY7ToVZIUo3yBIA3d/aEg4fFFWmMqcuIpSbfR4vDwo20nIsFh8P7PbSphU3k6u6o7uePJc5eceGLrUjYvyKS2082jrx5DrxXYwomM1aijrzM0ozK1vJgt9gysRv2w1prMeDMAH6zIZE1Rcjh46DHpNcO+DG9YlMUNi0Zfmbk4zUZxmi3K75oyWcYbv5pP9fDun04x7/JM4uyGSSqVMp21Oj10uQciF2Iuj584g45N5aH9SR/fdpKaDveZRMjjpyzTzndvDfW6rP/eNhp7+ocd8+rydJ68O5QH/GjbSbr7BkLJSTiRmZdoxGBII1FTzabydEw6beQCzGY6k2DFGbT8/XPrIwmQxaBDO6TpJiHOwG/uXTVq3SxGHRvnpUf1/Zos0z5J+vOj3yI+NY0NH7tvXM/TtdbQ7dYCiyelXEr0+QJB/AGJ2aBFSsnumq5IM+5gojM/K54rSlLpG/Dz4LPvh1pxvGeafO9dV8D9VxbT7vKy4ftvnPMaX76ujJJ0G/2+AC9Xtgy7islKMBFn0AKQn2Lh4WtKsZkG7w8lQqUZocRkbXEKx761GaNOO+z47zyXRtO2Rj5wx1Y2G0f/cku0GEi0qC+/2e7wm6+z/5X/5ZYvfoM4+4WP8dK11gLQ9f4x4tZf+FgmZeoEg5I+XwCrMfS1eqq9l4bu/khLs8vjRyK5b31oaZDHt51kZ3UnTk9o3KDL4yfFauTl8LjBB5/dz66a4ctAlGfaI0nSjlMd1LS7QxdpJh0JcQZSbWcmi3z6yiIG/EFsgzHOFOq2GrT93zdg1muHXZx1NLj4/YttLLr1Dj68qWTUugohKEmPjYu0aZ0k+X0+6g7sY9HVW8b9XLN2gFaSJqFUytmCg33WXj9SQlZCqLXktapWOnq9kSDh9PgpSrPy0cvyALjzyXdpdXpxhVt7vP4gty3L4dHbFgHwkad24T9rhsI9l+dxRUkqeq2Gxp5+bCYdGXZTJAiUZYSudJIsBh67fRE2kx6LUYvdFGrRSbGGgkhBioV9X9k0ap3S7SY+u6F41Pt1Ws2IHx5LoonCpWnoxkiQlNhRf+gAzvY2zDb7uJ5nSzIDPhz1HVz4SCblYkgp8fqDkQuy3EQzOq2GYy0uDjb0RC7ABi/IvnnjAvRaDT97q5rn9p6OtEb3DvjRCsGJb29BCMETb5ziub0Nw17LZtJFkiRHvw+310+8WU9OgjkUy4YkMf+8cS73eHyR8TZ2kw67+cy4wWfuvWzMeg3G2dHEGc6NYMFAkOzSRNLnj72/YCyZ1klSy8lj+H0D5JSN/0rKGm8g4Dbh6XJiShpfgIolXn/gTJeTx48/GGTJnEQAXq5s5lRbb7jPOnSlk2oz8rXrQ5sefvTnu3i/vofegVByBLCqIInff+pyAL7z8hFqOtwACAFWo45NZemRD29WvJkUqxFbOIGxGXWRGVVCCH5z7yriDNpwa0/oMUZdqNtCr9VEZmqNxKTXcsvSS//18s6z12EsyQD+cclfW5l+Go4cIqd8wbjHFdkLMgAnva3OySnYLBEIymHdUS6Pn3mZNuwmPcdbXbx+pC2S3AwmOt+8cQFZCWZ+t7ueR145Sq/Xjy9w5mJsxxc2kpVg5tXDLTz22plZqmZ9qOvpC5sDxMdpiDfrKUyxRi7QbOFJEkEJWgGfuqKIO1fOGdIaHeqWGvSla8vGrNvauSnRf8POY/szWznaUM21yRe2u0UsmNZJ0umqShCC7LLx70RsS7NCE/ScbCZj5exMkjy+AI5+37AA0TfgZ/OCTAD+VtnM7tquYVdBGiH49T+F+oo/+8w+XqpsHnbM7AQz73xhIwC/23Oat463Y9JrsBr12E065mWeaWK9rDCZolQr9nCAsJp05CSaI/c//fGV6HWhMTtxei2as6YbPHbH4jHrd1nhzNqiuK+rmQ3vBKg2+6e6KMo04GhrxdnexvIP3jzu59ryMxDBKlyd/ed/8AwVCMph8csZ/rkgO57sBDN1nW6e2VU/LL65PD6+dG0Zy/OTeK2qlU/+6twB9r+/7zJWFSZT1eTkkVeOotWIIQOD9fSFByLPSY7juoWZkTGFg3FssLVm62V53LwkO9KSoz9rQPHtK3K5fUXuqPUbnGk1k5h3NbCmLYjBGBtdaRdiWidJDVWHSM0rwGwd/wnLq0iGxz+L9e7/noSSRYfT46PF4cHl8eEcEgRuWpyNxajj9SOtvHiw+Zz7X3koNGDu+68e46ntNecc99R3rkWrEew41cmf9zcOu9JJGjIOZktFBmWZtmEtNUPHyfzkI0vRazUYdCMPOh2rOwpCQSiWHHr5FfavfZScrB1TXRRlGmg4Epq9OJ71kQZp9DrW1TxOYuJ84M4olyw6AkFJXad7WALjCg8ersiJp7PXy3f/dnT4uEKPn/s3FPOhZTkcbXFy3X9vP+e4j35oIbctz6Wjd4Cnd9SGEpdwa4zNpGewUa4o1cKDV80ddp/VqGNeuMt9S0UG18zffM6kiEGri1JYXTR6a02SxTAsXsaCpoR/RWc/yRVTXZBpZFonSbnzF2KMu7gvWktRHilbNqIdx2DJCxEMSiShKduOfh8nWl2RKyBnOFDcuDib7AQzO6s7+dlb1cOuklweH3/49OXMy7Dz5/2NfPUvh895jdVFKRQYdTT29PNeXRe28Ayp7AQzNpONYLhva0tFBgWplkgzbySIhI/zzRvn8x83jb6L8wcXjt3vbDFO6/8e005TVT1+XR5ZFWqgrQLWxGTK1m0gOefi1pxK33wFuozozgCSUhIIysg064MNPeHWnFBscvb7KUqzsHFeOsGg5DPP7D0nCbpzZS4PXzOPvgE/G3/w5jmv8eDGYipy4pHA2yc6It1NCXEGcpPiSLGGEo+chDi+fn35me728M/cpFDMXzongWPfGn08amGqlX8dY3Dx2ZMqlLH19XThMWVgFyenuijTyrT+Frzsljsu+rm69HQa1n0ar99GYfg2KSV9AwG0GoFJr6XX62fPkO6owZ/XzM9gYU4CR1ucfPXPh4ckQaEuq59uXcbV8zPYV9fNx/9nzzmvvSAr1Fzs9QdpcXoiH3ybSYc9fLUDsG5uKj+6a0kkOAw29w4OLr778nzuvjx/1Douy0tiWd7og9PV+iqXVm+HQOCjbMO1U10UZRrIW7iYvIWLL/r57g98lLY6F0MnUnv9ATy+IPHhLqF99d20OT2RlmZnv490u4m7VoUSswef3U9tpxtn/5kuq6vK0vjJ1mUA3POL3XT3+Ya97s1Lstk4Lx2NRtDs8GDQakixGihIsWAz6agIjxu0GHT88I5FkYu4wTiWHE6CUqxGdn7pqlHrFx+n52NrCka9X8WvS+vY66+CSMeaNtUlmV6mbZLkbG/DbLejN54Z7T84yFinESTEGfAFgrxW1XqmT7s/1C21bm4KV5Wlc+itRk4IH+/8nUiACAQlX76ujHvXFdLi8PDxXw5PcrQaQV6ShYU5Ceg0GoSAnMQ47GZdZIZUfkpoe5RFuQn86hMrQwmOebA1J7TmDcAVJalcUTL6Ok0FKRYKUi5sqxVlBghmYfK3YbKq7TxinbevjwFPH7akM905g4OM+wb8kfWy9tV3U9sxJInxhlY1/vzVpTSfdLDv9Xq+eKwWpzcYmQE6P8vOSw+GJi18/a+HOdgwfJ+9NcXJkSRJI0LdRnnJlkiLTnnmmTGaj9+1FL1OMyzJsQ4ZXPzXB9aOWkeNRnDzEjX3brboawyNpcxfMvaA8lhz3iRJCGEC3gKM4cf/UUr5tWgV4H8PNNHlHggFCW8o0anIicfw2s/w9Lr4VdotdPf5IgECQtPAv3HjAoJScv8z+4aUNTSDKtVm5KqydIzdTcz1efAuWxQJEDaTnpUFodaXnEQzz39mdWRqpc2kG7ZuRHGaNTJTayRJFgPrx0iClMkng0ECAR9+vw/wEwwGMBgSCPgCuLubGehzEvD7sSalYE/NHveifuMRSC0jp0ANeJxOJjt+VTY4qGx04PT4IomOe8DPP6V38sqPf4i8+WFeqAl1xfd6Q19CNpOOyq+H9sX6+ds1wyZPmPQaClKsfP7qUjQ1hxFBG8usGnRFKZGLtMElNgAeuXUhUnKmldo0fFG//7xzyZjlX1186WdQKWdIKQkG/PgDPmTARzDoQ6ezAHq8vQ7c3U0EAgF0BgOJ2QUYjObzHvNiafNWI47WUbHl1kl7jZnoQlqSvMBGKWWvEEIPbBdC/E1KGZU5gt96qYpWpxcIBQibSY9JI0k8foSKjVez2JKATisiAcJu1keuhIw6La88tG7YFdDQGVRm3QABaeaHo8yiMum1LMtLjEY1YooMSnwDAXrqTtJWd5S+nm48DhcGbRMek5+8RZ/C3WHm9N//QmdXG8GAhmBAR5LreRpyNSy+4gmaj4LzyDH8aACBkEFKj/4H71YIlqx9moZDHnxdXUgEUgh0/n4W7/8aL60SrFj6G+oqHQT9ARChpMfU38HqXV/jNxsEK0ufoeFo97AyW9xVLN33LZ7bJFhT/nu6TvcwcPo4kj6E8GIQbSTqd+G7bC5lFd/G53DRdXgbmCTW5AQSMzNJKyzElJKO0J37sRnwusldqGdOycxYRTaGTGr8eqmymSfePAUQmUVlN+nZ1FGJyWojuTCP1VpH5HabSRfpKgP44rXzePiaUuzmUDf80EkS1qTQF+K/lCeRc8XIe1eWZc7OmbuTSUpJwBfE0+Wg4ehO+nq66e9xgb8NfO3YV1+NxrkUV9URTlW+TdCnIRjQEufZh36gGrH1LoInPoC79jT9LjcIDRJBVuNz6AYO03Hfh/Ed2Ijf4SDo8yOFADTMPf5zfByl696P49i1AukPICESw5buf4we4ymcn3iAjp3ntuYs2/sQDUmnMXzsC/QeK8XfXIPf040QHjQaH8ma/yOYo6fkhq8R7M/GXbUT90AT1sQEbCmpZMzNx5qWg9Yycu+FKcHJwo3Z6KKwKexsct4kSYY2d+sN/6kP/4vahm/Pf2Y1Zr0Wm0kfCRCNx47wu995yS2r4NFVi8Z8/uBMhpFYLIJ258ybhjnZZFDi7ffTfuggtYfepbfDSV+PF9PAAdwGJ3Ou+iJdJ9LpPvA+nn4fUhgICiOlR/+L2tQuEm7+Fg27BpNLe/gfrH3n11QVuen1bKButxkoA8rQyAE0eEms+z2NcQF8/n50BismTS/eQC8gEQRw5ZpJSTWTkmNBJyx07thHn8+FkCC0A7QtSaAg30b+gmQSkuJoe/sl3D4nQoDG4qF+UzaLShKYvzqb3CILTW/9hb4BJ2hA6N00rE2lMN9KQnocfmcvnfUB/NiQIhVDryDnUBu/SezAUV2Ns70fKIq8Z8md+1hUeR+//ZCeEvFTBlz9SEcbIuhBg4eEnipwv0bD/TdTvOw7l/aEKqOa7Pj1qfWFfGx1Pnbz8Fbopx58hpyy+dy4Mp87V47+/JzE0Sem2HOTYbcD5+mOaBV3VpBS4h8I4m7t5viOF3E0t+Pu7kN4GtC7T+DftApj+0dx1zfTU19LUBiQwkBq29vkNGzjtU+XYj/wYPhoJiATyKT45CHmNLzOi7pu4vZaAA1wBUL60Ugvye0nsLm8nPZ0YgHMZvA7W4AgEGQg2U9AayEjJR1tRQruo810NR1HIEGAqyiAxpxCfl4BwjYH18E9tDcfAUAISecKA9jzmVdWQjCrmJ5922lvrkJoBDIAHct1BKyppKflYHBZ6Gzy4sNIkHh8mEjd9wLHWl0cn9PE6d0uICH8L2Td9g+zu8RD1g3/RdNBIzjaEf4+NPSjwUv5gSc4uMnM2g9Fd9/Cme6CxiQJIbTAXqAYeFxKuStaBRgpSDRUVQJc1PpIQ1nijUinBm+XE+MsXVDSPzBAZ+0x2qtP4nVU43E3kbjsg3hbi2h7911a6qoJBs0EpYXMxufxiTr6t36GzncHZ72VR461bN8eZFwzzRXVeDvsBNEjcKGRTnT46CkyYslIZ05pMnOyC3Huf4NuZzV6kxaDxUjwiltZnZVJZsVKNtxqR3qcGO1W9ObBJuIbGb7849ldAf8+/M+7y8+6/5vD/7x93uhvzLI0ll7/8BjvXBEwvCs14HuAr/Z3odEk09/h4sT2F+juaMXr9BJI7uJEYS4L5+cyx5KOq7aZhv2N+DEQwES/Tk+SH+bNv26M11SmwmTGr5G2lnF2tONobWHp5usndOz4gnSQ3fS1957/wTOYo6WRtpOHcbXW4ndVE5iTil1/J46TjdTs+D8GfHqkjMPSe5Kc+pd59TYrmbXfIxiUwJzwP8hufIuCE9t5vmg7BY6b0foEggBa6UAwwEBSP62p8SyeU0FaQSF0tFJ/+G/ojAJDnBHbihxk2v18dMl6LLeWog0OIHQBTPEJ4eT37PO59Dw1GyM+AdxcNPb9V981+n1XAfcNn0UrgzdT0deJwIzvRi2Nu9+ksfoA/c4+vG4fdTdkYrT7yZ2bgdVkoOn1A7gJEMBEAAsOS5Ci5LGXdYlFF5QkSSkDwGIhRALwJyHEAinloaGPEULcB9wHMGfOxU15HXS6qpKU3Lxx7XU0kgWLTCT/9nPQ8xLMwCRpwO3mxLv/oOnwcXoaXWgdh9F1nsLzkZvxH9yMu6WLgaAOhBaIp7zqADbHHt7+nAb/zi0IktChR4MbDW48iQY0NjtzClMpy5mLr/4wXZ3vY0tNIjE3m8wv/whbZh4a7eDU2bM3KPy34X9efffYFYifWeO1tHojFn1oIU6zNZlV+Z8c49GFwJqzbvvBZBVNmYBLHb8G10fKuYj1kYay5Wdw5TvXkjrvExM6zlQJBoM0HdpHzXu76aptx9vVibnzHU4uNFOa8GPaTnbS7/QS1BoAHUldAyw++Bf+5xYt5VxGb5cXXXA+GnrR4CZggJ7COBakzWPeimLoddJ29FUMdj3xWemkFd1AauG/8WXT0AvvD4xRwnyWnRPjhjKNcd/0IzQa4qyhmGu2gn3LZsrYPPoT7iw964aZ+f9sso1rdpuUskcIsQ3YDBw6674ngScBli9fPqHm7HUfvgdP78SvnuIWlJPyyU+iuci1liZbMBikoXI3dXv30VXbRqD7FIaOKrpvvBx58C5cXf2ADQhN182vdWJ3VFHr6yI1I45kfTft9e+gNwUwWjRobp+DKXcJt15+PfY78tGbtGdNo/30WSXIhbE+RIoyi1yq+JVXsZgtn/1XUuaMvXfW+Wh0OtLuuxfzorGHHEyl7uZ6qne8RduJenrbujF3vc3xvCAL83/Jqb1t+P2SUIvKPOLcLeQdf40j+UHi55rRSRuOyvfwa50Y4gSWfIH3lq18ZsEyMgpWYjBp0WjPM9Hi+on1NijK+VzI7LZUwBcOMGZgE/DIZBYqvTBKTX5ZeVSmbKa4U09eRnQOOV7dTbVUv7ud1uN1DHSeRtfxPq1X5GJpeBhHsxN/UMNgEMluhNSm96jtqaZ0bjyFAQ1dNa9hy7KSU1FO3orvYDD/55AuqwpUkqMoo5uK+GVJSKR8/caoHKux/CY83T7G3sp08nh7XdTseYvGQ0dxNHZj7HmLuiQvFUt+yondLvpdPiALyELr97By74ucMGmJXwXlqzNwH/4HxPeSUZJPwap1xGceOavtZvmU1EtRLtSFtCRlAk+H+/U1wB+klC9OVoHqDr7PgKeP4hWXT3gxMZ1ew9F3W7BaIG/+5O4DVvWPP3Ny21toO/bQtNBGlvguLcc68HhhMIgkd1gpOf4mh+dKCvJsZKZDz4l/YEwVZJQWULjqXuwZXz8riExVeFSUWeGSxi93Tzcndr9LyarVxMUnTPh4rdU9tNU6uOym84xfmaDO+pPs+vWzyLZ36DA4KVr3XWr26HG19iI1ZgbHD65+52UaKzyIyx0ULEzDW/UGA4Y2UgrSyVu2nIyySpYOm/2p1txRZrYLmd12kHNH2E6a9158AVdnB3NXrp7wsbQ6DQafi47tTfChswcBT4yUktYjLWx//Jf0uHPxmrKx9i5m2d6/sc/WzbwVJkzlCbiOvY7G3k9KQRr5y9eQMe8BlmqHLpc/xtQXRVEm5FLHr/rK93n95z8ms7gkKkmS5tQheruTCQaDaKK8xpfb4WX3T56h5ogbj7EEqVnDyj1v4E7vpm91E2l5C0gOHqPfX01CTjzZC8oo/MGbLLEMXQtMJUHK7DatVtwO+P00HjsStaZqADN9uKO0kbbH0c3BFx7hYONO8nK+z/GdTpArMclTpJi2UX7DIkp/toevmIcuO3C+GRCKoswWp48cwhhnITV/9O02xsOaZCLo0ONu6sSWM7GJEFJKTrzxLMdf/RVy5XXUvzYfZD4GTTtWuZvcRXZKvvoUK7KGln30vR8VJRZMqySpreYUPk//Re2aPRqzPkCv7+J3cu4+Xcv2XzxNZ00cHl0ZK/buIDWpHe3nj7Lx7quYUxyHJW2sGRSKosSKhqpKssvmo9FEZ3NVW5oNasBxqvmikqSgP8COXz1B7c52PAMlZLbso6i2jldzX2Lt9R8kr8RGcmFS1FupFGW2mFZJ0unw+kg5E1wfaSi7VeJu9YzrOa3Hd9DVH+DUdjunD7YSFOvQaXsxBQ7juGcNH7j7QSxJmVEro6IoM19vVyfdzU0svCp6kynic5MwvlWLp+XCn+NxdnDyxCv01Kzi+PZ6+j1lIEowy5N4KgTx3/t/PLRQXdgpyoWYVklSW201Sdm5WBKit1XIklIPOS8+RqD3VrTWkZdjl1JS+eJzHH61EmN9NaUn9vGH+7Mo6fg2ZYssaPWVrPrI3RjibohauRRFmV3aaqsByJ0/8hYiFyNjYS5rHthK0qavjP3axyt591fP46r1M//A87ywVrBm6a/JLEnC4n6P0ptWkz53U9TKpSixYlolSdc9+DD9LmdUj2lduxaNxcJIE+Vaa50cf+UQx3fW4DFlAhuIjzNQd3UrW9fcz9ylgzPLzl40UFEUZbjCpSu4/6nfYhxlb6yLoUtOJu3hh4lbeu7YRrfDS/X+Ng48/QpOfR5Ssx6d0Un9oje5dt06lt9Whl4fxyUct64os860SpKEEBNeZftsnqQ83m7zsLLFjz2hlZ1P/xTPnr+yM8fDkvRf0lLtwSb6sVnfYOktV1K8+ivA2FdtiqIoIzHboruyv9BqOWhcTdxxA8uL/Rz4029pfuP3dHfUYt7yOVp2FhJnSsUW3EnBqlQuu+sT6Iw3RbUMihLLpk2SVLnt7zQeqeLqT/3zkG0xJk4QpOFoNx0H/opPm0RQeznLjv2FoiQji68zkzVnMSZL9GbTKYoSe3q7u3j1if9i9W13kVl89nYPE9NR005XfScHX9jDgCmHucezSdHWYszvZePmVSRmWICbovqaiqKETJsk6cSuHfS0tkQ1QQKw2HTo/W4CwoZJHiSzREvFI6+yKiElqq+jKErsaqiqpPb9vay57SNRP7a1p552kYKeBtLtVZQ+ejd5y56M+usoinKuaZEkBQMBGo9WMW/N+qgfWxdn4p7HNqA1GdAZbor68RVFURqOHMJgNpNWEP2Vsa/53ofxulyYE66J+rEVRRnbtEiS2mqrGejvm/Cu2aMx2q3nf5CiKMpFOn24kuzS8qi3hANotBrMCdEdq6koyoWZFiuINYTXR8otU6u7Kooys7h7uulqapi0izxFUabOtEiSdAYj+YuXYU2a3E1oFUVRoq3f5SR73nzmLFg01UVRFCXKpkV32+JrrmPxNddNdTEURVHGLSU3jzu/8chUF0NRlEkw5S1Jfp8PGQxOdTEURVEuim/AO9VFUBRlkkx5knTg7y/x4/u24nH3TnVRFEVRxqXP0cOPPnYHh998faqLoijKJJjyJOl0VSUmiwWTRc1AUxRlZmk4cohgwE9iZvZUF0VRlEkwpUlSMBig4cghctWsEEVRZqDTVZXojSbSC4unuiiKokyCKU2SOurr8LrdauqsoigzUkPVIbJKy9DqpsUcGEVRomxKk6TTh0PrI+Wo9ZEURZlh+pwOOk7XqZZwRZnFpvTyJ7u0jDW3b8WekjqVxVAURRk3odGwfusnKFi8bKqLoijKJJnSJCmjuISM4pKpLIKiKMpFMVttrLj+lqkuhqIok2jKZ7cpiqIoiqJMRypJUhRFURRFGYFKkhRFURRFUUagkiRFURRFUZQRnDdJEkLkCiG2CSGqhBCHhRD/cikKpiiKMlEqfimKMhEXMrvND3xeSrlPCGED9gohXpNSVk1y2RRFUSZKxS9FUS7aeVuSpJTNUsp94d9dwBFAbVSkKMq0p+KXoigTMa4xSUKIfGAJsGtSSqMoijJJVPxSFGW8LjhJEkJYgeeBh6SUzhHuv08I8Z4Q4r329vZollFRFGVCVPxSFOViXFCSJITQEwowz0gpXxjpMVLKJ6WUy6WUy1NT1TYjiqJMDyp+KYpysS5kdpsAfg4ckVI+NvlFUhRFiQ4VvxRFmQghpRz7AUKsBd4GKoFg+OYvSSlfHuM57UDdBZYhBei4wMfOZLFQz1ioI6h6jiRPSjntmmBU/IoaVc/ZIxbqCOOv54gx7LxJ0mQTQrwnpVw+pYW4BGKhnrFQR1D1VM6IlfdI1XP2iIU6QvTqqVbcVhRFURRFGYFKkhRFURRFUUYwHZKkJ6e6AJdILNQzFuoIqp7KGbHyHql6zh6xUEeIUj2nfEySoiiKoijKdDQdWpIURVEURVGmnUueJAkhaoUQlUKI94UQ74VvSxJCvCaEOBH+mXipyxVNo9Tx60KIxvBt7wshrp3qck6UECJBCPFHIcRRIcQRIcTls/BcjlTHWXUuhRClQ+ryvhDCKYR4aLady2iIhfgFsRHDYiF+gYphEz2fl7y7TQhRCyyXUnYMue17QJeU8rtCiC8AiVLKf7+kBYuiUer4daBXSvn9qSpXtAkhngbellI+JYQwAHHAl5hd53KkOj7ELDuXg4QQWqARWAV8lll0LqMhFuIXxEYMi4X4BSqGMcHzOV26224Eng7//jRw09QVRbkQQoh4YD2h1YyRUg5IKXuYRedyjDrOZlcBp6SUdcyicznJ1Ps0w8RC/AIVw4jC+ZyKJEkCfxdC7BVC3Be+LV1K2Rz+vQVIn4JyRdNIdQR4QAhxUAjxi1nQjFsAtAO/FELsF0I8JYSwMLvO5Wh1hNl1Loe6E3g2/PtsOpfREgvxC2Z/DIuF+AUqhk34fE5FkrRWSrkU2AJ8VgixfuidMtT/N9On3I1Ux58ARcBioBn4wdQVLyp0wFLgJ1LKJYAb+MLQB8yCczlaHWfbuQQg3BR/A/Dc2ffNgnMZLbEQv2D2x7BYiF+gYljExZ7PS54kSSkbwz/bgD8BK4FWIUQmQPhn26UuVzSNVEcpZauUMiClDAI/I1TvmawBaJBS7gr//UdCH8bZdC5HrOMsPJeDtgD7pJSt4b9n07mMiliIXxATMSwW4heoGDbh83lJkyQhhEUIYRv8HbgaOAT8Fbgn/LB7gL9cynJF02h1HDxRYTcTqveMJaVsAU4LIUrDN10FVDGLzuVodZxt53KID3OmmRpm0bmMhliIXxAbMSwW4heoGEYUzuclnd0mhCgkdFUCoWbA30opvy2ESAb+AMwhtPv27VLKrktWsCgao46/JtS0KYFa4FND+kpnJCHEYuApwABUAx8nlHjPinMJo9bxv5l959IC1AOFUkpH+LZZ87mMhliIXxA7MSwW4heoGMYEz6dacVtRFEVRFGUE02UJAEVRFEVRlGlFJUmKoiiKoigjUEmSoiiKoijKCFSSpCiKoiiKMgKVJCmKoiiKooxAJUmKoiiKoigjUEmSoiiKoijKCFSSpCiKoiiKMoL/D+hDm6yOBS6sAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "scan = jnp.linspace(50, 70, 10)\n", + "data = run_scan(scan)\n", + "\n", + "\n", + "f, axarr = plt.subplots(1, 2)\n", + "f.set_size_inches(10, 5)\n", + "for k, v in data.items():\n", + " axarr[0].plot(scan, v[:, 0], label=k, linestyle='dashed')\n", + " axarr[0].set_title('par1')\n", + " axarr[0].legend()\n", + " axarr[1].plot(scan, v[:, 0], label=k, linestyle='dashed')\n", + " axarr[1].set_title('par2')\n", + " axarr[1].legend()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ] +} diff --git a/src/pyhf/cli/infer.py b/src/pyhf/cli/infer.py index 708315db9a..d2ccb01f55 100644 --- a/src/pyhf/cli/infer.py +++ b/src/pyhf/cli/infer.py @@ -41,7 +41,7 @@ def cli(): ) @click.option( "--optimizer", - type=click.Choice(["scipy", "minuit"]), + type=click.Choice(["scipy", "minuit", "customjax"]), help="The optimizer used for the calculation.", default="scipy", ) @@ -149,7 +149,7 @@ def fit( ) @click.option( "--optimizer", - type=click.Choice(["scipy", "minuit"]), + type=click.Choice(["scipy", "minuit", "customjax"]), help="The optimizer used for the calculation.", default="scipy", ) diff --git a/src/pyhf/infer/mle.py b/src/pyhf/infer/mle.py index d7b95373a0..10deec44a6 100644 --- a/src/pyhf/infer/mle.py +++ b/src/pyhf/infer/mle.py @@ -119,6 +119,7 @@ def fit(data, pdf, init_pars=None, par_bounds=None, fixed_params=None, **kwargs) if is_fixed ] + kwargs['do_stitch'] = True return opt.minimize( twice_nll, data, pdf, init_pars, par_bounds, fixed_vals, **kwargs ) diff --git a/src/pyhf/optimize/__init__.py b/src/pyhf/optimize/__init__.py index 548d9edcbc..4c5afb7ab0 100644 --- a/src/pyhf/optimize/__init__.py +++ b/src/pyhf/optimize/__init__.py @@ -5,6 +5,11 @@ class _OptimizerRetriever: def __getattr__(self, name): + if name == 'customjax': + from .opt_custom_jax import jaxcustom_optimizer + + self.jaxcustom_optimizer = jaxcustom_optimizer + return jaxcustom_optimizer if name == 'scipy_optimizer': from .opt_scipy import scipy_optimizer diff --git a/src/pyhf/optimize/common.py b/src/pyhf/optimize/common.py index 44d229a146..5baa54558b 100644 --- a/src/pyhf/optimize/common.py +++ b/src/pyhf/optimize/common.py @@ -3,7 +3,7 @@ from ..tensor.common import _TensorViewer -def _make_stitch_pars(tv=None, fixed_values=None): +def _make_post_processor(tv=None, fixed_values=None): """ Construct a callable to stitch fixed paramter values into the unfixed parameters. See :func:`shim`. @@ -21,14 +21,14 @@ def _make_stitch_pars(tv=None, fixed_values=None): if tv is None or fixed_values is None: return lambda pars, stitch_with=None: pars - def stitch_pars(pars, stitch_with=fixed_values): + def post_processor(pars, stitch_with=fixed_values): tb, _ = get_backend() return tv.stitch([tb.astensor(stitch_with, dtype='float'), pars]) - return stitch_pars + return post_processor -def _get_tensor_shim(): +def _get_internal_objective(*args, **kwargs): """ A shim-retriever to lazy-retrieve the necessary shims as needed. @@ -39,25 +39,80 @@ def _get_tensor_shim(): if tensorlib.name == 'numpy': from .opt_numpy import wrap_objective as numpy_shim - return numpy_shim + return numpy_shim(*args, **kwargs) if tensorlib.name == 'tensorflow': from .opt_tflow import wrap_objective as tflow_shim - return tflow_shim + return tflow_shim(*args, **kwargs) if tensorlib.name == 'pytorch': from .opt_pytorch import wrap_objective as pytorch_shim - return pytorch_shim + return pytorch_shim(*args, **kwargs) if tensorlib.name == 'jax': from .opt_jax import wrap_objective as jax_shim - return jax_shim + return jax_shim(*args, **kwargs) raise ValueError(f'No optimizer shim for {tensorlib.name}.') +def to_inf(x, bounds): + tensorlib, _ = get_backend() + lo, hi = bounds.T + return tensorlib.arcsin(2 * (x - lo) / (hi - lo) - 1) + + +def to_bnd(x, bounds): + tensorlib, _ = get_backend() + lo, hi = bounds.T + return lo + 0.5 * (hi - lo) * (tensorlib.sin(x) + 1) + + +def _configure_internal_minimize( + init_pars, variable_idx, do_stitch, par_bounds, fixed_idx, fixed_values +): + tensorlib, _ = get_backend() + if do_stitch: + all_init = tensorlib.astensor(init_pars) + internal_init = tensorlib.gather( + all_init, tensorlib.astensor(variable_idx, dtype='int') + ) + + internal_bounds = [par_bounds[i] for i in variable_idx] + # stitched out the fixed values, so we don't pass any to the underlying minimizer + external_fixed_vals = [] + + tv = _TensorViewer([fixed_idx, variable_idx]) + # NB: this is a closure, tensorlib needs to be accessed at a different point in time + post_processor = _make_post_processor(tv, fixed_values) + + else: + internal_init = init_pars + internal_bounds = par_bounds + external_fixed_vals = fixed_vals + post_processor = _make_post_processor() + + internal_init = to_inf( + tensorlib.astensor(internal_init), tensorlib.astensor(internal_bounds) + ) + + def mypostprocessor(x): + x = to_bnd(x, tensorlib.astensor(internal_bounds)) + return post_processor(x) + + no_internal_bounds = None + + kwargs = dict( + x0=internal_init, + variable_bounds=internal_bounds, + bounds=no_internal_bounds, + fixed_vals=external_fixed_vals, + ) + return kwargs, mypostprocessor + + def shim( objective, data, @@ -110,45 +165,25 @@ def shim( fixed_values = [x[1] for x in fixed_vals] variable_idx = [x for x in range(pdf.config.npars) if x not in fixed_idx] - if do_stitch: - all_init = tensorlib.astensor(init_pars) - variable_init = tensorlib.tolist( - tensorlib.gather(all_init, tensorlib.astensor(variable_idx, dtype='int')) - ) - variable_bounds = [par_bounds[i] for i in variable_idx] - # stitched out the fixed values, so we don't pass any to the underlying minimizer - minimizer_fixed_vals = [] - - tv = _TensorViewer([fixed_idx, variable_idx]) - # NB: this is a closure, tensorlib needs to be accessed at a different point in time - stitch_pars = _make_stitch_pars(tv, fixed_values) - - else: - variable_init = init_pars - variable_bounds = par_bounds - minimizer_fixed_vals = fixed_vals - stitch_pars = _make_stitch_pars() + minimizer_kwargs, post_processor = _configure_internal_minimize( + init_pars, variable_idx, do_stitch, par_bounds, fixed_idx, fixed_values + ) - objective_and_grad = _get_tensor_shim()( + internal_objective_maybe_grad = _get_internal_objective( objective, tensorlib.astensor(data), pdf, - stitch_pars, + post_processor, do_grad=do_grad, jit_pieces={ 'fixed_idx': fixed_idx, 'variable_idx': variable_idx, 'fixed_values': fixed_values, 'do_stitch': do_stitch, + 'par_bounds': tensorlib.astensor(minimizer_kwargs.pop('variable_bounds')), }, ) - minimizer_kwargs = dict( - func=objective_and_grad, - x0=variable_init, - do_grad=do_grad, - bounds=variable_bounds, - fixed_vals=minimizer_fixed_vals, - ) - - return minimizer_kwargs, stitch_pars + minimizer_kwargs['func'] = internal_objective_maybe_grad + minimizer_kwargs['do_grad'] = do_grad + return minimizer_kwargs, post_processor diff --git a/src/pyhf/optimize/mixins.py b/src/pyhf/optimize/mixins.py index 9cc417ecfb..e6019a4e73 100644 --- a/src/pyhf/optimize/mixins.py +++ b/src/pyhf/optimize/mixins.py @@ -31,7 +31,6 @@ def __init__(self, **kwargs): def _internal_minimize( self, func, x0, do_grad=False, bounds=None, fixed_vals=None, options={} ): - minimizer = self._get_minimizer( func, x0, bounds, fixed_vals=fixed_vals, do_grad=do_grad ) @@ -62,6 +61,7 @@ def _internal_postprocess(self, fitresult, stitch_pars): tensorlib, _ = get_backend() fitted_pars = stitch_pars(tensorlib.astensor(fitresult.x)) + # extract number of fixed parameters num_fixed_pars = len(fitted_pars) - len(fitresult.x) diff --git a/src/pyhf/optimize/opt_custom_jax.py b/src/pyhf/optimize/opt_custom_jax.py new file mode 100644 index 0000000000..4dd0a949da --- /dev/null +++ b/src/pyhf/optimize/opt_custom_jax.py @@ -0,0 +1,87 @@ +"""JAX Custom Optimizer Class.""" +from .. import exceptions +from .mixins import OptimizerMixin +import scipy + + +class jaxcustom_optimizer(OptimizerMixin): + __slots__ = ['name'] + + def __init__(self, *args, **kwargs): + self.name = 'jaxcustom' + super().__init__(*args, **kwargs) + + def _get_minimizer( + self, objective_and_grad, init_pars, init_bounds, fixed_vals=None, do_grad=False + ): + return None + + def _custom_internal_minimize(self, objective, init_pars, maxiter=1000, rtol=1e-7): + import jax.experimental.optimizers as optimizers + import jax + + opt_init, opt_update, opt_getpars = optimizers.adam(step_size=1e-2) + state = opt_init(init_pars) + vold, _ = objective(init_pars) + + def cond(loop_state): + delta = loop_state['delta'] + i = loop_state['i'] + delta_below = jax.numpy.logical_and( + loop_state['delta'] > 0, loop_state['delta'] < rtol + ) + delta_below = jax.numpy.logical_and(loop_state['i'] > 1, delta_below) + maxed_iter = loop_state['i'] > maxiter + return ~jax.numpy.logical_or(maxed_iter, delta_below) + + def body(loop_state): + i = loop_state['i'] + state = loop_state['state'] + pars = opt_getpars(state) + v, g = objective(pars) + newopt_state = opt_update(0, g, state) + vold = loop_state['vold'] + delta = jax.numpy.abs(v - vold) / v + new_state = {} + new_state['delta'] = delta + new_state['state'] = newopt_state + new_state['vold'] = v + new_state['i'] = i + 1 + return new_state + + loop_state = {'delta': 0, 'i': 0, 'state': state, 'vold': vold} + # import time + # start = time.time() + # # while(cond(loop_state)): + # loop_state = body(loop_state) + loop_state = jax.lax.while_loop(cond, body, loop_state) + # print(time.time()-start) + + minimized = opt_getpars(loop_state['state']) + + class Result: + pass + + r = Result() + r.x = minimized + r.success = True + r.fun = objective(minimized)[0] + return r + + def _minimize( + self, + minimizer, + func, + x0, + do_grad=False, + bounds=None, + fixed_vals=None, + return_uncertainties=False, + options={}, + ): + assert minimizer == None + assert fixed_vals == [] + assert return_uncertainties == False + assert bounds == None + result = self._custom_internal_minimize(func, x0) + return result diff --git a/src/pyhf/optimize/opt_jax.py b/src/pyhf/optimize/opt_jax.py index 01f42043d7..7fe40b193f 100644 --- a/src/pyhf/optimize/opt_jax.py +++ b/src/pyhf/optimize/opt_jax.py @@ -8,12 +8,35 @@ log = logging.getLogger(__name__) +def to_inf(x, bounds): + tensorlib, _ = get_backend() + lo, hi = bounds.T + return tensorlib.arcsin(2 * (x - lo) / (hi - lo) - 1) + + +def to_bnd(x, bounds): + tensorlib, _ = get_backend() + lo, hi = bounds.T + return lo + 0.5 * (hi - lo) * (tensorlib.sin(x) + 1) + + def _final_objective( - pars, data, fixed_values, fixed_idx, variable_idx, do_stitch, objective, pdf + pars, + data, + fixed_values, + fixed_idx, + variable_idx, + do_stitch, + objective, + pdf, + par_bounds, ): log.debug('jitting function') tensorlib, _ = get_backend() pars = tensorlib.astensor(pars) + + pars = to_bnd(pars, par_bounds) + if do_stitch: tv = _TensorViewer([fixed_idx, variable_idx]) constrained_pars = tv.stitch( @@ -51,7 +74,7 @@ def wrap_objective(objective, data, pdf, stitch_pars, do_grad=False, jit_pieces= def func(pars): # need to conver to tuple to make args hashable - return _jitted_objective_and_grad( + result = _jitted_objective_and_grad( pars, data, jit_pieces['fixed_values'], @@ -60,7 +83,9 @@ def func(pars): jit_pieces['do_stitch'], objective, pdf, + jit_pieces['par_bounds'], ) + return result else: @@ -75,6 +100,7 @@ def func(pars): jit_pieces['do_stitch'], objective, pdf, + jit_pieces['par_bounds'], ) return func diff --git a/src/pyhf/optimize/opt_minuit.py b/src/pyhf/optimize/opt_minuit.py index b789186f62..3416b2828a 100644 --- a/src/pyhf/optimize/opt_minuit.py +++ b/src/pyhf/optimize/opt_minuit.py @@ -31,7 +31,7 @@ def __init__(self, *args, **kwargs): tolerance (:obj:`float`): tolerance for termination. See specific optimizer for detailed meaning. Default is 0.1. """ self.name = 'minuit' - self.errordef = kwargs.pop('errordef', 1) + self.errordef = kwargs.pop('errordef', 0.5) self.steps = kwargs.pop('steps', 1000) self.strategy = kwargs.pop('strategy', None) self.tolerance = kwargs.pop('tolerance', 0.1) diff --git a/src/pyhf/pdf.py b/src/pyhf/pdf.py index b263bcf98e..cc15e79c2d 100644 --- a/src/pyhf/pdf.py +++ b/src/pyhf/pdf.py @@ -551,7 +551,7 @@ def __init__(self, spec, batch_size=None, **config_kwargs): self.version = config_kwargs.pop('version', None) # run jsonschema validation of input specification against the (provided) schema log.info(f"Validating spec against schema: {self.schema:s}") - utils.validate(self.spec, self.schema, version=self.version) + # utils.validate(self.spec, self.schema, version=self.version) # build up our representation of the specification self.config = _ModelConfig(self.spec, **config_kwargs) diff --git a/src/pyhf/tensor/jax_backend.py b/src/pyhf/tensor/jax_backend.py index 7ca9fdb86a..0b64aaad63 100644 --- a/src/pyhf/tensor/jax_backend.py +++ b/src/pyhf/tensor/jax_backend.py @@ -381,6 +381,12 @@ def poisson(self, n, lam): lam = jnp.asarray(lam) return jnp.exp(n * jnp.log(lam) - lam - gammaln(n + 1.0)) + def arcsin(self, tensor): + return jnp.arcsin(tensor) + + def sin(self, tensor): + return jnp.sin(tensor) + def normal_logpdf(self, x, mu, sigma): # this is much faster than # norm.logpdf(x, loc=mu, scale=sigma) diff --git a/src/pyhf/tensor/numpy_backend.py b/src/pyhf/tensor/numpy_backend.py index 3853156289..cc1ff5f47d 100644 --- a/src/pyhf/tensor/numpy_backend.py +++ b/src/pyhf/tensor/numpy_backend.py @@ -285,6 +285,12 @@ def simple_broadcast(self, *args): """ return np.broadcast_arrays(*args) + def arcsin(self, tensor): + return np.arcsin(tensor) + + def sin(self, tensor): + return np.sin(tensor) + def shape(self, tensor): return tensor.shape diff --git a/src/pyhf/tensor/pytorch_backend.py b/src/pyhf/tensor/pytorch_backend.py index 8afee24d00..74e7b8e99b 100644 --- a/src/pyhf/tensor/pytorch_backend.py +++ b/src/pyhf/tensor/pytorch_backend.py @@ -230,6 +230,12 @@ def ones(self, shape): def zeros(self, shape): return torch.zeros(shape, dtype=self.dtypemap['float']) + def arcsin(self, tensor): + return torch.asin(tensor) + + def sin(self, tensor): + return torch.sin(tensor) + def power(self, tensor_in_1, tensor_in_2): return torch.pow(tensor_in_1, tensor_in_2)