diff --git a/sbi/inference/nspe/nspe.py b/sbi/inference/nspe/nspe.py
index 8bc790bc6..fdcd557ca 100644
--- a/sbi/inference/nspe/nspe.py
+++ b/sbi/inference/nspe/nspe.py
@@ -38,7 +38,7 @@ def __init__(
self,
prior: Optional[Distribution] = None,
score_estimator: Union[str, Callable] = "mlp",
- sde_type: str = "vp",
+ sde_type: str = "ve",
device: str = "cpu",
logging_level: Union[int, str] = "WARNING",
summary_writer: Optional[SummaryWriter] = None,
@@ -49,7 +49,8 @@ def __init__(
Instead of performing conditonal *density* estimation, NSPE methods perform
conditional *score* estimation i.e. they estimate the gradient of the log
- density.
+ density using denoising score matching loss. We not only estimate the score
+ of the posterior, but a family of distributions analogous to diffusion models.
NOTE: Single-round NSPE is currently the only supported mode.
@@ -200,7 +201,7 @@ def append_simulations(
def train(
self,
- training_batch_size: int = 50,
+ training_batch_size: int = 200,
learning_rate: float = 5e-4,
validation_fraction: float = 0.1,
stop_after_epochs: int = 200,
@@ -444,23 +445,30 @@ def default_calibration_kernel(x):
return deepcopy(self._neural_net)
def _converged(self, epoch: int, stop_after_epochs: int) -> bool:
+ """Check if training has converged.
+
+ Args:
+ epoch: Current epoch.
+ stop_after_epochs: Number of epochs to wait for improvement on the
+ validation set before terminating training.
+
+ Returns:
+ Whether training has converged.
+ """
converged = False
- assert self._neural_net is not None
- neural_net = self._neural_net
+ # No checkpointing, just check if the validation loss has improved.
# (Re)-start the epoch count with the first epoch or any improvement.
if epoch == 0 or self._val_loss < self._best_val_loss:
self._best_val_loss = self._val_loss
self._epochs_since_last_improvement = 0
- self._best_model_state_dict = deepcopy(neural_net.state_dict())
else:
self._epochs_since_last_improvement += 1
- # # If no validation improvement over many epochs, stop training.
- if self._epochs_since_last_improvement > stop_after_epochs - 1:
- # neural_net.load_state_dict(self._best_model_state_dict)
- converged = True
+ # If no validation improvement over many epochs, stop training.
+ if self._epochs_since_last_improvement > stop_after_epochs - 1:
+ converged = True
return converged
@@ -516,7 +524,7 @@ def build_posterior(
if score_estimator is None:
score_estimator = self._neural_net
# If internal net is used device is defined.
- # device = self._device
+ device = self._device
else:
assert score_estimator is not None, (
"You did not pass a score estimator. You have to pass the score "
@@ -525,15 +533,17 @@ def build_posterior(
)
score_estimator = score_estimator
# Otherwise, infer it from the device of the net parameters.
- # device = next(score_estimator.parameters()).device.type
+ device = next(score_estimator.parameters()).device.type
if sample_with == "ode":
+ # NOTE: Build similar to Flow matching stuff
raise NotImplementedError("ODE-based sampling is not yet implemented.")
elif sample_with == "sde":
posterior = ScorePosterior(
score_estimator, # type: ignore
prior,
- x_shape=self._x_shape, # type: ignore
+ x_shape=self._x_shape, # type: ignore # NOTE: Deprectated (not used)
+ device=device,
)
self._posterior = posterior
diff --git a/sbi/inference/posteriors/base_posterior.py b/sbi/inference/posteriors/base_posterior.py
index 1119fdbc3..8cb82fe61 100644
--- a/sbi/inference/posteriors/base_posterior.py
+++ b/sbi/inference/posteriors/base_posterior.py
@@ -126,7 +126,6 @@ def _x_else_default_x(self, x: Optional[Array]) -> Tensor:
else:
return self.default_x
- @abstractmethod
def map(
self,
x: Optional[Tensor] = None,
@@ -139,6 +138,50 @@ def map(
show_progress_bars: bool = False,
force_update: bool = False,
) -> Tensor:
+ """Returns stored maximum-a-posterior estimate (MAP), otherwise calculates it.
+
+ See child classes for docstring.
+ """
+
+ if x is not None:
+ raise ValueError(
+ "Passing `x` directly to `.map()` has been deprecated."
+ "Use `.self_default_x()` to set `x`, and then run `.map()` "
+ )
+
+ if self.default_x is None:
+ raise ValueError(
+ "Default `x` has not been set."
+ "To set the default, use the `.set_default_x()` method."
+ )
+
+ if self._map is None or force_update:
+ self._map = self._calculate_map(
+ num_iter=num_iter,
+ num_to_optimize=num_to_optimize,
+ learning_rate=learning_rate,
+ init_method=init_method,
+ num_init_samples=num_init_samples,
+ save_best_every=save_best_every,
+ show_progress_bars=show_progress_bars,
+ )
+ return self._map
+
+ @abstractmethod
+ def _calculate_map(
+ self,
+ num_iter: int = 1_000,
+ num_to_optimize: int = 100,
+ learning_rate: float = 0.01,
+ init_method: Union[str, Tensor] = "posterior",
+ num_init_samples: int = 1_000,
+ save_best_every: int = 10,
+ show_progress_bars: bool = False,
+ ) -> Tensor:
+ """Calculates the maximum-a-posteriori estimate (MAP).
+
+ See `map()` method of child classes for docstring.
+ """
pass
def __repr__(self):
@@ -303,6 +346,31 @@ def _x_else_default_x(self, x: Optional[Array]) -> Tensor:
else:
return self.default_x
+ def map(
+ self,
+ x: Optional[Tensor] = None,
+ num_iter: int = 1000,
+ num_to_optimize: int = 100,
+ learning_rate: float = 0.01,
+ init_method: Union[str, Tensor] = "posterior",
+ num_init_samples: int = 1000,
+ save_best_every: int = 10,
+ show_progress_bars: bool = False,
+ force_update: bool = False,
+ ) -> Tensor:
+ self.potential_fn.set_x(self.default_x)
+ return super().map(
+ x,
+ num_iter,
+ num_to_optimize,
+ learning_rate,
+ init_method,
+ num_init_samples,
+ save_best_every,
+ show_progress_bars,
+ force_update,
+ )
+
def _calculate_map(
self,
num_iter: int = 1_000,
@@ -338,48 +406,6 @@ def _calculate_map(
show_progress_bars=show_progress_bars,
)[0]
- def map(
- self,
- x: Optional[Tensor] = None,
- num_iter: int = 1_000,
- num_to_optimize: int = 100,
- learning_rate: float = 0.01,
- init_method: Union[str, Tensor] = "posterior",
- num_init_samples: int = 1_000,
- save_best_every: int = 10,
- show_progress_bars: bool = False,
- force_update: bool = False,
- ) -> Tensor:
- """Returns stored maximum-a-posterior estimate (MAP), otherwise calculates it.
-
- See child classes for docstring.
- """
-
- if x is not None:
- raise ValueError(
- "Passing `x` directly to `.map()` has been deprecated."
- "Use `.self_default_x()` to set `x`, and then run `.map()` "
- )
-
- if self.default_x is None:
- raise ValueError(
- "Default `x` has not been set."
- "To set the default, use the `.set_default_x()` method."
- )
-
- if self._map is None or force_update:
- self.potential_fn.set_x(self.default_x)
- self._map = self._calculate_map(
- num_iter=num_iter,
- num_to_optimize=num_to_optimize,
- learning_rate=learning_rate,
- init_method=init_method,
- num_init_samples=num_init_samples,
- save_best_every=save_best_every,
- show_progress_bars=show_progress_bars,
- )
- return self._map
-
def __repr__(self):
desc = f"""{self.__class__.__name__} sampler for potential_fn=<{
self.potential_fn.__class__.__name__
diff --git a/sbi/inference/posteriors/score_posterior.py b/sbi/inference/posteriors/score_posterior.py
index 3a6b05ecd..1d1356a9a 100644
--- a/sbi/inference/posteriors/score_posterior.py
+++ b/sbi/inference/posteriors/score_posterior.py
@@ -1,22 +1,29 @@
# This file is part of sbi, a toolkit for simulation-based inference. sbi is licensed
# under the Affero General Public License v3, see .
+from functools import partial
from typing import Dict, Optional, Union
import torch
from torch import Tensor
from torch.distributions import Distribution
+from zuko.transforms import FreeFormJacobianTransform
from sbi.inference.posteriors.base_posterior import NeuralPosterior
from sbi.inference.potentials.score_based_potential import (
score_estimator_based_potential_gradient,
)
from sbi.neural_nets.estimators.score_estimator import ConditionalScoreEstimator
-from sbi.neural_nets.estimators.shape_handling import reshape_to_batch_event
+from sbi.neural_nets.estimators.shape_handling import (
+ reshape_to_batch_event,
+ reshape_to_sample_batch_event,
+)
from sbi.samplers.score.correctors import Corrector
from sbi.samplers.score.predictors import Predictor
from sbi.samplers.score.score import Diffuser
from sbi.sbi_types import Shape
from sbi.utils import check_prior
+from sbi.utils.sbiutils import within_support
+from sbi.utils.torchutils import ensure_theta_batched
class ScorePosterior(NeuralPosterior):
@@ -162,36 +169,73 @@ def log_prob(
self,
theta: Tensor,
x: Optional[Tensor] = None,
- norm_posterior: bool = True,
track_gradients: bool = False,
- leakage_correction_params: Optional[dict] = None,
+ atol: float = 1e-5,
+ rtol: float = 1e-6,
+ exact: bool = True,
) -> Tensor:
r"""Returns the log-probability of the posterior $p(\theta|x)$.
Args:
theta: Parameters $\theta$.
- norm_posterior: Whether to enforce a normalized posterior density.
- Renormalization of the posterior is useful when some
- probability falls out or leaks out of the prescribed prior support.
- The normalizing factor is calculated via rejection sampling, so if you
- need speedier but unnormalized log posterior estimates set here
- `norm_posterior=False`. The returned log posterior is set to
- -∞ outside of the prior support regardless of this setting.
+ x: Observed data $x_o$. If None, the default $x_o$ is used.
track_gradients: Whether the returned tensor supports tracking gradients.
This can be helpful for e.g. sensitivity analysis, but increases memory
consumption.
- leakage_correction_params: A `dict` of keyword arguments to override the
- default values of `leakage_correction()`. Possible options are:
- `num_rejection_samples`, `force_update`, `show_progress_bars`, and
- `rejection_sampling_batch_size`.
- These parameters only have an effect if `norm_posterior=True`.
+ atol: Absolute tolerance for the ODE solver.
+ rtol: Relative tolerance for the ODE solver.
+ exact: Whether to use the exact Jacobian of the transformation or an
+ stochastic approximation, which is faster but less accurate.
Returns:
`(len(θ),)`-shaped log posterior probability $\log p(\theta|x)$ for θ in the
support of the prior, -∞ (corresponding to 0 probability) outside.
"""
- raise NotImplementedError("log_prob() is not implemented yet.")
+ x = self._x_else_default_x(x)
+
+ theta = ensure_theta_batched(torch.as_tensor(theta))
+ theta_density_estimator = reshape_to_sample_batch_event(
+ theta, theta.shape[1:], leading_is_sample=True
+ )
+ x_density_estimator = reshape_to_batch_event(
+ x, event_shape=self.score_estimator.condition_shape
+ )
+ assert (
+ x_density_estimator.shape[0] == 1
+ ), ".log_prob() supports only `batchsize == 1`."
+
+ self.score_estimator.eval()
+
+ # Compute the base density
+ mean_T = self.score_estimator.mean_T
+ std_T = self.score_estimator.std_T
+ base_density = torch.distributions.Normal(mean_T, std_T)
+ for _ in range(len(self.score_estimator.input_shape)):
+ base_density = torch.distributions.Independent(base_density, 1)
+ # Build the freeform jacobian transformation by probability flow ODEs
+ transform = self.build_freeform_jacobian_transform(
+ x_density_estimator, atol=atol, rtol=rtol, exact=exact
+ )
+
+ with torch.set_grad_enabled(track_gradients):
+ eps_samples, logabsdet = transform.inv.call_and_ladj( # type: ignore
+ theta_density_estimator
+ )
+ base_log_prob = base_density.log_prob(eps_samples)
+ log_probs = base_log_prob - logabsdet
+ log_probs = log_probs.squeeze(-1)
+
+ # Force probability to be zero outside prior support.
+ in_prior_support = within_support(self.prior, theta)
+
+ masked_log_prob = torch.where(
+ in_prior_support,
+ log_probs,
+ torch.tensor(float("-inf"), dtype=torch.float32, device=self._device),
+ )
+
+ return masked_log_prob
def sample_batched(
self,
@@ -207,63 +251,143 @@ def sample_batched(
def map(
self,
x: Optional[Tensor] = None,
- num_iter: int = 1_000,
+ num_iter: int = 1000,
num_to_optimize: int = 100,
- learning_rate: float = 0.01,
+ learning_rate: float = 1e54,
init_method: Union[str, Tensor] = "posterior",
- num_init_samples: int = 1_000,
+ num_init_samples: int = 1000,
save_best_every: int = 10,
show_progress_bars: bool = False,
force_update: bool = False,
- ) -> Optional[Tensor]:
+ ) -> Tensor:
r"""Returns the maximum-a-posteriori estimate (MAP).
- The method can be interrupted (Ctrl-C) when the user sees that the
- log-probability converges. The best estimate will be saved in `self._map` and
- can be accessed with `self.map()`. The MAP is obtained by running gradient
+ The MAP is obtained by running gradient
ascent from a given number of starting positions (samples from the posterior
with the highest log-probability). After the optimization is done, we select the
parameter set that has the highest log-probability after the optimization.
- Warning: The default values used by this function are not well-tested. They
- might require hand-tuning for the problem at hand.
+ Args:
+ x: Deprecated - use `.set_default_x()` prior to `.map()`.
+ num_iter: Number of optimization steps that the algorithm takes
+ to find the MAP.
+ learning_rate: Learning rate of the optimizer.
+ init_method: How to select the starting parameters for the optimization. If
+ it is a string, it can be either [`posterior`, `prior`], which samples
+ the respective distribution `num_init_samples` times. If it is a
+ tensor, the tensor will be used as init locations.
+ num_init_samples: Draw this number of samples from the posterior and
+ evaluate the log-probability of all of them.
+ num_to_optimize: From the drawn `num_init_samples`, use the
+ `num_to_optimize` with highest log-probability as the initial points
+ for the optimization.
+ save_best_every: The best log-probability is computed, saved in the
+ `map`-attribute, and printed every `save_best_every`-th iteration.
+ Computing the best log-probability creates a significant overhead
+ (thus, the default is `10`.)
+ show_progress_bars: Whether to show a progressbar during sampling from the
+ posterior.
+ force_update: Whether to re-calculate the MAP when x is unchanged and
+ have a cached value.
+ log_prob_kwargs: Will be empty for SNLE and SNRE. Will contain
+ {'norm_posterior': True} for SNPE.
+
+ Returns:
+ The MAP estimate.
+ """
+ return super().map(
+ x,
+ num_iter,
+ num_to_optimize,
+ learning_rate,
+ init_method,
+ num_init_samples,
+ save_best_every,
+ show_progress_bars,
+ force_update,
+ )
- For developers: if the prior is a `BoxUniform`, we carry out the optimization
- in unbounded space and transform the result back into bounded space.
+ def _calculate_map(
+ self,
+ num_iter: int = 1000,
+ num_to_optimize: int = 100,
+ learning_rate: float = 1e-5,
+ init_method: Union[str, Tensor] = "posterior",
+ num_init_samples: int = 1000,
+ save_best_every: int = 10,
+ show_progress_bars: bool = False,
+ ) -> Tensor:
+ """Calculate the maximum a posteriori (MAP) estimate of the posterior.
+
+ Uses gradient ascent to find the MAP estimate of the posterior. The gradient is
+ calculated using the score estimator.
Args:
- x: Deprecated - use `.set_default_x()` prior to `.map()`.
- num_iter: Number of optimization steps that the algorithm takes
- to find the MAP.
- learning_rate: Learning rate of the optimizer.
- init_method: How to select the starting parameters for the optimization. If
- it is a string, it can be either [`posterior`, `prior`], which samples
- the respective distribution `num_init_samples` times. If it is a
- tensor, the tensor will be used as init locations.
- num_init_samples: Draw this number of samples from the posterior and
- evaluate the log-probability of all of them.
- num_to_optimize: From the drawn `num_init_samples`, use the
- `num_to_optimize` with highest log-probability as the initial points
- for the optimization.
- save_best_every: The best log-probability is computed, saved in the
- `map`-attribute, and printed every `save_best_every`-th iteration.
- Computing the best log-probability creates a significant overhead
- (thus, the default is `10`.)
- show_progress_bars: Whether to show a progressbar during sampling from the
- posterior.
- force_update: Whether to re-calculate the MAP when x is unchanged and
- have a cached value.
- log_prob_kwargs: Will be empty for SNLE and SNRE. Will contain
- {'norm_posterior': True} for SNPE.
+ num_iter: Number of interations. Defaults to 1000.
+ num_to_optimize : Note used (API), just for interface. Defaults to 100.
+ learning_rate: Learning rate. Defaults to 1e-5.
+ init_method: Initialization of particles. Defaults to "posterior".
+ num_init_samples: Not used (API). Defaults to 1000.
+ save_best_evey: Not used (API). Defaults to 10.
+ show_progress_bars (bool, optional): _description_. Defaults to False.
+
+ Raises:
+ ValueError: Invalid init method
Returns:
- The MAP estimate.
+ Tensor: MAP
"""
- # TODO: Implement MAP optimization using the score estimator directly!
+ with torch.no_grad():
+ if init_method == "posterior":
+ inits = self.sample(
+ (num_init_samples,), show_progress_bars=show_progress_bars
+ )
+ elif init_method == "proposal":
+ inits = self.proposal.sample((num_init_samples,)) # type: ignore
+ elif isinstance(init_method, Tensor):
+ inits = init_method
+ else:
+ raise ValueError
+
+ self.potential_fn_gradient.set_x(self.default_x)
+ gradient_fn = partial(
+ self.potential_fn_gradient,
+ time=torch.tensor([self.score_estimator.T_min]),
+ )
+
+ # Run MAP optimization
+ xs = inits.clone()
+ for _ in range(num_iter):
+ gradient = gradient_fn(xs)
+ xs = xs + learning_rate * gradient
- # init_method: Just sample from the posterior
- # iteratively: Use score at T_min to update theta via gradient ascent
- # Choose the best theta after num_iter iterations (would need log_prob...)
+ log_prob = self.log_prob(xs)
+ best_idx = torch.argmax(log_prob)
+ best_theta = xs[best_idx]
+ return best_theta
+
+ def build_freeform_jacobian_transform(
+ self, x_o: Tensor, atol: float = 1e-5, rtol: float = 1e-6, exact: bool = True
+ ):
+ # Create a freeform jacobian transformation
+ phi = self.score_estimator.parameters()
+
+ def f(t, x):
+ score = self.score_estimator(input=x, condition=x_o, time=t)
+ f = self.score_estimator.drift_fn(x, t)
+ g = self.score_estimator.diffusion_fn(x, t)
+ v = f - 0.5 * g**2 * score
+ return v
+
+ transform = FreeFormJacobianTransform(
+ f=f,
+ t0=self.score_estimator.T_min,
+ t1=self.score_estimator.T_max,
+ phi=phi,
+ atol=atol,
+ rtol=rtol,
+ exact=exact,
+ )
- raise NotImplementedError("MAP optimization is not implemented yet.")
+ return transform
diff --git a/sbi/neural_nets/estimators/score_estimator.py b/sbi/neural_nets/estimators/score_estimator.py
index 63cbc94f4..ac194c194 100644
--- a/sbi/neural_nets/estimators/score_estimator.py
+++ b/sbi/neural_nets/estimators/score_estimator.py
@@ -69,12 +69,19 @@ def __init__(
# Starting mean and std of the target distribution (otherwise assumes 0,1).
# This will be used to precondition the score network to improve training.
- self.mean_0 = mean_0
- self.std_0 = std_0
+ if not isinstance(mean_0, Tensor):
+ mean_0 = torch.tensor([mean_0])
+ if not isinstance(std_0, Tensor):
+ std_0 = torch.tensor([std_0])
+
+ self.register_buffer("mean_0", mean_0.clone().detach())
+ self.register_buffer("std_0", std_0.clone().detach())
# We estimate the mean and std of the source distribution at time T_max.
- self.mean_T = self.approx_marginal_mean(torch.tensor([T_max]))
- self.std_T = self.approx_marginal_std(torch.tensor([T_max]))
+ mean_T = self.approx_marginal_mean(torch.tensor([T_max]))
+ std_T = self.approx_marginal_std(torch.tensor([T_max]))
+ self.register_buffer("mean_T", mean_T)
+ self.register_buffer("std_T", std_T)
def forward(self, input: Tensor, condition: Tensor, time: Tensor) -> Tensor:
r"""Forward pass of the score estimator network to compute the conditional score
@@ -153,7 +160,11 @@ def loss(
"""
# Sample diffusion times.
if times is None:
- times = torch.rand(input.shape[0]) * (self.T_max - self.T_min) + self.T_min
+ times = (
+ torch.rand(input.shape[0], device=input.device)
+ * (self.T_max - self.T_min)
+ + self.T_min
+ )
# Sample noise.
eps = torch.randn_like(input)
@@ -323,7 +334,10 @@ def _set_weight_fn(self, weight_fn: Union[str, Callable]):
self.weight_fn = lambda times: 1
elif weight_fn == "max_likelihood":
self.weight_fn = (
- lambda times: self.diffusion_fn(torch.ones((1,)), times) ** 2
+ lambda times: self.diffusion_fn(
+ torch.ones((1,), device=times.device), times
+ )
+ ** 2
)
elif weight_fn == "variance":
self.weight_fn = lambda times: self.std_fn(times) ** 2
@@ -370,11 +384,13 @@ def mean_t_fn(self, times: Tensor) -> Tensor:
Returns:
Conditional mean at a given time.
"""
- a = torch.exp(
+ phi = torch.exp(
-0.25 * times**2.0 * (self.beta_max - self.beta_min)
- 0.5 * times * self.beta_min
)
- return a.unsqueeze(-1)
+ for _ in range(len(self.input_shape)):
+ phi = phi.unsqueeze(-1)
+ return phi
def std_fn(self, times: Tensor) -> Tensor:
"""Standard deviation function for variance preserving SDEs.
@@ -387,7 +403,9 @@ def std_fn(self, times: Tensor) -> Tensor:
std = 1.0 - torch.exp(
-0.5 * times**2.0 * (self.beta_max - self.beta_min) - times * self.beta_min
)
- return torch.sqrt(std.unsqueeze(-1))
+ for _ in range(len(self.input_shape)):
+ std = std.unsqueeze(-1)
+ return torch.sqrt(std)
def _beta_schedule(self, times: Tensor) -> Tensor:
"""Linear beta schedule for mean scaling in variance preserving SDEs.
@@ -468,11 +486,13 @@ def mean_t_fn(self, times: Tensor) -> Tensor:
Returns:
Conditional mean at a given time.
"""
- a = torch.exp(
+ phi = torch.exp(
-0.25 * times**2.0 * (self.beta_max - self.beta_min)
- 0.5 * times * self.beta_min
)
- return a.unsqueeze(-1)
+ for _ in range(len(self.input_shape)):
+ phi = phi.unsqueeze(-1)
+ return phi
def std_fn(self, times: Tensor) -> Tensor:
"""Standard deviation function for variance preserving SDEs.
@@ -485,7 +505,9 @@ def std_fn(self, times: Tensor) -> Tensor:
std = 1.0 - torch.exp(
-0.5 * times**2.0 * (self.beta_max - self.beta_min) - times * self.beta_min
)
- return std.unsqueeze(-1)
+ for _ in range(len(self.input_shape)):
+ std = std.unsqueeze(-1)
+ return std
def _beta_schedule(self, times: Tensor) -> Tensor:
"""Linear beta schedule for mean scaling in sub-variance preserving SDEs.
@@ -527,12 +549,14 @@ def diffusion_fn(self, input: Tensor, times: Tensor) -> Tensor:
Diffusion function at a given time.
"""
g = torch.sqrt(
- self._beta_schedule(times)
- * (
- 1
- - torch.exp(
- -2 * self.beta_min * times
- - (self.beta_max - self.beta_min) * times**2
+ torch.abs(
+ self._beta_schedule(times)
+ * (
+ 1
+ - torch.exp(
+ -2 * self.beta_min * times
+ - (self.beta_max - self.beta_min) * times**2
+ )
)
)
)
@@ -577,7 +601,10 @@ def mean_t_fn(self, times: Tensor) -> Tensor:
Returns:
Conditional mean at a given time.
"""
- return torch.ones_like(times).unsqueeze(-1)
+ phi = torch.ones_like(times, device=times.device)
+ for _ in range(len(self.input_shape)):
+ phi = phi.unsqueeze(-1)
+ return phi
def std_fn(self, times: Tensor) -> Tensor:
"""Standard deviation function for variance exploding SDEs.
@@ -589,7 +616,9 @@ def std_fn(self, times: Tensor) -> Tensor:
Standard deviation at a given time.
"""
std = self.sigma_min * (self.sigma_max / self.sigma_min) ** times
- return std.unsqueeze(-1)
+ for _ in range(len(self.input_shape)):
+ std = std.unsqueeze(-1)
+ return std
def _sigma_schedule(self, times: Tensor) -> Tensor:
"""Geometric sigma schedule for variance exploding SDEs.
@@ -625,7 +654,7 @@ def diffusion_fn(self, input: Tensor, times: Tensor) -> Tensor:
Diffusion function at a given time.
"""
g = self._sigma_schedule(times) * math.sqrt(
- 2 * math.log(self.sigma_max / self.sigma_min)
+ (2 * math.log(self.sigma_max / self.sigma_min))
)
while len(g.shape) < len(input.shape):
diff --git a/sbi/simulators/linear_gaussian.py b/sbi/simulators/linear_gaussian.py
index 985fa0eae..251b807b0 100644
--- a/sbi/simulators/linear_gaussian.py
+++ b/sbi/simulators/linear_gaussian.py
@@ -50,7 +50,7 @@ def linear_gaussian(
Returns: Simulated data.
"""
-
+ theta = torch.as_tensor(theta) # Must be a tensor
if num_discarded_dims:
theta = theta[:, :-num_discarded_dims]
diff --git a/tests/linearGaussian_nspe_test.py b/tests/linearGaussian_nspe_test.py
index 15ba2b75e..a1d3d150e 100644
--- a/tests/linearGaussian_nspe_test.py
+++ b/tests/linearGaussian_nspe_test.py
@@ -13,9 +13,7 @@
)
from sbi.utils.user_input_checks import prepare_for_sbi
-from .test_utils import (
- check_c2st,
-)
+from .test_utils import check_c2st
@pytest.mark.slow
@@ -74,11 +72,12 @@ def test_c2st_snpe_on_linearGaussian(sde_type, num_dim: int, prior_str: str):
check_c2st(samples, target_samples, alg="nspe")
# map_ = posterior.map(num_init_samples=1_000, show_progress_bars=False)
+ # assert ((map_ - gt_posterior.mean) ** 2).sum() < 0.5
# Checks for log_prob()
# if prior_str == "gaussian":
# # For the Gaussian prior, we compute the KLd between ground truth and
- # posterior.
+ # # posterior.
# dkl = get_dkl_gaussian_prior(
# posterior,
# x_o[0],
@@ -93,32 +92,3 @@ def test_c2st_snpe_on_linearGaussian(sde_type, num_dim: int, prior_str: str):
# assert (
# dkl < max_dkl
# ), f"D-KL={dkl} is more than 2 stds above the average performance."
-
- # assert ((map_ - gt_posterior.mean) ** 2).sum() < 0.5
-
- # elif prior_str == "uniform":
- # # Check whether the returned probability outside of the support is zero.
- # posterior_prob = get_prob_outside_uniform_prior(posterior, prior, num_dim)
- # assert (
- # posterior_prob == 0.0
- # ), "The posterior probability outside of the prior support is not zero"
-
- # # Check whether normalization (i.e. scaling up the density due
- # # to leakage into regions without prior support) scales up the density by the
- # # correct factor.
- # (
- # posterior_likelihood_unnorm,
- # posterior_likelihood_norm,
- # acceptance_prob,
- # ) = get_normalization_uniform_prior(posterior, prior, x=x_o)
- # # The acceptance probability should be *exactly* the ratio of the unnormalized
- # # and the normalized likelihood. However, we allow for an error margin of 1%,
- # # since the estimation of the acceptance probability is random (based on
- # # rejection sampling).
- # assert (
- # acceptance_prob * 0.99
- # < posterior_likelihood_unnorm / posterior_likelihood_norm
- # < acceptance_prob * 1.01
- # ), "Normalizing the posterior density using the acceptance probability failed"
-
- # assert ((map_ - ones(num_dim)) ** 2).sum() < 0.5
diff --git a/tests/score_estimator_test.py b/tests/score_estimator_test.py
index d955d37d6..be5057f39 100644
--- a/tests/score_estimator_test.py
+++ b/tests/score_estimator_test.py
@@ -8,6 +8,7 @@
import pytest
import torch
+from sbi.neural_nets.embedding_nets import CNNEmbedding
from sbi.neural_nets.score_nets import build_score_estimator
# TODO: Test different build options for score estimators!
@@ -22,7 +23,13 @@
],
)
@pytest.mark.parametrize("input_sample_dim", (1, 2))
-@pytest.mark.parametrize("input_event_shape", ((1,), (4,)))
+@pytest.mark.parametrize(
+ "input_event_shape",
+ (
+ (1,),
+ (4,),
+ ),
+)
@pytest.mark.parametrize("condition_event_shape", ((1,), (7,)))
@pytest.mark.parametrize("batch_dim", (1, 10))
def test_score_estimator_loss_shapes(
@@ -45,6 +52,29 @@ def test_score_estimator_loss_shapes(
assert losses.shape == (batch_dim,)
+@pytest.mark.gpu
+@pytest.mark.parametrize("sde_type", ["vp", "ve", "subvp"])
+@pytest.mark.parametrize("device", ["cpu", "cuda"])
+def test_score_estimator_on_device(sde_type, device):
+ """Test whether DensityEstimators can be moved to the device."""
+ score_estimator = build_score_estimator(
+ torch.randn(100, 1), torch.randn(100, 1), sde_type=sde_type
+ )
+ score_estimator.to(device)
+
+ # Test forward
+ inputs = torch.randn(100, 1, device=device)
+ condition = torch.randn(100, 1, device=device)
+ time = torch.randn(1, device=device)
+ out = score_estimator(inputs, condition, time)
+
+ assert str(out.device).split(":")[0] == device, "Output device mismatch."
+
+ # Test loss
+ loss = score_estimator.loss(inputs, condition)
+ assert str(loss.device).split(":")[0] == device, "Loss device mismatch."
+
+
@pytest.mark.parametrize(
"sde_type",
[
@@ -99,22 +129,33 @@ def _build_score_estimator_and_tensors(
)
building_xs = torch.randn((1000, *condition_event_shape))
- # TODO Test other build options!
- # if len(condition_event_shape) > 1:
- # embedding_net = CNNEmbedding(condition_event_shape, kernel_size=1)
- # else:
- # embedding_net = torch.nn.Identity()
+ if len(condition_event_shape) > 1:
+ embedding_net_y = CNNEmbedding(condition_event_shape, kernel_size=1)
+ else:
+ embedding_net_y = torch.nn.Identity()
+
+ if len(input_event_shape) > 1:
+ embedding_net_x = CNNEmbedding(input_event_shape, kernel_size=1)
+ else:
+ embedding_net_x = torch.nn.Identity()
score_estimator = build_score_estimator(
torch.randn_like(building_thetas),
torch.randn_like(building_xs),
sde_type=sde_type,
+ embedding_net_x=embedding_net_x,
+ embedding_net_y=embedding_net_y,
)
inputs = building_thetas[:batch_dim]
condition = building_xs[:batch_dim]
inputs = inputs.unsqueeze(0)
- inputs = inputs.expand(input_sample_dim, -1, -1)
+ inputs = inputs.expand(
+ [
+ input_sample_dim,
+ ]
+ + [-1] * (1 + len(input_event_shape))
+ )
condition = condition
return score_estimator, inputs, condition
diff --git a/tests/score_samplers_test.py b/tests/score_samplers_test.py
index e638b16c0..b1e508f6d 100644
--- a/tests/score_samplers_test.py
+++ b/tests/score_samplers_test.py
@@ -25,18 +25,19 @@
],
)
@pytest.mark.parametrize("predictor", ("euler_maruyama", "ddim"))
+@pytest.mark.parametrize("corrector", (None, "langevin", "gibbs"))
@pytest.mark.parametrize("input_event_shape", ((1,), (4,)))
@pytest.mark.parametrize("mu", (-1.0, 0.0, 1.0))
@pytest.mark.parametrize("std", (1.0, 0.1))
def test_score_estimator_forward_shapes(
- sde_type, predictor, input_event_shape, mu, std
+ sde_type, predictor, corrector, input_event_shape, mu, std
):
mean0 = mu * torch.ones(input_event_shape)
std0 = std * torch.ones(input_event_shape)
score_fn = _build_gaussian_score_estimator(sde_type, input_event_shape, mean0, std0)
- sampler = Diffuser(score_fn, predictor, None)
+ sampler = Diffuser(score_fn, predictor, corrector)
T_min = score_fn.score_estimator.T_min
T_max = score_fn.score_estimator.T_max
diff --git a/tests/test_utils.py b/tests/test_utils.py
index a1cea1e07..83741bb16 100644
--- a/tests/test_utils.py
+++ b/tests/test_utils.py
@@ -9,7 +9,10 @@
from torch import Tensor
from torch.distributions import Distribution
-from sbi.inference.posteriors.base_posterior import NeuralPosterior
+from sbi.inference.posteriors.base_posterior import (
+ NeuralPosterior,
+ NeuralPotentialPosterior,
+)
from sbi.inference.posteriors.direct_posterior import DirectPosterior
from sbi.inference.potentials.base_potential import BasePotential
from sbi.sbi_types import Shape, TorchTransform
@@ -89,7 +92,7 @@ def get_dkl_gaussian_prior(
def get_prob_outside_uniform_prior(
- posterior: NeuralPosterior, prior: BoxUniform, num_dim: int
+ posterior: NeuralPotentialPosterior, prior: BoxUniform, num_dim: int
) -> Tensor:
"""
Return posterior probability for a parameter set outside of the prior support.
@@ -211,7 +214,7 @@ def __call__(self, theta: Tensor, track_gradients: bool = True) -> Tensor:
return posterior_log_prob
-class TractablePosterior(NeuralPosterior):
+class TractablePosterior(NeuralPotentialPosterior):
r"""Posterior $p(\theta|x_o)$ with `log_prob()` and `sample()` methods, built from a
potential function with tractable posterior distribution.
"""
diff --git a/tutorials/20_nspe.ipynb b/tutorials/20_nspe.ipynb
index 0feb8c388..acff1bd55 100644
--- a/tutorials/20_nspe.ipynb
+++ b/tutorials/20_nspe.ipynb
@@ -42,7 +42,7 @@
"metadata": {},
"outputs": [],
"source": [
- "num_dim = 3\n",
+ "num_dim = 2\n",
"prior = utils.BoxUniform(low=-2 * torch.ones(num_dim), high=2 * torch.ones(num_dim))\n",
"\n",
"def simulator(theta):\n",
@@ -63,12 +63,12 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "a9c85f9950444eba8caf71ffe634dc53",
+ "model_id": "85fd3b25770a47c4a7f0ed0d0fbbbeb1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
- "Running 5000 simulations.: 0%| | 0/5000 [00:00, ?it/s]"
+ " 0%| | 0/5000 [00:00, ?it/s]"
]
},
"metadata": {},
@@ -78,41 +78,41 @@
"name": "stdout",
"output_type": "stream",
"text": [
- " Neural network successfully converged after 1290 epochs."
+ " Neural network successfully converged after 2646 epochs."
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
- "/root/sbi/sbi/inference/posteriors/score_posterior.py:62: UserWarning: x_shape is not None. However, passing x_shape to the `Posterior` is deprecated and will be removed in a future release of `sbi`.\n",
+ "/root/sbi/sbi/inference/posteriors/score_posterior.py:71: UserWarning: x_shape is not None. However, passing x_shape to the `Posterior` is deprecated and will be removed in a future release of `sbi`.\n",
" super().__init__(\n"
]
}
],
"source": [
"# Create inference object. Here, NPE is used.\n",
- "inference = NSPE(prior=prior, sde_type=\"vp\")\n",
+ "inference = NSPE(prior=None, sde_type=\"ve\")\n",
"\n",
"# generate simulations and pass to the inference object\n",
"theta, x = simulate_for_sbi(simulator, proposal=prior, num_simulations=5_000)\n",
"inference = inference.append_simulations(theta, x)\n",
"\n",
"# train the density estimator and build the posterior\n",
- "score_estimator = inference.train(stop_after_epochs=300, training_batch_size=100)\n",
+ "score_estimator = inference.train(stop_after_epochs=1000)\n",
"posterior = inference.build_posterior(score_estimator)"
]
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
- "For an interactive, detailed view of the summary, launch tensorboard with 'tensorboard --logdir=/root/sbi/tutorials/sbi-logs/NSPE/2024-07-20T19_57_36.522564' from a terminal on your machine, visit http://127.0.0.1:6006 afterwards. Requires port forwarding if tensorboard runs on a remote machine, as e.g. https://stackoverflow.com/a/42445070/7770835 explains.\n",
+ "For an interactive, detailed view of the summary, launch tensorboard with 'tensorboard --logdir=/root/sbi/tutorials/sbi-logs/NSPE/2024-07-29T11_17_18.869445' from a terminal on your machine, visit http://127.0.0.1:6006 afterwards. Requires port forwarding if tensorboard runs on a remote machine, as e.g. https://stackoverflow.com/a/42445070/7770835 explains.\n",
"\n",
"Valid tags are: ['best_validation_loss', 'epoch_durations_sec', 'epochs_trained', 'training_loss', 'validation_loss'].\n"
]
@@ -126,13 +126,13 @@
" dtype=object))"
]
},
- "execution_count": 6,
+ "execution_count": 5,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABlgAAAIZCAYAAADKuzKXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZgU1bk/8G/1Mhu74AKKohKViIpLjBIQVCRcjUvinhASo6AxipL4i9d9iYg3UdwS9WqiN6ImEg3RxKgsiiLuCopiwA1kE5FtGGamp7ffHzNVfep0VXdVdVXX0t/P8/jIzPR0V/fUcuq8531fJZ/P50FERERERERERERERESWxfzeACIiIiIiIiIiIiIiorBhgIWIiIiIiIiIiIiIiMgmBliIiIiIiIiIiIiIiIhsYoCFiIiIiIiIiIiIiIjIJgZYiIiIiIiIiIiIiIiIbGKAhYiIiIiIiIiIiIiIyCYGWIiIiIiIiIiIiIiIiGxigIWIiIiIiIiIiIiIiMgmBliIiIiIiIiIiIiIiIhsYoCFiIiIiIiIiIiIiIjIpkAFWObPnw9FUQz/e/3117XHjR492vAx48aN83HriYiIiIiIiIiIiIioViT83gAjkydPxre+9S3d9wYPHqz7erfddsO0adN03xswYIDt18rlcli7di169OgBRVHsbywRERERkQP5fB7btm3DgAEDEIsFat0TUWDwfo2IiIiI/GD1fi2QAZaRI0fitNNOK/mYXr16Yfz48RW/1tq1azFw4MCKn4eIiIiIyIlVq1Zht91283sziAKJ92tERERE5Kdy92uBDLAAwLZt29DY2IhEwnwTM5kM2tvb0b17d8ev06NHDwCdH1TPnj0dPw8RERERkR3Nzc0YOHCgNh4lomK8XyMiIiIiP1i9XwtkgOWcc85BS0sL4vE4Ro4cid/97nc47LDDdI9Zvnw5unXrho6ODuy8886YOHEirr32WiSTSVuvpaaZ9+zZkwN2IiIiIqo6lj0iMsf7NSIiIiLyU7n7tUAFWOrq6nDqqafi+OOPR79+/bB06VLceuutGDlyJF599VUcfPDBAIC9994bRx99NA444ABs374dTzzxBG666SYsX74cjz/+eMnXSKVSSKVS2tfNzc2eviciIiIiIiIiIiIiIooeJZ/P5/3eiFI++eQTHHjggTjqqKPw3HPPmT5u0qRJeOCBB/Daa6/hiCOOMH3c9ddfjxtuuKHo+1u3buWKKCIiIiKqmubmZvTq1YvjUKISeJwQERERkR+sjkNjVdwmRwYPHoyTTz4ZL774IrLZrOnjfvWrXwEA5s6dW/L5rrjiCmzdulX7b9WqVa5uLxERERERERERERERRV+gSoSZGThwIDo6OrB9+3bTaNHAgQMBAJs2bSr5XPX19aivr3d9G4mIiIiIiIiIiIiIqHYEPoMFAD777DM0NDSge/fuJR8DADvuuGO1NouIiIiIiIiIiIiIiGpUoAIsGzZsKPree++9h6effhpjx45FLBZDc3Ozrkk9AOTzedx0000AgO9+97tV2VYiIiIiIiIiIiIiIqpdgSoRduaZZ6KxsRHDhw/HTjvthKVLl+L+++9HU1MTbrnlFgDAu+++i7PPPhtnn302Bg8ejLa2NsyaNQsLFy7EpEmTcMghh/j8LoiIiIiIiIiIiIiIKOoCFWA55ZRT8Oijj2L69Olobm7GjjvuiB/84Ae47rrrMHjwYADAHnvsgZEjR2LWrFn48ssvEYvFMGTIENx3332YNGmSz++AiIiIiIiIiIiIiIhqgZLP5/N+b4Sfmpub0atXL2zduhU9e/b0e3OIiIiIqEZwHEpUHo8TIiIiIvKD1XFooHqwEBERERERERERERERhQEDLERERERERERERERERDYxwEJERERERERERERERGQTAyxEREREREREREREREQ2McBCRERERERERERERERkEwMsRERERERERERERERENjHAQkREREREREREREREZBMDLERERERERERERERERDYxwOKTP73yOa6ctQRLVm/1e1OIiIiIiIiIfLO1LY3fv/AxvtjY6vemEBEREdnCAItP5i5dj8fe+AKfb9zu96YQERERERER+eaaf3yAW2cvxwl3L/B7U4iIiIhsYYDFJ3WJzo8+lc76vCVERERERERE/nnj840AgG3tGZ+3hIiIiMgeBlh8Uq8GWDI5n7eEiIiIiIiIyD8xRfF7E4iIiIgcYYDFJ/XJOACggwEWIiIiIiIiqmEMsBAREVFYMcDik7o4M1iIiIiIiIiIYpyZICIiopDiMMYn9Uk1wMIeLERERERERFS7mMFCREREYcUAi0/UHiwsEUZERERERES1jAEWIiIiCisGWHxSn+jswcISYURERERERFTLGF8hIiKisGKAxSd1CZYIIyIiIiIiImIGCxEREYUVAyw+UUuEpdLMYCEiIiIiIqLaFWN8hYiIiEKKARafaD1YsgywEBERERERUe1iBgsRERGFFQMsPqlPdvVgYQYLERERERER1TAGWIiIiCisGGDxSX2cPViIiIiIiIiIYpyZICIiopDiMMYn9UmWCCMiIiIiIiJiBgsRERGFFQMsPmGTeyIiIiIiIiIGWIiIiCi8GGDxSZ0aYMkwwEJERERERES1i/EVIiIiCisGWHxSn+hsct/BAAsRERERERHVMGawEBERUVgxwOITrUQYm9wTERERERFRDYszwEJEREQhxQCLT9QMFpYIIyIiIiIiolrG+AoRERGFFQMsPlF7sLBEGBEREREREdUylggjIiKisGKAxSf1bHJPREREREREhBhnJoiIiCikOIzxSX2SPViIiIiIiChc3nnnHYwbNw49e/ZEjx49MHbsWCxevNjwsa+++ipGjBiBpqYm7LLLLpg8eTJaWlqqu8EUCsxgISIiorBK+L0BtUrtwZLO5pHL5RGLcUBJRERERETB9e6772LEiBEYOHAgrrvuOuRyOdxzzz0YNWoU3nzzTey7777aYxcvXoxjjz0WQ4YMwfTp07F69Wrceuut+Pjjj/Hss8/6+C4oiBhgISIiorBigMUnag8WAOjI5tAQi/u4NURERERERKVdc801aGxsxGuvvYa+ffsCAMaPH4999tkHV155JZ588kntsVdeeSX69OmD+fPno2fPngCAQYMGYeLEiZg9ezbGjh3ry3ugYOJ6QyIiIgorlgjzSb0QYEml2YeFiIiIiIiCbcGCBRgzZowWXAGA/v37Y9SoUfjXv/6llf9qbm7GnDlzMH78eC24AgATJkxA9+7dMXPmzKpvOwVbnBEWIqoRj76xEr949F10sCczUWQwwOKTREzRVumwDwsREREREQVdKpVCY2Nj0febmprQ0dGBDz74AACwZMkSZDIZHHbYYbrH1dXVYdiwYVi0aFFVtpfChAEWIqoNV836AM8sWYe/v7va700hIpcwwOITRVG0MmEpRq2JiIiIiCjg9t13X7z++uvIZgsLxDo6OvDGG28AANasWQMAWLduHYDO7BZZ//79sXbtWtPXSKVSaG5u1v1H0ccEFiKqNVva0n5vAhG5hAEWH6mN7hlgISIiIiKioLvwwguxfPlynHvuuVi6dCk++OADTJgwQQuotLW16f5fX19f9BwNDQ3az41MmzYNvXr10v4bOHCgB++EgoZN7omo1uTyeb83gYhcwgCLj+q1DBaWCCMiIiIiomC74IILcOWVV+Kxxx7D/vvvjwMOOACffvopfv3rXwMAunfvDgBaGbFUKlX0HO3t7YZlxlRXXHEFtm7dqv23atUqD94JBQ17sBBRrWF8hSg6GGDxUX2y8+NnYysiIiIiIgqDqVOnYv369ViwYAHef/99vPXWW8jlOu9n9tlnHwCF0mBqZoto3bp1GDBggOnz19fXo2fPnrr/KPqYwEJEtSaXY4SFKCoYYPFRXZw9WIiIiIiIKFz69OmDESNG4IADDgAAzJ07F7vtthv2228/AMDQoUORSCTw9ttv636vo6MDixcvxrBhw6q9yRRwLBFGRLWG8RWi6GCAxUdqD5b2NEuEERERERFR+Dz++ON46623cOmllyIW67y97NWrF8aMGYNHHnkE27Zt0x47Y8YMtLS04PTTT/drcymgWCKMiGoNe7AQRUfC7w2oZXVdPVjSWZ5UiYiIiIgo2F5++WXceOONGDt2LPr27YvXX38dDz30EMaNG4dLLrlE99ipU6di+PDhGDVqFCZNmoTVq1fjtttuw9ixYzFu3Dif3gEFFRNYiKjWMMBCFB0MsPhILRGWybJEGBERERERBduuu+6KeDyO3/3ud9i2bRv23HNP3HTTTfjlL3+JREJ/a3nIIYdg7ty5uPzyyzFlyhT06NED5557LqZNm+bT1lOQiSXCcrk8YsxoIaKIY4CFKDoYYPFRMtE5aOxggIWIiIiIiAJu7733xvPPP2/58SNGjMDChQs93CKKCjGeks3nEQMDLEQUbYyvEEUHe7D4KBlniTAiIiIiIiKqbWIGS5adn4moBmQZYSGKDAZYfFQIsDCDhYiIiIiIiGqTIpYI46QjEdUAnuqIooMBFh/VMcBCRERERERENU5XIowZLERUA3I81xFFBgMsPkrEu3qwZBhgISIiIiIiotoUj4lN7n3cECIij+SllBXGV4iig03ufcQeLERERERERFTrdD1YWDeHiCJma1saJ9y1AMd9c2fteyyHSBQdzGDxEXuwEBERERERERVw0pGIombmW6uwenMbHlq4QvuenNFCROHFAIuP6rpKhDHAQkRERERERMS+BEQUPUKSnoanOqLoYIDFRywRRkRERERERFTAEmFEFDXq/J+I2XpE0cEAi4+SCZYIIyIiIiIiotomlsrJclk3EUVMPFacwsJTHVF0MMDiI/ZgISIiIiIiolonzjPmeHtMRBGTjBcHWNiDhSg6GGDxEXuwEBERERERERWwRBgRRU0ixhJhRFHGAIuP1AyWjgxPqkRERERERFSbxHlGlggjoqhJGGSw8FRHFB0MsPgowRJhREREVMb2VAYtqYzfm0FEROSZvFAkjKu6iShqmMFCFG0JvzeglrFEGBEREZWSy+Ux9Prnkc8Dy24ah/pE3O9NIiIi8hQzWIgoaoya3DO+QhQdzGDxEZvcExERUSkd2Zx28/Xl1nZ/N4aIiMgj4kQjV3UTUdQYNbnnuY4oOhhg8VEhwMKTKhEREZXGBRlERBRV4h1xjpc7IooYowwWJusRRQcDLD5KJpjBQkRERObEhW0dGd6FERFRNOma3HNVNxFFjGEPFkZYiCKDARYfsQcLERERlSI2/eV4gYiIagF7sBBR1BjEV1gijChCGGDxkVoirIMlwoiIiMiAOMeUYc0UIiKKrMIFj5OORFQLeKojig4GWHyk9WDJcMKEiIiIiuWFOy+WCCMioqjSlQhjBgsR1QCWQySKDgZYfFRocs8ACxERERUT55g4XiAiolrAvgREFDkGp7U8AyxEkcEAi4+S7MFCREREpTDAQkRENYBN7omo1jCWTBQdDLD4qJDBwrMqERERFRPr0HO8QEREUZUXVhSwRBiRv77c2o4X/rOeGRYeY78pouhggMVHhSb3XJFKRERExcTbLmawEBFRVInzjJxzJPLX8Fvm4Wf/9zaeWbLO702JDKPTGmPJRNHBAIuP6hKdJcIynDAhIiIiAzldk3uOF4iIKFqa29P41cz3sPCTr7XvMYOFyF/qIfjy8g3+bkjEsd8UUXQk/N6AWsYSYURERFSKuIqXGa9ERBQ1tz2/DE++u1r3PfZgIQqGDOeqPMVgMlF0MIPFRywRRkRERKXkmcFCREQR9sWm1qLvcVU3UTBkeCy6xihuzGAyUXQwwOIjLcCSyeE/XzZz4oSIiIh0xNsujhOIiChqjOZvOelIFAyZHMeeXmIGC1F0BCrAMn/+fCiKYvjf66+/rnvsq6++ihEjRqCpqQm77LILJk+ejJaWFp+23Jm6eOHjH3fHAlzwyDs+bg0REREFjdiDJZXJ+rglRERE7ssZBFM46UgUDCwR5p68QZt7ZggRRUcge7BMnjwZ3/rWt3TfGzx4sPbvxYsX49hjj8WQIUMwffp0rF69Grfeeis+/vhjPPvss9XeXMeSXU3uVS/85yuftoSIiIiCSNeDhRksRERUA4yCLkRUfQwAeIvlEImiI5ABlpEjR+K0004z/fmVV16JPn36YP78+ejZsycAYNCgQZg4cSJmz56NsWPHVmtTK5KIBSqBiIiIiAJGl8HCnm1ERBQxxhksPmwIERVhgMVb/HyJoiOwM/zbtm1DJpMp+n5zczPmzJmD8ePHa8EVAJgwYQK6d++OmTNnVnMzK5KMK+UfRERERDVLnHdKpTnjRERE0WLU4oEZLETBkGUPFtcYNrnn50sUGYEMsJxzzjno2bMnGhoacPTRR+Ptt9/WfrZkyRJkMhkcdthhut+pq6vDsGHDsGjRompvrmOKojDIQkRERKZ0JcK4pJeIiCLGqC8By+YQBUOaPVg8xQwWougIVImwuro6nHrqqTj++OPRr18/LF26FLfeeitGjhyJV199FQcffDDWrVsHAOjfv3/R7/fv3x8LFiwo+RqpVAqpVEr7urm52d03YVMyHkM6y6a1REREVEyceGIPFiIiihqj+cUsM1iIAiHLAIBrjD5JBpOJoiNQAZbhw4dj+PDh2tcnnXQSTjvtNBx44IG44oor8Nxzz6GtrQ0AUF9fX/T7DQ0N2s/NTJs2DTfccIO7G16BZDwGgAEWIiIiKpZjk3siIoqwvEEwhZOORMGQYfa0p5jBQhQdgSwRJho8eDBOPvlkvPjii8hms2hsbAQAXRaKqr29Xfu5mSuuuAJbt27V/lu1apUn221VZ4CFiIiIqJg48ZTKcEEGERFFi3FfAk46EgUBAwDe4rmOKDoClcFiZuDAgejo6MD27du10mBqqTDRunXrMGDAgJLPVV9fb5j94pc69mAhIiIiE8xgISKiKDNqaM+2D0TBkOHB6BqjbD0GsIiiIxTpE5999hkaGhrQvXt3DB06FIlEQtf4HgA6OjqwePFiDBs2zJ+NdCiZCMWfgIiIiHwh9GBhmQYiIooYo/lFlggjCoZ0jmNPL/FcRxQdgZrd37BhQ9H33nvvPTz99NMYO3YsYrEYevXqhTFjxuCRRx7Btm3btMfNmDEDLS0tOP3006u5yRVLxJjBQkRERMbE+65Umje5REQULUarutnknigYWMLKW8xgIYqOQJUIO/PMM9HY2Ijhw4djp512wtKlS3H//fejqakJt9xyi/a4qVOnYvjw4Rg1ahQmTZqE1atX47bbbsPYsWMxbtw4H9+BfezBQkRERGbEOSZmsBARUdQYTS9yUpcoGFgizD081xFFW6Bm90855RR8/fXXmD59Oi688EI8/vjj+MEPfoC3334bQ4YM0R53yCGHYO7cuWhsbMSUKVNw//3349xzz8UTTzzh49Y7U8cSYURERGRCrE3PHixERBQ1RskqRlktRFR9DAB4K8MSbESREagMlsmTJ2Py5MmWHjtixAgsXLjQ4y3yHjNYiIiIyEyeTe6JiCjCDJvc83JHFAgMALjIsN9U9TeDiLzB2X2fyT1YMhxNEhERURdx4inFAAsREUWM0QJ59mAhCoY0S4R5igEsouhggMVncokwXsCIiIjICAMsREQUNUblwHIsS0QUCCwR5q1cnuc7oqhggMVncokwlv8gIiIilb4HS9bHLSEiInKfYYkwZrAQBUKaFVZckzdsc8/zHVFUMMDiM7lEWAcvYERERNRFvOdiBgsRBcHHH3+Ms846C7vtthuampqw33774cYbb0Rra6vuca+++ipGjBiBpqYm7LLLLpg8eTJaWlp82moKKqO5Ra7oJgoGZrB4j58xUTQEqsl9LUpKJcIYYCEiIiKVLoMlm0M+n4eiKCV+g4jIO6tWrcLhhx+OXr164aKLLsIOO+yA1157Dddddx3eeecdPPXUUwCAxYsX49hjj8WQIUMwffp0rF69Grfeeis+/vhjPPvssz6/CwoSo6lFTjgSBUOGx6JrzBJVeL4jigYGWHxWxxJhREREZEK85crnO290k3EGWIjIHzNmzMCWLVvwyiuvYP/99wcATJo0CblcDg8//DA2b96MPn364Morr0SfPn0wf/589OzZEwAwaNAgTJw4EbNnz8bYsWP9fBsUICwRRkS1jEEsomhgiTCfyZMkRgNMIiIiqk1y81+uciMiPzU3NwMAdt55Z933+/fvj1gshrq6OjQ3N2POnDkYP368FlwBgAkTJqB79+6YOXNmVbeZgo0lwoiolnFsTxQNDLD4LCFlsHAwSURERCp54ok3YUTkp9GjRwMAzj33XCxevBirVq3C448/jnvvvReTJ09Gt27dsGTJEmQyGRx22GG6362rq8OwYcOwaNEiH7acgooZLERUC1gijCjaWCLMZ3KJMA4miYiISCXfc7GMABH5ady4cfjNb36Dm2++GU8//bT2/auuugo33XQTAGDdunUAOrNaZP3798eCBQtKvkYqlUIqldK+VrNmKJoMAyysmk1ENYIBFqJoYIDFZ3KJMJ5ciYiISMUSYUQUNIMGDcJRRx2FU089FX379sUzzzyDm2++GbvssgsuuugitLW1AQDq6+uLfrehoUH7uZlp06bhhhtu8GTbKXhiSnFfMVZ1IKJakckxokwUBQyw+EwuEcYEFiIiIlIVZ7DwJoyI/PPXv/4VkyZNwvLly7HbbrsBAH7wgx8gl8vh8ssvx9lnn43GxkYA0GWhqNrb27Wfm7niiivwy1/+Uvu6ubkZAwcOdPFdUJDEDQIszNYkoqgxO6txaE8UDezB4rOkXCKMg0kiIiLqkgczWIgoOO655x4cfPDBWnBFddJJJ6G1tRWLFi3SSoOppcJE69atw4ABA0q+Rn19PXr27Kn7j6IrFjPIYOGqQyKqEVw8RRQNDLD4rE4uEcbBJBEREXWRhwWZLMcJROSf9evXI5vNFn0/nU4DADKZDIYOHYpEIoG3335b95iOjg4sXrwYw4YNq8amUkgUh1eYwUJE0SOX/VVx8RRRNDDA4jM5g4X1ZomIiEgl34vxJoyI/LTPPvtg0aJFWL58ue77f/nLXxCLxXDggQeiV69eGDNmDB555BFs27ZNe8yMGTPQ0tKC008/vdqbTQFmdFXjPTER1QoGlImigT1YfCb3YOG5lYiMPP7WF3ho4Qo8+NNvYUDv0rXLiSg65DIpvAkjIj/9v//3//Dss89i5MiRuOiii9C3b1/861//wrPPPovzzjtPK/81depUDB8+HKNGjcKkSZOwevVq3HbbbRg7dizGjRvn87ugoGPJHCKqFVw8RRQNzGDxWVGJMJ5cicjA5U8uwX++3Ibf/Gup35tCRFUkjwo4TiAiPx111FF49dVXceihh+Kee+7BpZdeik8//RRTp07Fvffeqz3ukEMOwdy5c9HY2IgpU6bg/vvvx7nnnosnnnjCx62nIDIqm9ORyeHDtVuZyUJEkWF2NuPYnigamMHis6ISYezBQkQltKQyfm8CEVVRcQYLV/USkb8OP/xw/Pvf/y77uBEjRmDhwoVV2CKKmheXbcCLyzbgl8ftg8nHfsPvzSEi8gyz04migRksPpNLhDF6TUSlMAhLVGPYg4WIiGrU3S987PcmENWkmFL+MeQOju2JooEBFp8lpRJhnDwlolK4eJ2otrAHCxERRVmpqxpvjZ1LZbJ+bwKFWJwRFteZnc8YYCGKBgZYfFbHEmFEZEOW5wiimiIf8rwJIyKiWsErnjPXP/0h9r36OXy0rtnvTaGQYoCleji2J4oGBlh8JvdgyXJ1OhGVYNQIlIiiqyiDJctzABERRUiJyxrHvc7836srAAB3zWOJNXImrjDA4j7j8xn7KxJFAwMsPktIJcIYvSaiUniOIKot8hHPcwAREdUKXvIqw+oY5JSYwcJAp7u+2b8nfvTt3bWvObYnigYGWHwmlwjjxYuISuHidaLaIo8LuMqNiIiihENb77A6BjmVEOapGABwV7f6OKZ+/wAcsntvAPx8iaKCARafJRNSiTAGWIiohBwHYEQ1hT1YiIiIyAku3iSnYkKJsAzHnq6QD8dErHMukGN7omhggMVniRhLhBGRdUz1J6ot8rCAN7lERERkBe8byCmx0ArnqNyloHMOsCu+wrE9UUQwwOIzuck9B0FEVArHX0S1JS8VT+FNLhERRQmzLLzD0sLkVJwZLK6TP0VmsBBFCwMsPquTSoSxtDoRlcISYUS1hRksRERE5ASDV+RUPF4IsDAA4LKujzbeVc2Gny9RNDDA4jM5g4U9WIioFJ4jiGqLPDmS5UoMIiKKEI5svcPqGOSU2IOFAQBvJBhgIYoUBlh8Jvdg4ep0IiqF5wii2iLPjWRY74OIiIgs4JoMckocfzIA4A55TB/rmgtkdjpRNDDA4jO5RBhXpxNRKVyJRlRb2IOFiIiInFDnFu6a9zEu/esilgwjRzKM1LlKXWKtZbDwuCSKBAZYfFbc5N6nDSGiUOAAjKi2yPe0XOVGRERRwqGtd9SAyvQ5y/GPxWvxxuebfN4iCgtxgQ8X93hD68GSZQCLKAoYYPFZIs4SYURkHRcQEdUWeVTAm1wiIiKyQh4ytLRn/NkQCjUu7nGHnJWeYIkwokhhgMVndXKTe55ciagElggjqi3yMc+bMCIiihJ50pHcI48h0lwpTw5wjspdStca6xib3BNFCgMsPisuEcaTKxHptaQKq814jiCqMdIhn2UaGxEREVkgz9umOZFLFom3nJks9xs3yLfx7MFCFC0MsPhMrbuo4uQpEcnG//EN7d9ceEZUW5jBQkREUcbbX+/ITe3TGd5IkH3MsHCX0tXmPh7rnI7NMoBFVTTzrVWYs3S935sRSQm/N4D0OHlKRLLFq7Zo/2YQlqi2FPVg4U0YERERWSDfN3RwsoEs0mWwMHvaE+zBQtW2cuN2/PrJ9wEAK245weetiR5msAQMJ0+JqBSuICKqLcxgISIiIifkeAp7sJATnKNyh/wpxtmDhapsc2va702INAZYAoYnVyIqZWtbGhneHBHVDPmeluMEIiKKEs7deqeoRBizYMkB9mBxl9rkPs4eLFRlcaXQokK+PlDlGGAJGK4OIKJy5v3nK783gYiqRB78MoOFiIiIrJDnFu5+4WOftoTCjIt7vJFgBgtVmRBfAXc79zHAEgBXHT9E+3eOezkRlfHVtpTfm0BEVVLUg4V1sImIiMgCeeJ2S2saa7a0+bQ1FFZc3OMOedFUTO3BwgwhqhI1awpgYM8LDLAEwMSj9sJPhw8CwPRAIiqvb7c6vzeBiKpEXnjBm1wiIiKywmhqgaWGyQoxGMCJWHepWQSFDBYek1QdYoCF1ZPcxwBLQMS6zrK8dhFRORzkEtWO4gwWHv9ERERUntEEWkysEUNkARf3eIM9WKjaxPM/j2v3McASEPGuvwRLhBFROVxtQFQ75GEBB8NERBQlbLTrHaMhQ5oZLGSBuOsww8JdCjonudmDhaqNJcK8xQBLQKiRRO7kRFQOzxNEtUOeeMqyTjMRERFZYHTPwIUaZBf3GW+wBwtVW0xscs/j2nUMsAREjOmBRGQRr4VEtUMeFvAml4iIooRXNe8YZQdxMpfs4uI+d8iHIzNYqNrEEmGce3YfAywBEe/a0bmPE1E5XG1AVDvy0tQTyzQQERGRFUZ3DBmOI8gCcV6KAQB3qXPc8VjndCwXT5EfeFy7jwGWgFBTtbiTE1E5XG1AVDvYg4WIiKKMw1rvZHP5oiyWNDNYyCaOPd0hL5piBgv5ifud+xhgCQiWCLOmuT2NCx99B8998KXfm0LkG14MiWqHPCzg8U9ERERW5PIcR5AzYjCA+4w31IbjzCqjamFmmrcYYAkItUQYS/+U9ocXPsG/l3yJCx55x+9NIfKNUT1lIoqmnHS8cxUhERERWZHPy2vmgUyWk7lkD8ee3kjG2eSe/MMAi/sYYAkINYNFnkghvQ3bUn5vApHveDEkqj0sJUpERFFUHAIgtxhVx0hzHEE2ZRmUc4V8OLIHC/mJ1ZPcxwBLQBTSA7mTl6T4vQFE/uMiF6LaoWa2JuK8CSMiIiLrcgY9WJjBQlaIu831/1yKjgz3G7coXdVrtAwWlgijKhEXNLB6kvsYYAkINriyRmGEhYgXQ6Iaoh7tdV0BlixvwoiIKEK4iNY7+TyKS4TxPoIcePaDdX5vQuRoi6y5epJ8wAwW9zHAEhCJiGewpLM5PP3eWqxvbq/oeWKMrxDxYkhUQ9TSoQnWaSYiIiIbcvl8UQCL4wiyQt5LUmku8KmUfCwmYuriKR6TVB3iPshrgfsYYAmIuLoyNaI7+R8XfI7Jf1mEcXe8XNHzKAywELFXE1ENUQ933oQREVEtYua2c9l8vqjHDcsRkRMxrnR1jfpJqous2ReJ/MA5JfcxwBIQhQyWaA54XvzPVwCAza3pip6HJcKIeKNJVEvU2un1CfZgISKi6Cl3VWPmtnO5fPGqea5aJicYX6mcfOSp2eks/0t+4KI99zHAEhBRbXL/dUsKo373It5csank4x585XOMu+NlfN2SKvk4ZrAQAexNSVQ71GFBMs5ebUREFH3y/R6ve87JDe6B6C7oJHfJu06cERbXqOc4NTudQU+qFnFPYwaL+xhgCYioTpz870ufYuXG1rKPu/FfS/GfL7fh7nkfl3wcAyxEXMlHVEvUwW8yzgwWIiKKHnlYWxfXT1FE7f64mow+u3SEJnPXbGnDM++vY3Z/FSiciHGd1l+R+y/5gIE99zHAEhDxiEavOzL2Vsikyj6eF3aifD6PF//zFf786gq/N4WIPKbecyXUXm1ceUpERBGWlAIsnHx0zrhEWHTGESP+5wX84rF38cS7q/3elAjS7zhMYKmcnFGmtQmI0DFJwSbug1y06z4GWAJCPblGbYWO3XdTbmUEF04QdZ4nzvm/t3Dd0x9i8aotfm8OEXlIHQjXcZUbERFFkjTpGNff8EXt/rjaipvcR+fzVOcHX/n4a383pAbEORHjGq3JPbPTyUdcs+c+BlgCQq1pmY7YXm4UFL1r3sdYvdm4bFi5lRFcOUGkX23w5dY2H7eEiLymHu2FDBbehBERUXQlYgywuKkogyWCnyd7CXgvgruN7woZLPxwqfqYweI+BlgCIqo9WOQVMwAwfc5y/OCeVw0fHyuXwcISYUS6OsMRO2UQkUQ93tVxAm/CiIgoyuT7wajdH1eb/OlFsRwRAyzuKw7MRW+/qTZ5L2UPFqo2cU9j2Wn3McASEFHtwWLmq20pw++XyzxlZioRgypEtUQ93pPMYCGiAPjpT38KRVFM/1uzZo322FdffRUjRoxAU1MTdtllF0yePBktLS0+bj0FkTyRW5TBwsnzish9H6I4mcuxkff4GbtHLYuvZbBwopt8EMFYu+8Sfm8AdYpsDxabb6dc/ITxFSL9eYL3nETRltN6sLBOMxH57/zzz8eYMWN038vn87jgggswaNAg7LrrrgCAxYsX49hjj8WQIUMwffp0rF69Grfeeis+/vhjPPvss35sOoVEQmpyn62RBYjVEsUFnRwaua8o84kfcuWKgsldi6cieExSMIlzR1Gbew4CBlgCIqo9WOwes+Wb3DPEQiSmwRuV4SOi6FBXnqoZLCyDQUR+OvLII3HkkUfqvvfKK6+gtbUVP/rRj7TvXXnllejTpw/mz5+Pnj17AgAGDRqEiRMnYvbs2Rg7dmxVt5uCS76qJaUm91zdXRn5843afAOgL59M3uBkrHvUM1xU5wApHHhMu48lwgIiqhksVohpy+V6sBARM1iIaolWIiyhlhLlTRgRBctjjz0GRVHwwx/+EADQ3NyMOXPmYPz48VpwBQAmTJiA7t27Y+bMmX5tKoXA4Xv21X3NhQWVyUvDhihmsLCMnPtqobSc31j+l6qvsK/xvOk+BlgCQk2Fjt6Ax/z9tKezAIAOYbIoxh4sRGWJY7ConTGISC+nZbDU7kIMIgqudDqNmTNnYvjw4Rg0aBAAYMmSJchkMjjssMN0j62rq8OwYcOwaNEiH7aUwuLEg/rjqH121L7mxG5lUtms7usojiMi+JYChwt8KidXntAyWLL5ooAWkdeY+ec+BlgCIqoZLKWuEy2pDACgI1O4WJdtcs8uLES6iyEHY0TRpmWwdNVpTkdsnEBE4fb8889j48aNuvJg69atAwD079+/6PH9+/fH2rVrSz5nKpVCc3Oz7j+KLnksWxeP4eGfHY6de9YDiN79cTXUCX1sUmn9xHg6ghPlnCj0Ho9D96hzXmI5RH68VG08pt3HAEtAqNHrqK3QKTX3qx7Q+gBL6QBKuQwXolrAOq1EtUOdeEp03YRxEoGIguSxxx5DMpnEGWecoX2vra0NAFBfX1/0+IaGBu3nZqZNm4ZevXpp/w0cONDdjaZAU28H40o0FyBWQ0KYuO2QAirRq5jBMnJeYJN798m7aVyY3Ipi4JOCh03uvcUAS0AktABLtE6spQY76kU6LQzyyh3kYvyFk0xUq9IRvDEiImM5qck96+USUVC0tLTgqaeewne/+1307Vvom9HY2AigMxNF1t7erv3czBVXXIGtW7dq/61atcrdDadAMbuqxePRXIBYbUUZLBGbbwA4UVgN/Izd1HluSwqZZvx8qdp4T+m+hN8bQJ3UHizZGpo4Vd+rmMFSrranmOGSzecRY8kwqkFZ4caI10WiaNNKhHVNNOXznQsMYkzpJCKf/eMf/0Bra6uuPBhQKA2mlgoTrVu3DgMGDCj5vPX19YbZL1QrOq9via7SmFxUZ594fyBnsERxItdKBsvcpeux8NOvcdXxQ7S5FzInf6RRzHzym5jBws+XqkHcy6J4LfAbrywBkYhqibASP1OzdTqExnvlasuL00k8IVCUqT2KAKBHQ2cs/DuDO1eHihkscrM8IooW9QZXnAzgiiMiCoJHH30U3bt3x0knnaT7/tChQ5FIJPD222/rvt/R0YHFixdj2LBhVdxKCjr5kqaup1PnHqN2f1wNYsBBXMwIRHMi18ouct7Db+OhhSsw8+3V3m9QhOy+QxMA/QI/ckbeTRNigIWfL1UZSyu6jwGWgIhHtMl9qYNWfa8pGxksYoSFJwSKqn++txZDr3sef3jxEwCFG899d+4JQH+c8DAgija1B0tSuAmL2liBiMJnw4YNmDt3Lr7//e+jqalJ97NevXphzJgxeOSRR7Bt2zbt+zNmzEBLSwtOP/30am8uhRAzWJwTP7FUJqv7WRR7PdiZF1izpdXDLYmePft1A8BAp5vUILKiKJHtxUzBF8Vgu98CH2CZOnUqFEXB0KFDdd8fPXo0FEUp+m/cuHE+bWll1Oh15GqiljhmMwZN7ssd5Ao4wUTR9/+eeA8A8LvnlwEo3DSoDSt1GSw8DIgiTe7BIn6PiMgvjz/+ODKZTFF5MNXUqVOxadMmjBo1Cvfddx+uvvpqXHTRRRg7dmxo79eoOtS7vRgnHp0TS4RlaqBEmI33xP3JGm2BTzyaC4GDggEWqibxFpL3k+4LdA+W1atX4+abb0a3bt0Mf77bbrth2rRpuu+Vq+kbVOqJNWq11UtdKNSLtDhZXLZEmK7JfWXbRhRUMUV//KvXPvU8Ia4842WRKNrUy2KCjTCJKEAeffRR7LTTThgzZozhzw855BDMnTsXl19+OaZMmYIePXrg3HPPLbp3I8pLkzxqz81ERCs8VINYQjiVkZvcR+/ztFM6tZZ63rqBAQD3GO2myZiCDlio5ELksjTPha4LdIDlsssuwxFHHIFsNouvv/666Oe9evXC+PHjfdgy94kTJ5lcHnURCbCUSkFWL9LixaRsk3vh36xBT1EVlwIsOalEkDjAlW9KiShactIKQoCTTUTkv9dee63sY0aMGIGFCxdWYWsoStSrXVRLaFeDrsl9UQ+W6E3k2nlLnEOwRv2U1HmqKO43fhHv9BnAomoSg+88pt0X2BJhL7/8Mp544gnccccdJR+XyWTQ0tJSnY3yUCKitdVLRUXVA1q8mJSrCSvOO0fpcyISyRlscpPrDDNYiFyxrT2NzzYEewyhHf8RHScQUXXl83m88MILePbZZ3X9UYj8YnZF48Sjc+In1p7W92CJYt19OwvOOIayJ8Hj0DV5g7NdUru/5+dL1RXFflx+C2SAJZvN4uKLL8Z5552HAw44wPRxy5cvR7du3dCjRw/ssssuuOaaa5BOp6u4pe6JCxMnUerDkinxXtSLtLiKpFyaGmsGUi2Ix4wzWIx7sPA4IHLqqN++iGNuewlL1zb7vSmm1OM/HlO0RQZcfUlEVlx11VU4+uijta/z+TzGjh2L4447DieccAIOOOAAfPrppz5uIVEx9VrHDBbnxPuDogBLhOYaVHb2Ee5P9vA4dJ+4aLgQSI7ecUnBFsVykX4LZIDlvvvuw8qVK/Gb3/zG9DF77703rrrqKvzlL3/Bww8/jG9/+9u46aabypYMS6VSaG5u1v0XBLqVqRGKXpeKiqoXabEpXbkLi3gO4EWeokquEFgoEda1wkU4TrjwgMi5za2dizJeXPaVz1tiTj3+FUXRygfyHoyIrHjyySdx+OGHa18/8cQTmDdvHm666Sb861//QjabxfXXX+/fBhIZUCD1YOGiAtt0GSxyibAI3kPb6sESwffvia6PqXD/yc/NC2oGC/dLqgbxVMkSYe4LXA+WjRs34tprr8U111yDHXfc0fRxf/rTn3Rf//jHP8akSZPwwAMPYMqUKTjiiCMMf2/atGm44YYbXN1mN4gr1qN08SpZIkztwaIrEVYug6Xwc16EKKrkJvfqrq6tcBGOE950ElUuyJlg6vEfU5TO8oG5PFe5EZEla9asweDBg7Wv//73v+Ob3/wmrrjiCgDAz3/+c9x7771+bR5RJ+kSXJzBwmueXeKwRs5giWJjYzvDOM4h2BOPM4PFLUb7qXqei+JxScHGfc59gctgufrqq7HDDjvg4osvtv27v/rVrwAAc+fONX3MFVdcga1bt2r/rVq1yvG2uklRlMIqnQhdvEpNWqmDZV0GS5koqlgWjCXCKKrEAIt4DGklwsQMFq48IKpYkC8n6jkgpoAZLERkSyKRQCqVAtB5Lpk3bx7GjRun/XznnXfG119/7dfmEZVUCLD4vCEh1yYFWKIYsLIzL8DFadaon1KSPVhcpwht7hMMYFEViac/9mBxX6AyWD7++GPcf//9uOOOO7B27Vrt++3t7Uin01ixYgV69uyJHXbYwfD3Bw4cCADYtGmT6WvU19ejvr7e3Q13STymIBOxlamlrhPqKnxxkFPuws0SYVQLxBJh4kUwEStugseFB0SVC/LlRD0HxMSFGJwcICILhg4dikceeQQ/+tGPMGvWLGzcuBEnnHCC9vOVK1eiX79+Pm4hUYkm9wozWJyQFzi2d0Szyb3TyhacQ7AnHlNLWPE49EJCq1DBz5eqiwEW9wUqwLJmzRrkcjlMnjwZkydPLvr5nnvuiUsuuQR33HGH4e9/9tlnAFCytFiQJWIKUojOoAcol8GS1/1f/rcRZrBQLYgJEZacUQaLcDHM8SaBqGJ50+kd/xV6sBTODZwcICIrrr32Wpx44olaEOU73/mOrun9M888g29961t+bR5RSXGunHdEvkWWM1jSEZkoT2Wc3Q9xf7InGS8uUU3OGH2CCfa4IZ/wmHZfoAIsQ4cOxaxZs4q+f/XVV2Pbtm248847sffee6O5ubkoEyWfz+Omm24CAHz3u9+t2ja7KRGPAchG6uRaMoPFQYBFHDAy4EpRFdcFWArfT8aLa7RyJTtR5YJ8GIk9WOIMsBCRDccddxzeffddzJkzB71798aZZ56p/Wzz5s046qijcPLJJ/u4hUTF1IUF6sIiLiayR/602tJSk/uITKpNePBN7d92dpFsRN6/1/LSccixp3vEdqvq5xulKjYUXOKiwg5OqLouUAGWfv364ZRTTin6vpqxov5s/vz5OPvss3H22Wdj8ODBaGtrw6xZs7Bw4UJMmjQJhxxySPU22kWR7MFS4mfqRcRpBkuUPicikdiDRdznk/HOFS7N7WntezwOiCoX5KNIPQfEYmCAhYhs++Y3v4lvfvObRd/v06cPbr/9dh+2iEhPrnigXuPU8XCUFh9Wg1zlQW5yH5XP883PC2Xh7Sw44+I0e9QSYemI7De+Mtj3CiXC+PlSdXGfc5/jJvfz5s3D7373O933HnzwQey+++7YeeedMWXKFGSzWZPfrswee+yBkSNHYtasWfjVr36Fa6+9Fu3t7bjvvvtw3333efKa1VBIg45OJLFUiTD1gLYTNBGfjiXCKKrMerCoARZ9JhePA6KKBfh6om6aAqXQ5D7A20tEwbFt2zasWrVK9721a9fi2muvxeWXX4633nrLpy0jMqde49RxLyeB7JGHCEUBlgiuWraT5cR7J2vkJvfsweIeXQYLS4RRFYnXhyjNOweF4wyW66+/HnvssYf29ZIlS3D++efjwAMPxODBg3HXXXdhl112weWXX17xRs6fP1/39Z577omZM2dW/LxBE8Xodak5IHVwI15Myje5ZwYLRZ9ZBktdvDgmzuOAqHJBPorEHizMYCEiOyZNmoTPP/8cr7/+OgCgubkZRxxxBFavXo1YLIY777wTzz33HEaPHu3vhlJNk69o6vy/VhqXk0C2yH3ligMs0RtD2Mpg4RjKljh7sHiqUCKMny9VVwePadc5zmD56KOPcNhhh2lfz5gxAz179sSCBQvw+OOPY+LEiXj44Ydd2chaEY/gybXUKlv1feZslQgr/JvpvRRV5UqEibiSncgZ8doT5MNIKxGmKOha5BapcQIReeeVV17B9773Pe3rRx55BGvXrsWrr76KzZs348ADD9R6WBIFhbqqVh33dmQYYLGjXJP7KI4h7GSw8N7JGvVjimIZe78YfYJaFZsIZpZRsHGfc5/jAMv27dvRs2dP7evnnnsO48aNQ1NTEwDgW9/6FlauXFn5FtaQZNfMSZQuXqXeivo+s7oMltIHuVhyjA0PKapiQo0wcS9XV/KJonS+IKomcYJBXu0ZJGKTe7WMACcHiMiKr7/+Grvuuqv29dNPP40RI0bgiCOOQI8ePTBhwgS89957Pm4hUXFAIKdlsHT1fuAkUEXaOuQAS/Q+TzvDImZi2MMSVu5TULin10oh8vOlKuO11X2OAywDBw7U6vZ+8skn+OCDDzB27Fjt55s2bUJ9fX3lW1hDaq4HixpgsdFPQpxU4kWIokpMVMkLp4NkgiXCiNwiXmuDHK/Iaxkshf5MPO6JyIrevXvjyy+/BAC0tbVhwYIFuvu1RCKB1tZWvzaPImxraxpvr9hU8l7QjFqloC6hBlh4zbMql8vjVzP1QdP2tH5uIZ3NO/q7BJmdeQGOoexRS1jxc6uc0WEXj2CbAAoHXlvd57gHy49+9CPceOONWLNmDT788EP06dMHJ598svbzd955B/vss48rG1krolhbvXQPlpzu/53/tl4ijOniFFXswULkPX0GS3Cpm6koijZOYAYnEVkxfPhw3HPPPdhvv/3w3HPPob29XXe/tnz5cl2GC5Fbjr9rAdZsacM9PzoExx/Q39bvqtc4NXOb93zWvfTxBjyzZJ3ue6lMtuhx2VxemziPAjsLVKO0mNVLanY3M1g8IBx6SS2Axf2SvCfOzzKDxX2OM1iuuuoq/Pd//zdWrVqF3XffHf/4xz/Qu3dvAJ3ZK/Pnz8dJJ53k1nbWhEQEG4iVKruiRkzF49pOk3sOtimqzAIsRjdC7EVE5ExWuNYG+TDK6TJYoterjYi88z//8z9IJpM49dRT8cADD+CXv/wl9t9/fwBANpvF3/72N4waNcrnraQoWrOlDQDwzPvryjyy+H4xowVYWCLMrvaO4mCKes8tVCCO3DjCTlZOhKZaqqLQg4XHoRfiMWbqkT+iNO8cFI4zWBKJBKZOnYqpU6cW/WyHHXbQ0tHJuiiuDrDSg0WcQC63Gl8cN3VwsE0RFY+JAZbO/ytK4Rwh4kp2ImfEa22Qe5qomxZTlEKZhgBvLxEFx+DBg7Fs2TIsXboUvXr1wqBBg7Sftba24ve//z0OOugg/zaQIs9JtkBTXRwAAyxOJAyy3dXPLxGPaQsUozTfoLKalcNAgTVak/s4F/e4xSgImIxgFRsKB15b3ec4wGLms88+QyqVwpAhQ9x+6siL4uoAKz1YxMhpuQt3nhksVAPEFWbqPq+gcI4QcaKVyBnxRibIA0ytB0sMiCssEUZE9iSTScMgSo8ePXTlwoi8YGXSUB3KnjdiT7SkMhi+d18AQD17sNhmFGBQxzh1YoAlwOMepzK5PBLx8o+L4Fv3lBq042p394hHqbqwMh2hOUAKLjFjlPuc+xyXCLvrrrtw1lln6b53zjnn4Bvf+AaGDh2Kww47DF999VXFG1hLCk3uo3PxstSDxUYGC3uwUC1QhBJh6i4fE/oviLjahcgZcVVtkG8atSw2KIhxlRsR2ZTNZvHnP/8ZZ5xxBr797W/j29/+Ns444ww8/PDDyGaLywkRucnO9eqn3xmEW049UBsHqxksrFpgXdIg210NUIn3EVEMWlndT7hIxZ4Ex56eUgNY2QgekxRsQb7/DSvHAZY//vGP2HnnnbWvn3/+efz5z3/GpEmTcPfdd+Ozzz7DDTfc4MpG1opo9mAxpwaSxEFONle6fqpYxiXFwTZFVNygB4tYHkjEwS6RM+K1NqgZLNlcHkvWbAWglgnkTS4RWbd161Z85zvfwc9+9jPMnj0b6XQa6XQac+bMwTnnnIMRI0agubnZ782kCLOzcFBcYAQIJcK4qM6yUiWyoj6OsDqHwib31qifZkJbBMzPrVJGe2hCy2CJ3jFJwcMm995yXCJs5cqVujJgM2fOxJ577ol7770XAPDll19ixowZlW9hDYlHsgeL/r0cuVdfvPH5RuTyQDrT1eReekwuD5iNDXU9WDjYpogSF5+JPViMM1iqtFFEEZPRlQgL5nX3vpc+1f4dUxStyT1LAxKRFVdddRXeeecd3H333Zg4cSKSySQAIJ1O449//CMmT56Mq666CnfffbfPW0pRZalEmMn3k103hJwEss6onLBKQee9RCaXj+RnarXsWYSmWqpC6//HD841YjA5HsE2ARQOQb3/DTPHGSxylsHs2bPxX//1X9rXgwYNYqN7m5IRPLnKAZaThw3Ar8ftBwDY0tYBoPhiXWp1RI49WKgGxMQMllwhg8Uo7T/IzbmJgky89gR1Vd7vnl+m/VssE8ibXCKyYtasWbjwwgtx4YUXasEVoLMvy89//nP8/Oc/x5NPPunjFlLU2cpgkb6uYw8W24ya3KsURdGygqK0oFNlNQMgqGO+wFGb3EdwEbBfjG7bkxGsYkPBJe5lUQy0+81xgGWfffbBrFmzAHSWB1u7dq0uwLJ69Wr07t274g2sJbXQg0VRgB261QEANrYYB1hKTRwxwEK1QMxUUXf5mALEWSKMyDVh6cGiiglZbAysEpEVGzduxL777mv68/322w+bNm2q4hZRrbHU78LkIezBYl+5DJZCNkL0PlOrpeTY68IerawcPzfX6JvcM4BF/gjD/W/YOA6wXHbZZZgzZw769OmDE088EUOGDMF3v/td7ecvvPAChg0b5sY21owopl8WB1gU9O0KsGzabpbBUirAUvh3Bxtz+uLdLzbjwVc+Z4NAD8UMerAoimJ40xSl8wVRNYnHThgmbxQhg4UDYiKyYvDgwXj66adNf/70009j7733ruIWUa2pZNJQ68ESgmt0UJRaf9HZgyW6WUFWM1NYZtWeKC4CDpJCBgvPc1RdHdlcyf7XZJ/jHixnnXUW+vbti3//+9/o3bs3LrzwQiQSnU+3adMm7LDDDvjxj3/s2obWgngEBzzyARtTFPTtXg8A2NiSAlC8ErfUxD17sPjvB/e8CgDYs183HL3fTj5vTTQZB1jMerBE53xBVE36HizBv57EFCCuMIOFiKy78MILcdFFF+H444/HpZdein322QcAsGzZMtx1112YM2cOfv/73/u8lRRl1nqwFMa6IvZgcVthsVYUF2pYnUPhvZM16nGplp3j51Y5o0+QASyqJnl+NpvLawv9qXKOAywAcNxxx+G4444r+v4OO+yAv//975U8dU2KZg8W/dcxBVoGy8btHcjn80UXk1IXlzxLhPkqlSlkDakZSOQ+MY6iHg8xRdFWnYm4CovIGfFGsTUV/IzIWExBTBsn+LwxRBQKF154Ib766ivccssteP7553U/SyaTuPbaa/Hzn//cp62jWlDJpGGdmsGS4VjXqrxZvTV0ZbCoQasIzTeorAaNGCiwRwvKRXCf8YsYTNb6IkUw6EnBl8nlkYj7vRXRUVGABQC2b9+Ol156CStXrgQA7LHHHhg1ahS6detW8cbVmihGr+VBXkxR0Lups8lmKpNDezpXlLFiuQcLZ5iqbsXXrdq/1V465D4xg6W1o3Pitz4Rg1FZZZZqI3JGXBHb3J72cUusiSlCHWwGVonIouuvvx4XXXQR5s6dq7tfGzNmDPr16+fz1lHU2Vk4qEht7pMJlghzWzLC2QhW5waiNNfiJXWoqQblcvnO+85YiT4/ZF8U5wApuOS9rCObQ0OSERa3VBRgufvuu3H11VejpaVFl1nQo0cPTJ06FRdddFHFG1hLtB4sEYpey9cJRQEahQM4lck67sGSYgZL1a3aVAiwcBDgHbEU2PZUBgDQkIxDkWsngH8HIqfEa8+29oyPW2KVkMHCySYisqFfv34466yz/N4MqkGWSoSxyb1rSvZgQWGhRhSDVlZ7WHBxmj3qcQh03nfWMcDimFG/i0QEq9hQeDBzyl2OAywPP/wwLrnkEhx55JGYPHkyhgwZAgD46KOPcPfdd+OSSy5Br1692IfFBnVSNR2hi75Rk/tEPIZ4TEE2l0cqkysaeJcKMOVYIsxX4mQ+G7F5R1wZ1KIFWIrLgwHsxUDklHg+a24LRwaL2oOFgVUiMvLFF184+r3dd9/d5S0h6mQnU4I9WCpX6tMW+zlGcVLN6tiIYyh7xIV/Ucx88oN4qktEcA6QwoPXV3c5DrBMnz4dRx11FObNm4d4vJCRcOCBB+K0007Dsccei9tuu40BFhvU/gpRil4XN7nv/H99IobWjixS6VxRqZNSpU/Y5N5f4t+Tg1PviAuDxAwWIxzoEjkjBvNbOjKBL3sQU5RCpiuPeyIyMGjQIMNs13Ky2eD3oaJwsnK/YPYIrQdLBIMBflCgRKpE2KF79ME7KzdrX1udKOTiNGvUTykZEzNYcgBYTshNCfWY5HmOqkA+/THA4i7HAZZly5bh1ltv1QVXVPF4HKeffjouu+yyijau1iQiWH9RHsCovSW0AItBibBSASb2YCnt7nkfI53N4Zdj9/Xk+cW/FBvdeScuTI7cM/9TAECDSfexKNwgEflBvNbm88C2VAa9GpM+blFpMUXRbnKjNE4gIvc8+OCDjgIsRF6ppBxTUmtyX717jpeWb8D9L3+Kad8/ELv3bara67rFqASRStfkPoL30VYDcRxD2ROPM4PFbeJ1ujAHGL1jkoKPCxjc5TjA0qtXL6xYscL05ytWrEDPnj2dPn1NikewB4v8TgoZLHEAaaQyuaIgTOkeLGKJquh8Tm5oT2dx25zlAIDxR+yBnXo2uP4a/PyrQ/xkP/mqBQBQzxJhRK5KZfQrtre1pwMdYFGUwjiB518iMvLTn/60ot/P5XJYvXo1dtllF9TV1bmzUVTT7Exmy6FBtcl9qorBgJ88+CYAYMrMxXjy58Or9rrVIPZgiUKQQQ4mWS1fzVsna9TPNyFkd0dhvwkaNYOFny1Vh7PzJlljPGNnwQknnIC7774bf/3rX4t+9vjjj+P3v/89TjzxxIo2rtZEacCjklctqdF6dbI4lckWTRSVmjgSB0RRXHnjltYOb0o9iJ9/lPbToDEKmpgFUvh3IHImldZfQ9ZuafdpS4wVl9hUkOQqNyLy0IYNG7DnnnvilVde8XtTKCKsNbk3fozYg6VUZoYX1m1pq+rruUX+lJJxfdhKLUkehfto+b2yh4U3FBT6sDCDpTJGp7FEhPsiUfAxg8VdjgMst9xyC/baay/86Ec/wq677orRo0dj9OjR2HXXXfHDH/4Qe+21F2655RY3tzXy4lrpj/APeFTy4apeVOrVFUnp4gyWUhdu8aG8wOtVI/ikz2CJzn4aNEaDL7OeQ5WUXiCqZXIGy+wPv/RpS4zJh3YsVljlxsEwEXml2hPZFG2lemsWkVJY1B4s+Xz17/vCOlkvf9wJoX+GEvFebrw39YhSCLBwYZ87dE3u41w8Rf6JQrA9SBwHWHbccUe8++67mD59Og444ACsX78e69evxwEHHIDbb78d77zzDvr16+fmtkZeMoIrA+RBnjpBX9/VT6I9k8Xcj77SPabUQFyc4A/rwNcreSGcVY3+NBxgecfokzULsNi6cSUiTbuUwfLFplaftsSYUQ8z7SaMg2EiIgoBK6WvzR6h9mABqr+wICrX2YSUwaJ+plFYLc9mzd4SP141yyJKpez9kDc42zGDhapJPm8ysOcuxz1YAKChoQGXXHIJLrnkEre2p6ZFsbZ6UW3UnBpg6Rzcvb96a9HvlAowMYPCnPixebUPsQdLdRitHk2ZBVh4GBA50p7uzGBpSMbQns6hLe1NaUWn5GthTAGb3BMRUahUcr0SAywd2RwaEXdjkywJ73VWv93iZ6gImQjpCEyqqe80GVeQzuaZ3euhKO03gSDEPRMc25OPOjLc79zkOIOF3JeIYAaL/FbUckZqD5Ytremi3ym1+kR8vih9Tm4QJ+W9WsHDHizVYfTJmv1NWSKMyJn2rhJhfZo6Gzm3edS7yqniOKsilGjgDS4REQWftR4snf9XIGdbFL6udnZCWBeSFZcIK3yGilL4TKN0H61NUHPVmavE47IuQplPQRNniTCqIvkI5n7nLssZLMccc4ztJ1cUBfPmzbP9e7VK7cESpdJXcomTQgZL5woksQb+kP498dG65jJN7r0PIoSVuNt4VSJMnyXDz98zRj1YTD5vXhSJnFGb3PduqsO6re2By2CRr5/ixAhvcImIKAwqKWWrKIqQnVDlAEtExte6DBYoQpP7CIwjuvatZFxBW5qL/7yklprj/EtljE6HWnZ6FI5JCh0e0+6yHGDJ5XJQFKX8AwVskmhPYUVJdHZyeQ9QV9s3dGWwqCuGB/VtKjS+NymFBEgT/BxE6ema3Hvz2eTZA6cqjOqzqj1YEjFFt+/zz0DkTCGDJQkgeBks8qRULpdnk3siIgoVO5kSRlMNdfEY0tks0lUuYxLW66y81XIPlij1clPfa13XHEI1epDWos4FPvyM3SRm6xWy08N5zqFwC+u1LqgsB1jmz5/v4WYQIJxcI7STy0G2rNTkvrVrQiumKIXBUYkAizjxHKXPyQ3iZ5Mu8RlW9Bq6Em0cYHnF6KP97WkHAei8MRIHYFFK8SeqJrXJvVYiLGAZLHnpPJDJ5QuNMHn+JSKiGpBMxICOLCd2HZJLhCUiOJmbZPkqz7FEmHeiWLaPgquoyT2PaVdVrQfL5s2bccwxx2DRokXVesnQiWIPFvkAzmolwroyWLomtBQFQgaL+SSXvgcIB9qiXBU+Gwa4qkPOYOnRkMCofXYEUEgjVkXpfEFUTWqT+95qBkvAAixyibBsLs9JBCLyVPfu3XHddddhr7328ntTiAAUJs9/8uCb2NLa4fPWBF9xDxaxRBi0TNgojCPU91oYG3FuwCssEeYOo6NOXWTNz5b8wP3OXZYzWCrV0dGB+fPnY/PmzdV6ydBRe7C8v2YrPvmqBYN36u7zFlXOaIIIKART1AmumKJo3yuZwaLrARL+gaGbxGyhDo8+G3Eun+mE3pFvjrrVFU7Vcqo/AyxEzqjlKNUMltaAlwjL5vJsck9Ejmzbtg0rV67E5s2bDUs4H3XUUQCAbt264brrrqv25lENE/dHo2Lk6sr5NVvacOvsZbjplAOqtGXhJB/f4n2DoihIRnAcoWYA2Clfnc/nbZe/ryXycckSYe4Sdz31s+U9PVWDfI1ggMVdVQuwUHlqBsuGbSmMmf4SVtxygs9bVDn5MqE1uU92lghr0wVY1Mb3pUqEFT8XddI1uWeJsFCT92whu19beaaqpHkoUS1TA/x9unUGWDoyOV0Qw2/yAoVd+zTiP182A+ACAyKyZuPGjbjooovw5JNPIpstDiKrk4xGPyMKgqQQINiwLeXjloRTIq7PYIlHqMm9mvGvTlDbKZGdywPxYAz3QoEZ1O4wum0vZLDws6Xq437nLgZYAsRoZXpQJnqcki8iOblEWEehRJilHizCEzINWE8sK+VVgCXHJvdVIR834gqrpHROyPHvQORISuvBktS+15bOont9MIZG4nnguUtHol/3eq3UB8+/RGTFxIkT8c9//hOTJ0/GyJEj0adPH783iciUUUZBMl61iuaRII8OdPcNitjvIfz30eo4SZ1DsLP4MpPLIR6Le7FZkSCOQRVF0TLJuNrdHeKZrtAmgJ8tVV+UshmDIBizCARA34QO6LyABfnC35HJ4euWFAb0bjT8uVEJglH7dvaRKJQI6zygxRJhpXqwiDjBJNFlsHizElH8xLOMdntI/9mKbVeYwULkDvVa06sxCUXpvJls6whOgEUtFVAXj2G/XXoCKCzE4AIDIrJi9uzZmDJlCn7729/6vSlEhsoNYxlgqYyuRBjEXhrRuX9IWOxhEY8p2tgqk80jIMO9UGAPFu9EqS8SBZ+8l3m1MLtWccQSIPGQNa8+8/7XMPyWF/DuF8Z9dcTNf+Xyo/HS/xuNfXbuAQBaOTCtRFjMagZL4d9B/3yqTfw4SpVZq0Rel8HCk7FX5JvNuLCijz1YiNyhrnSMxxQ0qmUrA9SHRc0YNKrTzJswIrKiqakJgwYN8uS53333XZx00knYYYcd0NTUhKFDh+Kuu+7SPebVV1/FiBEj0NTUhF122QWTJ09GS0uLJ9tD4WdUtyGZKNwfc01RefJnJAeo1EzYKKxaLm5yX3oHEe+nWGrcHq0MG8efFckbtLlPaH2R+NlS9XG/cxcDLAEiZ7AEfQJl0RdbAAAz31pl+HOxnFSP+iT26NtN+7o+qS8Rps9gsTbgy+byhlkytaoaJcLEjzvo+2eYFfdgEUuEhSsQSxRU6vkspiiFAH+A+hCocx9iqVA2uSciO8aPH49Zs2a5/ryzZ8/GkUceia+++grXXHMN7rzzTnzve9/D6tWrtccsXrwYxx57LFpbWzF9+nScd955uP/++3H66ae7vj0UXuVGsXVslGGLPIErzi8oilKYzI3AfZz6DtQxnJUMFhXvn0oTPx2xyT0zWNwhLp7SstM5tqcqkKdP7fSuovKYGBkg8sr0sGQImEU9dbU7pVCe1oMlrfZgKUxwlW5yr3+tdDaPugQH3oDU5N6jwY8YNOPA1Dtyc2ujQZiKfwciZ8QMEbW29PZUgAIsXdunC7DGucqNiKw77bTT8NJLL2HcuHGYNGkSBg4ciHi8uPzwIYccYvk5m5ubMWHCBJxwwgl44oknEIsZr9e78sor0adPH8yfPx89e3aWORw0aBAmTpyI2bNnY+zYsc7eFIWCWnqzUiwRVhm5yb1WjihC4wht8r/MexLvpziZbU+SJcI8E2cGC/mIbRfcVbUASzwexx577IHGRuN+HYSihvZhmTg1205xklgOgaglwlQxpfC9kgEW6aXC8hlVg5jN41WZG/Hz5wDLO/J+HtOVCNPfaMrBGCKyR8xgOfkPC3HHmcNwysG7+rxVxiXCtCb3EVh5SkTeGzFihPbvOXPmFP08n89DURRkbWTvPfbYY1i/fj2mTp2KWCyG7du3o7GxURdoaW5uxpw5czBlyhQtuAIAEyZMwJQpUzBz5kwGWCIuGY9ZyqgX718MetxXPcCSiCnhnugsKhEmZrAICzUicB+n7jtO3hPnEEqTj0uWCHOH0W27Wp0in+/cL+U5QSI3yQvWo3AtCJKqBVj69euHzz//vFovF0oJaQVYWCawrWxnTBoxNyRjRT+31INFfu1cDo0oXolXi8QL9ta2tCevIU7mh/rmI+BKlwgLZyCWKGi0AAYK5SUA4NLHFwcqwCLeaLHJPRHZ8dBDD7n+nHPnzkXPnj2xZs0anHLKKVi+fDm6deuGH//4x7j99tvR0NCAJUuWIJPJ4LDDDtP9bl1dHYYNG4ZFixa5vl0ULHUWAyzliAGWaox4E/FwB1jkLRfnFxQUSoRFadWy1cl/lrp2jiXC3KUIy4/jQhA0k8shHuPcFlUPj2l3OQ6wHHPMMSV/rigKGhoasNtuu+Hoo4/GaaedhkSCFclKkaPVYbnwW8pgkQLxxhksaokw81V0cs+VsHxG1VCNAIsozDcfQSfv5zGDCVZVLl9YgUpE1qmHmaIoWomwIFFPsfoSYdEr7UFE3vnJT37i+nN+/PHHyGQyOPnkk3Huuedi2rRpmD9/Pu6++25s2bIFf/nLX7Bu3ToAQP/+/Yt+v3///liwYEHJ10ilUkilUtrXzc3N7r4J8pw4Xs3l8rqxrBnFoM19tUtBJ2MxtCM6E076HixAXGsIH533WGdx8l9cuc0FatYpUAolwtivwXVif9VMNo96TplSFTErzV2OD99cLoc1a9bg008/RZ8+fTBo0CAAwIoVK7B582YMHjwYvXr1whtvvIEHHngAt9xyC+bOnYt+/fq5te2RU9TkPiQXfrODUpwjljNY6hP6ySzFYQYL66cWiIPGqmSwRGhgHnTiqcGoVEI2ly8KvBBRaWIJLvmaFASFHiyF77HJPRE51dLSglWrVgEABg4ciO7duzt+ntbWVlxwwQW46667AAA/+MEP0NHRgf/93//FjTfeiLa2NgBAfX190e83NDRoPzczbdo03HDDDY62j4JBHK+mcznUm6zKLne3W+0SYfGQj6flEkTy/YGaCR+FAIP6XguLT6yPjcIyz+IX+dOx2ueGrFEMxvYA90uqArnJPef0XOV4xHLTTTdh8+bN+POf/4yvvvoK77zzDt555x189dVXeOihh7B582bcfffd2LBhAx588EF8+OGHuOKKK9zc9siRB0BBnUBpT2dx1v2vaV9nTbazVG+I+qISYdZ6sMgnBGawFOSqkMGiS63mAMAzpXqwnHbobgCA3foU+lll2YeFyDb1qBFLVAaJOvmhLxGorjzlMU9E1rz11ls4+uij0adPHwwdOhRDhw5Fnz59cMwxx+Dtt9+2/XxqP82zzz5b9/0f/vCHAIDXXntNe4yYhaJqb28v25PziiuuwNatW7X/1MAQhYeYGVpJqTBdibAqXPrkkt1hJ/duTESwl0ZCa8Buo0RYQOdZgoolwrwj9kniAlaqNt5TustxBstll12Gc845Bz/+8Y9134/H4/jJT36CDz74AFOmTMFrr72Gn/70p3jttdfwz3/+s+INjjJ5QBfUnf25D77E659t0r42m2gXv12cwSKXCHOYwRLQz8gPYlmpZs8yWAr/5gDAO3LzMXEF+0kHDcAefbthQO8GHD51HgCA9whE9hVKhCGQARZ1+8Trp9VJBCIiAHjjjTcwevRo1NXV4bzzzsOQIUMAAB999BH+8pe/4KijjsL8+fNx+OGHW37OAQMG4MMPP8TOO++s+/5OO+0EANi8eTP23ntvANBKhYnWrVuHAQMGlHyN+vp6w+wXCg9x0rDUNUsXNAlIk/swk+8hkroSYYUeLFEIMKjvNemg7BnnEEqTj8taLBHmRcN5uQw40HlcJuMK0tk8Oji/Qh4r6mnNfc5Vjkcs77//vlYWzMigQYPw3nvvaV8feuih2LRpk+njqbgHS1B3drnVg+l26gIs+h/J5VhiiuKsB0sEBoduqUoGi/BHZQaLd+TdWuyvoigKhg3sjZ4NSe17zGAhsi8vNrkPZA+W4hJhCa20B699RFTeVVddhV133RXLli3Dvffei8mTJ2Py5Mm49957sWzZMgwYMABXXXWVrec89NBDAQBr1qzRfX/t2rUAgB133BFDhw5FIpEoypDp6OjA4sWLMWzYMOdvikJBHLtWksFSV+WSXW5PqFZbcYkwscl9YaFGFAIM6ntV5xDKZrAI/+ZEtj211gPwn++txdDrnse8j9Z78vzyfJp6H1LJuZLICZb9c5fjGYX+/fvjiSeeQM7gJj+Xy2HmzJnYZZddtO9t3LgRO+ywg9OXqwnyipmg1kbtLnXestbkvnQGi7iCuNSAp7gHSzA/I38UPovtHVlP9h9danUEBuZBJa8+M7rZE78X1HMFUZCph40S9BJhwrEei1DtdCLy3htvvIHzzz9fd0+m2nnnnTFp0iS8/vrrtp7zjDPOAAD86U9/0n3/j3/8IxKJBEaPHo1evXphzJgxeOSRR7Bt2zbtMTNmzEBLSwtOP/10B++GwkRcFGd10aA86QjIGSzeX/siViFMV4JcUQoVM+zcQ//fws8x6ncvYvXmVte3zw2F7F7rk9PtafMFnaSnKIXjsFYCUxf/ZRHa0lmc+2f7ZTRLMVsTmbRQyYXIC6xK4y7HJcJ++ctf4uKLL8Z3vvMdTJw4UUsF/+STT/DAAw/grbfe0hofAsDf/vY3W+nntUjuwRLUEiByuS/TJve639H/TO7BoogZLOkSARY2ZTIlfzZep7W6nT30+mcbsaU1jXFDiycBak1xD5bix8QVBliIKqEGMjsD/MbNd/2kHta6EmEMsBCRDbFYDJlMxvTn2WwWMZszygcffDB+9rOf4cEHH0Qmk8GoUaMwf/58/O1vf8MVV1yhlf+aOnUqhg8fjlGjRmHSpElYvXo1brvtNowdOxbjxo2r6H1RuJTqrykvKpJVu+l83CjKEyJFzcmF41sRSj3ZmVS7/p9LAQA3/esj3PfjQyveRreo79VydoXwYwZYSpOPy0QNlgjzlv48U1djASzyD+dTveU4wPKLX/wCsVgM1157Lc477zwtQyGfz6Nv376466678Itf/AJAZ4PD22+/vWRJMTLowRLQEiDyid9JBotcjqWzyb2VDBb9a3GSqUD+KHIelI3yssn9Wfd3rqBc8OujMXCHJlefO2zkT1Y+fgD9qnYeB0T2qZfYWFftYyOLV23BS8s24ILRexVlXnotb1AiTA22sCwgEVkxfPhw/OEPf8APf/hD7LHHHrqfffHFF7jnnnvwne98x/bz3nfffdh9993x0EMPYdasWdhjjz1w++2349JLL9Uec8ghh2Du3Lm4/PLLMWXKFPTo0QPnnnsupk2bVunbohAQr1KVTOBUO+ARC3mJMJkugwWKtvjOyULOtoAFJdRxktUeLOI8QltHMOdZgqquxkqEVZuVXsREXgjqov6wchxgAYCf//znOO+88/D2229j5cqVAIA99tgDhx12GJLJQn+A+vp6jBo1qrItrQFytkFQL2DyINls0Cw2EJbJGSydPVg6J6/sZbAE8zPyQzWCT/om99589qs3t9V8gEWOsJjd68VjCrK5vCfBNKJaoaC4L5jqlD8sBAB0b0jg3BF7VnGrjEuEqeOEgK6/IKKAufnmm3HUUUdhv/32w/e//33ss88+AIBly5bhqaeeQiKRcBTwSCaTuO6663DdddeVfNyIESOwcOFCR9tO0VFq0lAcwhoNd+XKCV4TAzr5fN5wkVOQidUGJhy5h1RirRCMcHKfGNQFXerkv515gaAFi4JGPi7VhUjMsKiM2R7KAAtVizxnyAwWd1UUYAE6B9hHHnkkjjzySDe2p6bJPViC2uNCPgjNBltiA2GZUQaLpR4s0ktd+9QH2HvH7rjzrGGhGwC7TZ5w8yJAp2ty79HJmAO34guf2c2lGmAJajCWKMgKTeSVsk3uP/+6pRqbpFOqRFg1M1y3tafxzsrNGDG4n65ZLhEF38EHH4w33ngDV111FZ5++mm0tnb2UGhqasK4ceNw00034Zvf/KbPW0lRJN6zVTKBU+2EEnHBYyaXN81wDSr1Y99/QE/cePJQ/O9Ln2o/6+zB0pXB4mAcEbTqGoUSYdZ6sIj7JAMs9iQsZgmRNaZN7vn5UpUFbc75kddXon+vBhw7ZGe/N8WRigMsS5cuxWeffYbNmzfrVkyoJkyYUOlL1Ay5xmxQL2DpjLVMCfW7RpPDiXhMmxwG5B4s1gc8H65txodrm/Hz0XtjSP+eln8viuRJ+ZzXGSweTepz5UZxINGsl04ipqAD3vytiaJOzLIs1+S+W33FwyXbckYlwtQMlnz1VtZOePBNLPpiC3553D6YfOw3PH89InLXN7/5TcyaNQu5XA4bNmwAAOy44462e68Q2SHel1gd2xtd0xRdRknl21VOTOpxmAxeizZL1Pch3kMoECfK7X+YAYuvaJMNaoNwO/embR3mvalITxEWItVK9ZD6RKxk7ygvXg/gPEhYvbx8A978fBOmHLeP6z2QvRakoN6yL7fh6n98AABYccsJPm+NM45nDD799FOMHz8eb775pmFgBeg8GTPAYp1coiSoq9Llg9BsBYy4OthIXTyGtly26zHWMljMbE9xkCQfhp7sP7om9wyweEUu+WU2iRrXVrMH81xBFGTqcWYpwFLnZ4BFKBEm/DuXB6qxsHbRF1sAADPfXsUAC1GIxWIx7LxzOFcEUrhVMoEjDoGrURJX7FkSyvG1tMm6EmGKomWwOCn3FbQMFlVSm/wv14OlgD1Y7EkmrGUJRYVXARazU5i6D3MeJJwmPPgmAGBQv2447dDdfN6a0ornDIOzz23cnvJ7EyrmeMbg/PPPx5IlS3DHHXdg5MiR6NOnj5vbVZPqE3E8+fPhmPCnN7C9IxuonV1UVCLMZCWDNm4zmQCqT8a09FyxB0s6m0culzdsMpgXJsTEk0N7ib4ttUI+WXpxEyKOxb0aYHVkmbIt/+XMFkIUbpK4/xPZVbhEKaiLFy9RFW9ymuqqv4TVqERYXDfxk0M8Vr3tYqYcUfDdeOONUBQFV111FWKxGG688cayv6MoCq655poqbB3VEvE2xHIGi8H3xGtgNQIeugyWEK7WVzOH1Lehb3Jf+NrJfVzQerCoW1NnMcAiYokwexIx+59xmNUn40C7dwt45XNdJQuNKTi+2NTq9ybYFqQSYeKCgDD2QAMqCLAsXLgQV155JS6++GI3t6fmHbpHHxy+5w54cdmGwKZgWj0I8wblTURizfuYouhWEHdkc2gwmDjSaq3GYroLUDsHSVVpci++hleDbK7cKA6WmfdgsZ8ST0Sd1OMsFgN26llf9PNt7Wnt301+ZLBoTe4L39NlsFT5VJmtRm0WIqrI9ddfD0VRcPnll6Ourg7XX3992d9hgIW8VuqettylRbyPrMYEv74HS3jvSdR3kRQGEYpSmMBycu8QtPsNda4habHsmVh1hXMHpRU3ua+tEmENSW9KaMrzNSo2uY+GMCx6lffAIAX1EiHvgQYAjs8c/fr1Q69evdzcFupSSW3UarB6EGr17U1SWMSAiqLoS6SlTDJS1OeUD7b2jLNB0ubtHfhgzVZHvxs08pjXi5sQXQ8WF/dPccDLgYX1DBY1RhnUcwVRkGkZkVAwet8dte+rx9s2D1euWaFmIYpBFXHip9oBj6CtXCWiYrlcDtlsFnV1ddrX5f7LMnOYPKDLYKlgHxNXsFZ7vBvG6548NGiQMnDVcUQUMlhUalZOJpc3LV0PyCXCeN6zo67GSoQ1JLzNEGeT+2gKWhDaiiAd02IGS5C2yw7HAZYLLrgAjzzyCAflHgh62R95Zzc7jWirg81KhCX0GSyJmKJdbFIm+5Ua9U9K9fKdlggb+dsX8b27X8F7q7Y4+v0gkQeUnmSw6Jrcu7d/is9bzYZygSX9Lc0yWNR07aDe8BAFmXrUxBSgf69GnHFYZ83cXo1JAECzkMHix/VYPawVswALJ5qIiCgE0plSk96FnxkNd8XvmfX9dJN4PxXGyTJN1wfXvb4wUaygkNHirAdLsD4PuUQYYH0bWSKsNPm4rLUMlnqPMljMMIMlGsJUVlK9tgap1YJY0rLUuCHIHNe82GeffZDNZnHQQQfhZz/7GQYOHIi4QQ3zH/zgBxVtYC1KmFzA8vk88nkY9iapJqvRxEIDYbMMlsL+ElM6H1efiKE9nSubwZKI6S96Tpvct3T93sJPv8ZBA3s7eo6gkMeTXgyCxZuOXB6mvXJsP6/wb67cMMpgYZN7IreJTe4B4MLRgzHz7dXatbdVWN3oR3BBfU3xFCtmszCDhYjKicfjmDFjBn74wx8a/vzxxx/HD3/4Qy6YI0+lKhjb63qiVOE6JL5CGK978tCgm1DiVFGUQraHg4nAoH4e8qpn8WuRvn8rz3l21FoPFq8yWMo1ub/hn0vx0+GDQtl7gsIxJ6PO53WvS2BbKuN4HtUL4n1uWOcEHQdYzjzzTO3fl112meFjFEXhgN2BpDZpqt+pLvnrYryzcjNmTzkK3eqrXw9eVRz4MX6c1kDYYgYL0LkCpT2dMz2gCitV9E/aUuGJoSlZ/QbG7tP/Ibxoci8/YzqXQ70LTZblEmEtqQyScQX1HqfnBlVRDxaTRTSFbLfgX8yJgkYrY9l1/UlKDSbFpu5+DJjV86KYtRLzsTY8zzNE4VOqXA4AZLNZTuSQJ8R9L225yX3xvih+pxqru/XZ+uG77mn3313/F+cMdE3uHYwhgtaTxqh0uNUMizD+bf2iQKm5EmFiBosXzbblc90qoTl6SyqDHg1JV1+PqsOL+TevdG/oDLC0dmRdWzRdKfHTC+u5xvEs/YsvvujmdpBAG/hIA4Sn31sLAHjugy9x6qG7VX27VFYHt9rqYJOf63uwdD6qPhkH2jOmr6ENpBKVZ7BkhIO2sS78E/ny+dyTHizSc7r1GuKzbGlNY+h1z2PnnvV448oxrjx/2MgXZ7NBXdwkGEtE5cnXKG1xQ9e1IavL2Kv+gNmoRBjQGVjN5PJsck9ElpiNIZqbm/H888+jX79+Vd4iqjWlVqKWb3Jf2H+rkXWgz2AJ7/ha/dh0ARalkImQd1CJIGgfh1rGKiGWCLM4KRfWybtqkY/LZMB7BLtNrJbiZrNts09v/bZ27d+tHVkGWEIqDIFbdQu7C9eG7R3BCOqJ552wnqMdB1hGjRrl5naQoNwFzO8eFcU9WIy3U+vBYjJw02ewdP5fraFq/h67BlLSc7Y6aFQnZr00mGSwPPP+OsxatBq/O+0g9OlWZ/s1qqkaTe6LMlhcGmSJJ9NFX2wGAKxvTrny3GEkD2rjZQIsQbvhIQoFOYOl6/qTy3eeP8VTqB8DZjWgIV9CYzEFyOVZIoyIDN1www248cYbAXSe38aPH4/x48cbPjafz2Py5MnV3DyqEbqVqBXcux6yR2/t39XumxGGyTKZnLXWrV5/j6urcW+zEkFQF3TFlMLiE6t/s7BO3vlFDTiEtWyPXWKZuY6Medk5p+Rb+zWb27R/B6lkE9kTph4s9cmYdt4MStaUOK8c1nO0f3WmyFShiZjxTuV3zVCrKxfy2uSQlQCLmsFSusFXIRVYf5FzEnTa1l7+4vWLx94FADz6xkpcdMw3bL9GNVWjyb28itvqKqFyxJOp3wHEICjuwWL8OK2OckBveIiCLCcFMMTMyHQ2p8vYk7P3qsGoRBhQCLiyyT0RGTn88MNx4YUXIp/P45577sFxxx2HffbZR/cYRVHQrVs3HHrooeyXSZ4QbxlKZrAI/za6ZTx0jx1ww0n747qnP3S0oM42scl9iCbLZOpHKa5Sbk/ntCb3QOf7s1N1PGjjAHEfS8Q7JwrN5xDke9hgvZegkY/LWisRJmasdGRy6Fbv7evdcPJQXPOPDwAA21NssRBWYQrKK1DQrT6BrW3pwAT1dOOGqDe5P/rooxGLxfD8888jkUjgmGOOKfs7iqJg3rx5FW1gLapLlF4h0J7x96QrX1jNziNaeROT5xH7a6hjvUIGi/F7VF9KDrA4udhvbUtr/zYaZImBrLhZE4wAKcpg8aIHi0dZMvqTaeFvGZR6kNUm3wSYN7nv3C+DdsNDFAaFOuVqBou+sZ54XPkxYM6ZLFLQei9VOYOFpxmicPiv//ov/Nd//RcAYPv27bjgggvw7W9/2+etolpW6ar3sfvvjOue/hBtVQiwhL7JvfR1o1ClYXtHRpfBYjfIELTJQ7GXXjIWQztyptsoD5nSAXsvQVdrJcLEoberWTsmY/fx394dU59ZivZ0Dts7gjHZTfaFoqyksAt27wqwtAQkqFdTJcLy+TxyOXHiM1e22VO5xopkTJ3kMVuBkUr7u7PJFxmzlb1qVoLZfmLagwWlMljUWqv653TS9LC5vRBgMTqAP/mqRft334CXBwOKS7V5UiJMOqa9GJyKGSyZXB51NRhgkZn2YOn6dtBueIjCQOvBIpWoBDqvs2LGnh8ZLOplST7+1aBzGCd+iKi6HnroIb83gWqUeF9S6j7NynxBU7JzyiKTyyOddb9cj357Cv8O4/haDDqI/weA1lRWV2bbbgZ8UMcdCoSsfouTcm5VYagVap+bWikRZrb40y3ynb2iKNh35x54b/XWwGQTkH1hiz+qJSSDss/VVImw+fPnl/ya3FO2RJiNDJYX/rMeU5/5CNPPGIaDBvZ2Y/OKtstsFW1Omxwyfh5xgKf+s75MDxazDBYnFz4x/dIoUCDW+U2HLBoNVKcHi1slasRdSMwcCupA3mvyIWVaIowZLESOFSYh1P8rqEvE0JHJoSOrD7D4mcEi99WMM8BCRDatXr0aixYtwtatW3UL5lQTJkzwYauoVlQ6UdJYV8jCaO3IolejhwEW4W4nzNdZo1uH1o4MFEVBPKYga6NfiSrIn0dh/sRs4aderWRiOCUHPtUFwGGd9LRLfPvVKl/eVNc5NdsSkMlusi8MGSyFRfBAt/pg7XNWS4sGGXuwBJCa2WEaYLGRHv2z/3sbAPCTh97E4mvHVr5xKB5cmU2yqwevef+ISnqw6J/UycVeV/7F4Pd1KWoeXFiXrm3G1y0pHLXPjq48XzWa3Ms9WNwKPInPKw5i0rkcGmG9+WJUyNlIcg8G+fthXGFH5Df1tCOW4KqPdwZY3l25Gb/511Lt+9UuxwWY9zFjgIWIrGpvb8dPfvITPPnkk1r1gbyWvVc4tzDAQm5zsgLcbFFeMl4ICrR1ZNGr0btmvLoMllBO8JiPDdRxQ6Lrs7R7/xy0+428kIlcboGqLBSLJwNEzfLO5zv3I7N706gQ5ybczGApdQSpk91V6TVFnghb4LZbV1CvGuU37QrbZ6mqOMCybds2rFy5Eps3bzZM8T3qqKMqfYmaU1dmBUa7gxJhW1rT5R9kUVEfDpOJJ211sEkXFn0GS+e/1fc+56P1GPPNnXWN+URFGSyOBsClmxiK+7PZ36ISx9+1AADwwq9GYa8du1f8fNUpEab/2q0Tn/gsYv+dajdxDgr5T2eaBRZXJ1p5k0Bkl7iCR1WfjGFbCrj4L4t0j/XjXGRWIkxrch+wiQ4iCp4rr7wSf//73zF16lQceeSRGD16NP785z+jf//+uOOOO7B27Vo8/PDDfm8mRZB4hSp1H2XlSqYoCpqScWxLZdDqcX+C6JQIK/5ZRgiwpGD/Pi6o4w4FSqFEmMk9EZvc2yN+OoqiXxibzuYQj0V7AaT4/r1YSW9U/jto5ZrIPnkxcpDpSisG5NxeUz1YZBs3bsRFF12EJ598EtlsccQrn89DURTDn1FpavDAtAeLz03u5RNHuWZy5hkshR+o1xg1g+WZ99dhw7YUZp5/pPSc6sBQH2BxkropbrbRhVN3Y+DhBPbnX293JcBSjSb38mvYrd1rxiyYFZSTfbXJNwFmNzRaBgtvEohsy2nXqMK1qM6krrsfGSzZfGEiRBT3qck9EYXPE088gXPOOQeXX345Nm7cCADYddddccwxx2DMmDE45phj8Ic//AH33nuvz1tKUebGCvDGus4Ai1jC2QvilTWoAQUrjBY4ahks8RiAbOhLhIlbo46VrC6KDGd2kn/E6iEd2RwakhEPsHiVwVJi9wxauSayz4tF2W4T98GENpdkbx+/c+7HWLFxO6afcVDZvuy2tq2WerDIJk6ciH/+85+YPHkyRo4ciT59+ri5XTUtWaaJmJMMFjfJpw2z5r85gxIEoqRBiTBxcuvNzzeZvra8Yt/JAahPATfKYBGeP+PdydKtwWrRpLwnJ3hvVv+YPYtbAZywkT8Ps2M+wVJBRI5ppSWE76klOmV+HGPZrutaPG4SYOFxT0RlfPXVVzj88MMBAI2NjQCA7du3az8/9dRTceONNzLAQq6zWktdfJxZ1QOg0IelmqVMwrjQq9QWq+8nWSbbIyzEbB11XsHs3lT+rlH/VTKmQNEt9qmFhX1eN7k3Ul+mTQAFX6juzRRFW7Ru93x4+9zlAICzD98dh++5g2ubpF8AH6LPUuA4wDJ79mxMmTIFv/3tb93cHkL5JmJ2mtx7oTiLIa9lLOkfV1x+RRQ3anKfKLMaouu1t0uDaycXPn0DY6MeLKV/7ha3zsNWS7dVQv4Yyt14ZLI5vPrpRhy8e2/0aDCvl2y2qbUwgDMkvW2z1XrswUJk32cbWjD3o/XauVe8dpldg/wYMIulPEQMsBCRVTvvvLOWudLU1IQ+ffpg2bJlOPHEEwEAzc3NaG9v93MTKbLcXQHe2LVi3uv+BOL9X6hL8JZYVKxOqkXpPqtcD5biMtch/ttWgfx5xWKdQZZMLl+1gIOfdD1YqlSRp1ybAAq+MNybice2uogv6/B86HY5O11Vm5CeZ4yXalrQ1NSEQYMGubgppDJqcu9VmqITRr12jM4l6rfkBr2qpFEPFpPVw/JzyvV3Kw2wGF3IvK69abQdlahKD5aiDJbSn8v/vvwZJjz4JiY8+Ga5JzYUhouUF4ozWIwHduoNUq1+TuS9rW1p3PfSp1i9udXvTXHNMbe9hJv//R/ta/ESFagMlq7XlBuJMsBCRFZ9+9vfxiuvvKJ9feKJJ+J3v/sdHn30UcyYMQO33347jjjiCB+3kGqB1RXZpSqNqCWJnJSFdiqMC5is3FZWskDrq23tmPyXRYaVJqpNvC9NlFmgKuMktn3qGNnvuahq0M0Dudrk3ny/K9cmgIIvbPdmyQoX67o9R6pr0RDSILjjAMv48eMxa9YsN7eFumjRa6EslThY8vvANRq4GW1TvmwGS2H3U1cQ15cLsHQ95/aUfsK50gPQ6PerVSLMtQCLnMHiwX5ilL1Uyt/eXgUAWPTFlpKPMxtshPHGxg1yENOsHEKME63ksd/8ayluefY/OPn3C/3eFM/oerAEKMBimsHStb1haqRIRP6YPHky9tprL6RSKQDAb37zG/Tu3Rs//vGP8ZOf/AS9evXCXXfd5fNWUhRZLrFj8VKm3iN63Ys0SPfcTqj3VKWq4mslwhzcP1/7jw/x9Htrccb/vuZk8zyhKEBSzcox6w0r7WhhnbyrGrF0X9fOpAVYaqDHsnge8CKoazQ/Vi4Li4IvDP0x1S1UUJiPdTrn5nYWpNXSokHmuETYaaedhpdeegnjxo3DpEmTMHDgQMTjxaU1DjnkkIo2sBapJ9eUsFOJEyl+H7dGkzrGAZbO/5sN8MQm9zHpwm1GfRU5Ha3iEmGGTe6rUyLMrcG7/DReTL4VpVeX2XarTa9MS4SFOTW/AvLHYVYijD1YyGtvfN5ZWmbj9g6ft8Q7uh4sZk3ufc1g0W9TjKUBiciiESNGYMSIEdrXAwcOxEcffYQlS5YgHo9jv/32QyLh+HaQyBI3JgyrtXped/8X4iyHUrdgiQpKEX2xKTgZzeL9YzJhL4OFYyj71CCn3/2AqyHnQ/UYu/swBU/YziuVBNsBL+bqglO1ySnHI2pxsD5nzpyin6s9ObI1EOF2W1ItEZYRAyyFn/sdGTXMYDH4ZsakvIkq4aREWNfLyK/mJMIpng+MGjvpMljCUCJMeh4vbgrk1/jZ/72FxycdgcMGVdbcymxLw3xjUwl5nzDLYGEPluDatL0DV81agjMOG4ij99vJ781xrHt9EkCb35vhKTGDpT5pEmDx4bprlsGifp3jcU9EDsRiMRx00EF+bwZFnHiFKrUCXAxolFqWVV+tAIuw4WFc6GVluJLQ7h/sv7+l65pt/45XCiuxhWbNZk3uDSo9GPWQpWLqJ6T2KQzrynKn3Hy/pY5P9mAJvzD17VIUsbSis33O7X1VPD7MSuQHneMAy0MPPeTmdpiaOnUqrr76auy///744IMPdD979dVX8etf/xrvvvsuevbsiTPOOAM333wzunfvXpVt84pRk3txwtXOStq6RMz1gahhBovBwaVOjidNVgQnhO9bbXKvDsJvOmUozp/xjvZ9J+9R3GLjDJaCDg9LhLl1zZZ3Cy8mBOVnzObyOO2+17DilhMMH7+t3VrjK6O+Purz1yL54yifwRKei3mt+J9n/4NnP/gSz37wpenxEQbd60ufkyNB7MFicr3yI4ipHtfyIgWWBjT25Dur8cKyr3Db6QdptfqJas3LL7/s6PeOOuool7eEap2uWa0LNzvqPaLXPVi86r1QbUqJcJU6qRaVBVqK4mwldjqbR12CARYjRuW71YWwKWawVMzo+NR6sNRYACtKwrA4WLw2V9rP1+1F6FYXZgSZ4wDLT37yEze3w9Dq1atx8803o1u3bkU/W7x4MY499lgMGTIE06dPx+rVq3Hrrbfi448/xrPPPuv5tnlJS7/MZDH1maU4fM++GDG4n/Zzs8loI3Vx9wMsVjNY0l2TQ2IpMJG4KlexmcGy/4Ceuu87ymAp0+ReV0LMwwls90p56Z/Hmx4s1p/ztU834uuWlKXHmmawRGTgb5f8MZtF8JnBElxfNrf7vQmuaKqLfukYK03u/cgWMe/Bov85dfrV394DABy0Wy9MOmpvn7eGyB+jR4/Wrci2ukKbFQfIS6Xu08Qxb6l9tWolwoQNCuMEj5WRgTqpZnUyMBlXArmqXtx3tAwWG2OjTC6HOuctiWtOtfogBYHlHlJ2n7fEz7QeLCE871CnsC1+U+8x0w7nOp2WFjNTKoMlLBmHgZ45ueyyy3DEEUcgm83i66+/1v3syiuvRJ8+fTB//nz07Nk52T5o0CBMnDgRs2fPxtixY/3YZFeoJ9dVm9rwwILP8cCCz/HhDd/Vfm4nMyFpEtyohNGKBqMAhHpxSMTMMliKS4SVbXJv8n1HF75yJcCqVSLMpRNxNZrc24kF3T53ecXP6/ZJO6zYgyV8zEojhk33hkAPE1yhKxFmkkXpSwZL12RGXLqOq9dUP5rc53J5LYMmqL7cai2wTxRFL774ou7rVCqFX//612htbcWkSZOw7777AgD+85//4IEHHkC3bt3w29/+1o9NpYgTr1BpFyoB+DG5G8aV5GqAqNQ8lN1sj8ZkHOmstaoE1VV4r2qJdbP3ZDRkCmLQKCiMAp/VCnIGgecZLIZN7tmDJez8buVgRaG0YuEe06gakRXulwgzXuDwq5nv4Z2Vm/DsJUehsS7YVQosz5z87Gc/g6IouP/++xGPx/Gzn/2s7O8oioI//elPjjbs5ZdfxhNPPIFFixbh4osv1v2subkZc+bMwZQpU7TgCgBMmDABU6ZMwcyZMyMRYBHpS4RZf65yGSFOGM0zGQU91QkpsyCPvgcLSj5W0/XaiqLoVtPk8p2TzHYmNfVN7g16sOiaLHl38nDrRFyNJvd2njNuI8JsFLQDajdwIGep7T+gl+Hj1ObXXMkePAGfg7asey1ksAj/DkMGi7pmwY/jPp3LoT4W7IFtew2srCQyM2rUKN3Xv/zlL1FXV4fXX38dDQ0N2vdPPPFE/OIXv8CoUaPw3HPP4bjjjqv2plINcSNQUb0m9wVhnkgudRtmNwO+qS6BZotln/2gQEEyZn9ymgv57CkEOaP/uekyWKq0n6jnOAb+witsc1fJCueS3K7yI26FmMHy5LurAQD/XrIOpx66m6uv6TbLMycvvPACYrEYcrkc4vE4XnjhhbIpOk5TeLLZLC6++GKcd955OOCAA4p+vmTJEmQyGRx22GG679fV1WHYsGFYtGiRo9cNCuMAS+HfdkqEmfU/qYTR6xtmsGTLZLAI31dXxJo9VnttdaUKOt9bWihpkMpkbZWzET9To+33ssmh+NquZbBIQQo7NSBf/M9X+Nf76/CbU/Yv+Rna2dIyf0pLT1yrgQP1Xd951jC8s3IzLhhlXO5GzQIL28W8FoQhhdWKbvWF80FHJudJ0N5v+gyWIPVg6cpgkU6m8So3uVeUwvUwk82jPuAxt1qoDU5k1aOPPoqrr75aF1xRNTU14cc//jGmTp2K2267zYetoygT76NKlbwRr2SlRk5qj7SU15OdHpUGChJ1fsDq/W1QVwzrSoSVadZsXIGD909mjI7LOrXJfUSPC5FnJcJK7HLswRJ+YejBolIURejH5Wyf87LJvVEgNwyL6CzfJq9YsaLk12667777sHLlSsydO9fw5+vWrQMA9O/fv+hn/fv3x4IFC0yfO5VKIZUqlI9obm6ucGvdZzTBkxIieHab3LtNffkLR++Ne+Z/2vk9owyWrgPOtAeL8H11fsvssSr1oFMUYOLIvXDnvI+1n7Wnc2iqs/IOup5LzFAxymDxsESYGKRya2xXSQbLOf/3FgCgV2MS1574TdPH2QnuxWxlsBjzsvdNkKkf8947dsfJw3Y1fZy2Ai1EF/NaEYYMlo/Xb8P1//wQl47ZB98atIPhY8Qm9y2pDHZI2DjJhoR4qjILsPhRjsu0B0uFDQntUlA4RwfhXJPN5fHRumbst0sPJAwWkYRh8E1ULdu3b9fum4ysW7cOra2tVdwicsNzH6zDb59fhrvPPtg0y9lvulIfbjS5T1anwXbYM1i0e+VSTe5jpYMRYaGVulGgjQfsjFNYismemspgEc4EXrxfo6NT68HC/TK0whAc0/euqmwuye37QvG4M+pB3NYR/Hu8wC1F3bhxI6699lpcc8012HHHHQ0f09bWBgCor68v+llDQ4P2cyPTpk1Dr169tP8GDhzozoa7qMlglUhze1r7t52SUnUeZrAcukcf9Oiqz280Ea5+zyyLRpfBoljLYFEpUHDxMYPx+KQjtO+Z9akwI85NdRhMyOhqB7t88hBf261JMjn44eR5X/tsY5nXsP5c8qSgk+cNwmSeH9TJ3HIxKrUMW7ZGA1FBZifA6JdJM97Bwk824vT7XjN9jJiJYzTQiQIrTe79OBepx7Vc+lJdh1C1AIvwAQUh6P3oGyvxvbtfwf+9usLw56mI7qdETowZMwZ33nkn/v73vxf97Mknn8Sdd96JMWPG+LBlVIkLHnkXn23YjvNnvOP3pliSzuZMF2mJ3y81dKqLd62e93gCS9yeMEyWmRE/S/mWzG4wws4COz8oKMx5mI1TxLfABWr2qPtSoUxf9MdZXpUIMyuLDrAHSxSE7V45oQX1glEiTDw8jAKbYQjuBi7AcvXVV2OHHXYo6rsiamxsBABdJoqqvb1d+7mRK664Alu3btX+W7VqVeUb7bJuBvU3trYVAix2yoJ4McmnvnpMUbRJdKPVveqBajbRrm9yX/y9Uq+trlT59l590asxCcBBRFPY5jaD1VDie3I9g0U4e3i1MtpJ2vMXG7eX/LmtHix2AizswaKj7ecliyUI6fA1+jkFWdAbgQPA+ub2so8Rb6qjeiMqHmdmixL8aFpYLoOlWqUtdP3KAnCuWbO5cxHNqk3Gq+7DMPgmqpY//OEP2G233XD66adjt912w+jRozF69GgMHDgQZ5xxBnbbbTfcfffdfm8mObRpe4ffm2BKvFrk85VfP5jBYo3RPZWc7amOK6wu0PL/ym9MHKOq78lsMlx8Dw1dgQJmvJozCqrVUgaLH03u1XuQtMu9f6l6wlGmuNBywe61QOb2IgSzHiylvhc0FQVYnn32WRx33HHo27cvEokE4vF40X92fPzxx7j//vsxefJkrF27FitWrMCKFSvQ3t6OdDqNFStWYNOmTVppMKOU93Xr1mHAgAGmr1FfX4+ePXvq/gua+kSs6KTb3FZoLGdngGpnktuqXCH3uGSTPLVxnHkGixhgUboeW65EWOGEoGpMdu5ndg84cZONVryK44pFX2zBV9vKT0ZaJT63W0EEOfjhpD7/9jJBKjtzjLZKhLEHi45YCq8ULZW4Bga6YROGDBYr1wfdRENEV1SJH4M6gSPzI9hb6MGi/ztVOhi2I5/Pe1ou0wn1Wme2P4Zh8E1ULbvuuivee+89TJ8+HUOHDsX69euxfv167L///rj99tvx3nvvYbfdgt0wlMyFaaLTyiRlqf51dVXqT+BV7wU/yQs17K5aDngCi+0SYU1di1lbQ1BuJkjqtQyWaBwXpfgRaE0mWCIs7MJ2r6yVi3Ta5L7aPVhCcI/nOMDy5JNP4nvf+x7Wr1+Ps846C7lcDmeffTbOOussNDY24sADD8S1115r6znXrFmDXC6HyZMnY88999T+e+ONN7B8+XLsueeeuPHGGzF06FAkEgm8/fbbut/v6OjA4sWLMWzYMKdvKxAURUE3qdG4mMFiZ0cWV1G71ky962liiqJN/BhNPmmrb017sBR2P8ViiTDtVYSnVBvv2S8RJmawGP2u/j394J5XbT1/KeLJw615O3nw6yQ4UW7C1ewpjQYe8gTzOys344cPvI6P1hX3PWIPFpm1EmF1rNUaWCFIYLFUxk88r0T1eBQndEwzWHwIsJhlsBQaEnq/TfJLBCGLSd0nzSYW20OxeoyoehoaGnDJJZfgueeew0cffYSPPvoIzz33HCZPnlwy65+CL9CZ3tKmmY1Vrb6DapUn0vVeCOH42igYIt/fJbUFklYzWIK5n4lbpS7SzJjtZ8IH010NsKSCP1nnF/GzVcfJ9V1N7sMU2HVKX0rexfdb4lBik3uqJkUB4l37XNbG/Z2+uoV3VX6M7ufszvf6wXKTe9m0adNw+OGH45VXXsHmzZtx77334mc/+xmOOeYYrFixAkcccQT23HNPW885dOhQzJo1q+j7V199NbZt24Y777wTe++9N3r16oUxY8bgkUcewTXXXIMePXoAAGbMmIGWlhacfvrpTt9WYDTVxdGSKmSt6AIsdjJYhPFUNp9HrEzJISvUl1cg9oAwLxFmLYOl63tWm9wL76OhK4PFbokwcQBqFA2VB6irN5v39rFLDO64VSKskib3qvIr2gsTfuJ+2NaRLepdEJf+lmf+72vI5PIY/8c38M41x+mf1WRbgzCZ5wcrDSqBws1m2JtURlE4MljKr7EQBzpRPR7F015dwjjz1o/gkjrYjZuU9qjG30O+tgchyKZuktl5L8WSH0REvpPP0JVOUvpRniiMK/ULWfCFwU1RgCUiGSyF7VIK78nCPIna73Z7R6bMI/2xenMrMtk8BvXr5vem6GhBzloIAHjci8koW489WKgaxPO53WC7/PsdnmawGJUIC/6x4TjAsnTpUkybNg3xeByJROfTpNOdQYBBgwbhwgsvxP/8z/9gwoQJlp+zX79+OOWUU4q+f8cddwCA7mdTp07F8OHDMWrUKEyaNAmrV6/GbbfdhrFjx2LcuHFO31ZgyI3uxfJUdg4AcUA176P1GDe0f8Xbpk6GxxRFm0Q3zGDRSoSZZLAYlAiz3ORezGDpKulSUQaLQXDGy7Gk+NzuZRbpn8fJqrakxQyWZDyGTK7wmbVnsuiFpO6xcWngoAZkNhrUizYbuAd6ZZ6H1HdttURYTQx0QyYMARa7GSxRHfCLNzn1Jk3u/aiHbJ7BUr0eLHKgPgjBXK1EmEkgJQyDbyKvHH300YjFYnj++eeRSCRwzDHHlP0dRVEwb968Kmwd1TLT3hgWLyt1VSpPFJUSYeLIQR5HaP1sLL6/UvdpXpQjt6uzRFjX5LTJexLfQjetRFjwAiz5fB4j/udFAMCS68eiR0OyzG9UjxbkDMEq8kp5lsFSQl2FDceJ7HJyTyk+0v0MlgKjfjaRLhHW1NSEuro6AEDv3r1RX1+v64my88474/PPP698C00ccsghmDt3LhobGzFlyhTcf//9OPfcc/HEE0949prV1CSVCFu3VQiw2CkRJkwcXfDIu5VvGMQSYWUyWLTJIZMMFptN7sUAgq4HS50LGSwGF04vV+uIk1ZuNU+Wn8ZqcEKcNJWbIBa/hpqVpP87Lfj466LHujHgrt0eLF0lwso8Tv07hPkGMKoCcL9Zlt0eLFEc8MtxMDkTT+VHcEntsWLWg8XtQa3xNlQeuHdbXguwsAcLkSyfzyMnLMTK5XJdvZTM/8sFIDONokde+FV5Bkt1yhOFPcBidJWWxxGFbKDKrpd+L7wR97FkzPpEYTc1gyWAJcLEzf9yq3v9X+0ymp6opSb3Yga/m+eBUnsne6tGQzXuzyqhLeSF4qgqgq5EmMv3heJzr9nShrVb9BWEwrCIznEGy7777oulS5dqXw8bNgwzZszA+PHjkclk8Nhjj2H33Xd3ZSPnz59v+P0RI0Zg4cKFrrxG0MgZLOu2VJ7B4ha7Te5Ne7AIgRd1BXGyRAaLeKEXVxyrTe7tZrDIF055FY5bpbsMX1t4atcyWOBsIkycjDLLNlKpTylPQl72t/cwbuguWk1boHjiUlHMg1amTe4DfoHyilaGr0wWRB2b4QXS9lQGf3tntd+bUZalAItwbEbxeJQ/AbMAS7VvJm99fhleXLYBgL89WOQFAEE416hbZLYamhl9VMvkeyazeyiiajNbpKHev5RL/PWjwXaYryfi5ykvdqzTMhEqe38d2ZxWqtsPhYlCIYPFQqZU0DNYVEFb2FStLLIg0JUq8qJEmMH3krVUgi1iYkph/qY9k0P3MouWg6LcebMct/dV+Yw3/JYXsOKWE7Svw1AG2vFf/vvf/z6eeuoppFIpAMBVV12F+fPno3fv3thxxx2xYMEC/Pd//7drG1prmur1sa8vm51lsMiDVbNeF3aozxBTFK1evdGFVp38MevBIk7u7dans8lmyQwW4d/io5z2YJHnpuQDVv6kdu5Zb+v5SxH/Dl5lsFidfBMjweUmXNVnNGoE3dKuH6TKk4Ld68zjuWbNE2s+g4VN7kPpDy9+ovvajfOuF8r1vAKkG70IHo9yKTfTEmFVPsZ+L+xDxRks6ipN77dJXgAQhHOyuvjBrGxbELJsiIi8FISyTOW43YOleiXCvFm5Xi1GY055vGc3G8hsHBuUlfaKUujBYjpPIgZY6tQAS/Am68St93M8YxT4ZJP7ypW6J2QPlvASF+iFJpNeKczX2TnXeFkirFyPBrvzvX5wnMFy2WWX4bLLLtO+/t73vof58+fj73//O+LxOE444QQcffTRrmxkLWqSVoN8JQZYcp0p/eVWtwPFk+7pbB51icoG5erkhgKgoauGq9GJRL04mNX5F7dt3116lHxs5+ONjzg128d2Bov0dG0dWV1pNvX1+jQlsbk17WrJMF0Gi0vP67TJvfi3K3eO1EqEGUxCvrd6C3bssbN20yff/HWrT2BbynilEHuw6IkrskoJykqifD6P9nROK9dX61Zv1qezunHe9YKlHizCv4NyI+0mOWBglsHi52oyeeVpokTmqNvkc3AQbvrUTTJbURjQeCZRVXzxxReOfs+tqgNUHfWJWCAnh0ViSelcvvKVp26VtSpHvIT4Pb52wuge4sxvDcRvn1uGg3fvDcD+Z2l2WfU9w0J4eTuT0031nfcr5Y6hTze0YEtrGofu0cf5Ntok3r9XYyGNHXW1VCJMF2j14JxjcAumLpzM5YPT34jsC3oQQLxPUu8x7Syi1Fe3cLlEWJkISxgWezoKsKRSKTz//PMYNGgQDjzwQO37I0eOxMiRI13buFq2k5QtsV06ULO5vKXVx/Ike3smazqBJJv6zFK8tHwD/n7hd3Sln7QBc0xBQ9dKBqMeJlqAxSSDpVdjoWnbLj0bSj4WkDJYhLeuZrDYjRYXfzbGgwUvyjCJr+13iTBxkJQtM5BTN9soK+n8Ge9gyph9cMmYbwAoXhkul73TPa/J94OwWtoXFkuEFZrc+/s5XTnrA/zlzS/wzOQR2H9AL1+3JQjkrLRMLoc65wmjnpGPUSP5AN/oecG8yb1/712+wYp3XfuzVTju5VOw2wNpJ9Rd0mziq1YD80QAMGjQIEsLsGTZbLAnBEivIRkPfIBF1auxc6Fac3va+AGFytMl+dHkPgzlSMyI54Hzj9obB+3WGwcN7A3Afi8Ns4ULfi+60JUIKzNRKN4nq/Ma200W/qmOve0lAMCCXx+NgTs0VbaxFomfdRDGM+JxWa0gZxDoejFVaT8X51fS2RziMS5cDAtdb+ewZLCgkN1Ybg5QJJ5L3Q54lFskF4bFno4CLHV1dTj99NNx55136gIs5B61ZJaZTC6PhIVzrryTtndk0bMhafxgyQMLPgcA/O3tVTjnO3sKz1nIYKlPqjVci08k6kRM0iT6vnvfJvzvjw/FLj0btEGgvKJazNTR9WARLvdaQzCbEz9yRowcbVZ/XAiwuHcC0aXWuXRikp/GSQ+WctuiBobMyr7dPne5aYClVGDPLDspCJN5frCawZIMSImwv7zZuWL2nhc/xR9+dIiv2xIEctDU9xV+JqyVCCv828r7yOXy+GRDCwbv2B2xEK68qje5sPqbwaL/HO00cq2UvBAhCDf7hSb3xjcwbpXdJAqjBx980FGAhcKlweJiOT+pkzB9utVhc2sam7abBFgsqlqTe+EubVt78Hp0lGVwCYzHFHxncD/t6/quxYlWe7CYrSoOSq8IRRH601nYJjXjvtRKc/HedPn6bVULsIh8XWho8NJBqZxQDZ41uS/xJxXnV/zub0T2iH/WoDdi18r/QSg7bavJfeHfbpcIK3cLF5RrTimOAiyKouAb3/gGvv76a7e3h7rs1qf0RTxt8aQr76NODnh5ICs24C6dwdL5wFJZKd/dfxfd1/LEfS4PqHOAusGdrnGf/cgrYBB8Sss9WDofoKZrunlxFSetXJuwcjgRJq5CKfc7WtDJwsSsvOpaDLhksjndfmH2qnb/plFhuQdLwAa6fgd6gkK+IQpqc/h4rPwEja5EmIX3cfO/P8IfX/kck4/9Bn553D4VbJ0/zALB6az10pxui0vn27hWIsz7/SqYJcI6t8m0YTIDLFTDfvrTn/q9CVQFYZp426GpDp9hO7a0dhj+XFtUVOb66seYd0tb2rdrv1Pi5JkZ2yXCgprBImxYub6U4nvQHlvivlccY1RzwjRoGSwi9mCxL5PNIZcvvr9QDI7QpDDeD8NKfTJmt22Bn9R9zmngwv0SYaX5fc2xwvHylyuvvBK///3vsWzZMje3h7rs2rt0BovVC25RloaDA15+LXXgFlMKPVgMM1i6Jn+SFibjVfKKanECSZfBIjws7rAevfxw+cSivnRd12CiI5tzb+JGjPy6NEkmb5nVVbziALLSDBaRHGAR/2ZyQM5sU2u1RFghg6XMzWZAMlhUQbsR8EsQG4MbMcsuFNmts/rHVzozH++a97Hj7fJTXYlzm1+rZpJSICyprdL0fr+Sj+kg7MvqJrBEGBHVKqvlnv2kjh/6dKsDAGzabhxgsUrr/+DxtVie4DbrHxl0pWJC6kS51Yljs6tqOuPv9Va8X0rYqGihVQAo8f7bheBTNUtiiQtK/RxzGQU+g7awz0v6HizO3+/xdy3Aob+ZY6lslKIoQi8hjmVDRfhzhSXAoijOjmlddQuXF/sZzbWK8yphqG7juMn966+/jr59+2Lo0KEYPXo0Bg0ahMZGfVBAURTceeedFW9kLerdVLqMl9WTbrksDSvkyVv1OFIURRugGT2vegBYaaSskh9rNlEiPqqQwWI3wCKvMpcDSZ3Em5hMLm8rYGT+2oV/uzUZJE/qWn1eO9k06k+dBFhE7emsrq+P2dA9CJN5flD/JOUWzCW7Gqev29qOllRG+kyrr1b/XjL5cwjqjYiVEl7i+cHtQVQQlTpvpbN5+HGIFfVg8bFEWBCCuVoPFpNt4WmIqNjChQvx7rvvYuvWrchJ53JFUXDNNddYfq758+fj6KOPNvzZa6+9hiOOOEL7+tVXX8Wvf/1rvPvuu+jZsyfOOOMM3HzzzejevbuzN0IA9Bks6WzO0ri82tRT8Q5NnQGWza2VlggrTAR5mVUiX0K2tqYtl9cOAivr65z2YKlLxHRj2qCUa9GVCDMZq4ofi3pvX2qRozi3IffC9ZJ+jiAYn6+KPVjsW76+BQDwny+3YdjA3mVX6CfjMaSz2UCMt8k6MTAa9B4s4r5dabl5t/dTo+NDPP6Ccs0pxfFUwe9//3vt3/PmzTN8DAMszvUoM5ArNSB4efkGrN7chh9+e/eiyREnEdWiwEPeIIPFQZN7I/JjTQMswqDa6WST/Gi5jI/6PsWmx27dxOhWp7gUiS3KYLGc5aT/nVI3LepnkrSwck5+CnEfkS884qb+8Nu7Y2tbGs+8vy4UUWovqMdt2RJhwr547T8+wPQzh3m4VeVx5XinouBtQD8XO8FvIByrRio1oHcjDtytF/p2q8OLyzboftaRyQH11d8mObMzaaPOeKWKMlgCsA8UerDk8HVLCq9/thFjv7lLmd8iqk2bNm3CCSecgDfffFMb3xXKkCra9+wEWFSTJ0/Gt771Ld33Bg8erP178eLFOPbYYzFkyBBMnz4dq1evxq233oqPP/4Yzz77bGVvrMaJ9ybt6WwgAywqNYNls0kGi7aoqMzziAveOrI5055plZIDFFta0xi4gycv5THzT7S+xP27sa574rg+wOL3JLBR2S+zcYq4Mlo9XjpKjGnmLv1K+3dzW2XBQTvE7QzCmEvci+psBubCTPzk09k8crl8Rb0l5WovZvf4nftmNhQTyVQQ1ib39U4yWDyYx9Se2+DpxGPB72uOFY4DLJ9//jl23HFHNDUZ9wppbW3Fhg0bDH9G5fVoKP2nKXUQTHjwTQDAkP49DHqwOAiwFJUI66RA0VZQGWaw5NRyUu5ksOib3Au/0/X82Qqb3Mt1WNWvdAGWTB6os/UyhsSX8rvJvVETY7Pm11Z6sGRzecRjSlGTe3G1i1zLVn3eHbrV4ebvH4Dps5d1PVfwT6JeMErLNiLeUP990RrfAyzV6AkRBvJgI7g9WKyUCBMyWCy8j4ZkLPDN/RqTcdPFBvGYgqd+8R0oioJB//2M7md+DeqKM1iclcV0Qr4+BOGGT92mjmwO379nIVZtasOlY77h81YRBdP/+3//D++//z4ee+wxfPvb38Zee+2F559/HnvuuSduv/12vPbaa46DHSNHjsRpp51m+vMrr7wSffr0wfz589GzZ08AwKBBgzBx4kTMnj0bY8eOdfS6pB//taWzZRfm+aLr8qHe027vqKzUlng/lsp4F2CRl6xtaaustFm1WRkZFHpp2OvBUp+MYVuq8P0gTXapcwhWxilWFqpcOWuJ9u+t1QywCP/2tUSYwUs7mYwNK3meqCObQ0PM3jlHfA41KFUuw6zSjALyh/hnbatixpsT4lxu0kZpRe33xRJhru+nxdshnm+CEHQux/Fyl7322gtPPfWU6c//+c9/Yu+993b69DWv3Eqk5rbyg9Tl67cZlAizfxAsWbNF97W4ul690Bo9rzrBb6WRskp+3+LAQoyWutGDRf5siuqw5gvbpL5eKuvOCVO3OsWlwZM8ELAeYNF/XWp7rJQIa2nPdG2P/vutKTHAov8c5YaM1SyBE0gOVvOVC8pWAzNYOsn9j4JaR9fKild5BVc5fpeps6JcfyqzwKZfN5RyX5hEmVWabpIP6e1SLfpMNlf1z0XdpI5MDqs2tQEAnl3yZVW3gSgs/v3vf+P888/HmWeeiR49egAAYrEYBg8ejD/84Q8YNGgQLr30UsfPv23bNmQyxfckzc3NmDNnDsaPH68FVwBgwoQJ6N69O2bOnOn4NUkqR9IR7Ik49Rpmdq3Q7gFsZG17ed1Rhwi9GjuDVlbuuYPESplhrdSTzXkBeTzi9ySweByUGxvpSoTZHEdtrbC8nR263ocBuK8S9yO7peXCrFyvXivEv6X8mZkdnuoiVr/7G5E94jxcWHqwAA57sAj/dnuOw+gWXTx2whDcdRxgyefzJRt+p9Npz2qjkrXVNFvb0kV/IycZLAs/2YiVG7drX6tPGVMU1CfNV8CogRg72ZTySl1x4KPPYCk8rtCDxd4BV1zGR8qqECb9nUR3S9GX5fLmRCG/P6uPKzVJbqXJfXN75yA0L0WgN7cW9tmiAIt0M5CoYhPnIHJysxmE+tBBuBEIguLG4MEcDIhZZmbHvb7Jffn30S0EAZZSY5dSvMze6MjkTP8G6iSPKuFyBsucpesx8eG3Dcu3yNu0PaU/d4+Z/hIOu2lOVetxG73toB5jRH7bsmUL9t9/fwDQ+p60tLRoPx87diyef/55R899zjnnoGfPnmhoaMDRRx+Nt99+W/vZkiVLkMlkcNhhh+l+p66uDsOGDcOiRYscvSZ1Ei9jrelgBgDUsaxajqrSa6iiKGWDNW6QKxj4HURwqtQthN0SYepnUieViO7wu8m9cP9op3xqIm5vn6zqPlCFOQJrm1H8t1Uzn8IwyVkp+f07ec/iM1gdJ6tl2IOQMU7OBL2SQ15YLJ8UzoVW74/1ZQy978EizhuG4biwNRPS3NyMLVu2aF9v3LgRX3zxRdHjtmzZgr/+9a/o379/xRtIxqykqm5pTbtSIgwAPlzbjD36dgNQmNxQFAglwop3dnUy3koZGjPigEZ8L25ksMgPl4Mn4qCtrqvmbFGWi0P6SUu3SoTJk7r2T5JA6dXdYpNDM1vb0hiI4gi0uDlmJcLU2wG3JxDDplCPukyJMOHv0K3eq1IJ1tVqQEwmT0oH9UZELMmYzuYQN0h9F28wrNxgdqsLfoDFaaaVVzfYqUwWR9w8Dzv2qMfsKaOKfi4HTwvnR3e2Z+LDnZOi05o+wm9PO0j3s6IAi1DiJZ/PY8XGVgDA519vx3679EQ1GC0eYPYckbEBAwbgyy87M7zq6+ux00474b333sPJJ58MAFizZo3tBXF1dXU49dRTcfzxx6Nfv35YunQpbr31VowcORKvvvoqDj74YKxbtw4ADO8F+/fvjwULFpR8jVQqhVSqUIuoubnZ1jZGnXgeDGo5Eq2sVJkVslbHvOpzdWRznq6gz0uLycIwoSMymhiX2S8R1vmc8v1fUIJPiiKUurGwYEhbyGdxHGX2nF7I6SYvgzW2qaUm9/Ku4eReTvxbqtli5Y5PlggLJ/GvGsYMFqBzLrQuYaF8uPBvt8+NhhksAQ9YyWzNhNx+++248cYbAXReyC699FLTtPJ8Po+bbrqp4g0kY1sspKpuaUsXTUQ4PQjEGEmhyb0ilAgrPpGoEx6VZDKJA2izqGohg8Xee5MvcPIgq/B0irYqxq2LnW7w5FqJsM7/x5TObbdcIkx6S6V62cg3HUbUDJZcidc3LRHWtavEHWYlRYX6yZU7dMR61Dv28KH7tqRWA2KysARY4nF9gEUNmIt0dVYt/H2DXiIsn88bZkBY4dXfcfmXLdjcmsZmk+t6d6n8n9Z3zOXjbd3W9qLvyWOIlpQYYCl8v5qTAEZjgXJl34hq1ciRIzFnzhxcddVVAIAzzzwTv/3tbxGPx5HL5XDHHXfgu9/9rq3nHD58OIYPH659fdJJJ+G0007DgQceiCuuuALPPfcc2to6y/fV1xePTRoaGrSfm5k2bRpuuOEGW9tVS8RTXtAnc9xc9V6XiAGp6oyr1DF20Ca5y7FSIsxus/JCVo9+nOj3JLD4l7Fzr65mQlktw+TWAksrxC3yc/GIUeBT3W9y+c6V6wkLpYajwlEGi/DnKyoRVrLJvf/HFtkT1ib3YjWUdDZXchG1ysseLEYByLAFdG3NhIwdOxbdu3dHPp/Hr3/9a5x99tk45JBDdI9RFAXdunXDoYceWpQWTu4xy2ARJx62tqaLooBO07jEIIk4+atlsBhcdNQxQbyCAIt4MTPPYHHWr6O4B4uUwQI1kOT+Kibxldxucp/oyrZx2uTeSg+WUk3ut3X1YCn18u0ZkxJhXV+rQbNqrhgKEjF1s5RkPIYTDuyPZ95fh6YAZA7UakBMVhRgCeggOSlEzr9u6TBskiu+FSvXjyYhkyqfzweuVGgl8/Be3eyIWZ7ZXN60qb0qEfPm5stoEqm4RFghwCJeO6yWpHSD0UuVWhhAVMt+9atfYc6cOUilUqivr8f111+PDz/8ENdccw0A4KijjsLdd99d8esMHjwYJ598Mv7+978jm82isbERAHRZKKr29nbt52auuOIK/PKXv9S+bm5uxsCBAyvezqgIw2ROYVLevXuoaqyg1+51Ql8izHz8JWYVWRmrmVUw8P2zEe4f1bGReQ+Wwr1V4T7T2vZXswypF31a3SIG2FKZaAdY5HGtk/OXLoOl65xVbrhc5/KiXqq+oF6TZYqiP6d3ZHLoZnO9rtsLENTjo3+vBm3hnxzcNLpXDhJbM3JHHnkkjjzySADA9u3bceqpp2Lo0KGebBgBf510BJ58ZzWWrd+G91dv1f3MLMAiToZsS2UMAizODgIxSCL2VulW13mhbU0V1//NC4+zY8ce9diwrfOGTBxAm12QHGewFGX3GJetEk8+bq2YEi+4bk1KqwPHRExBB5w3ua+4B0ubcQ8WkVltSi2Dpev5a3XSTCvDZ6FcwtH77oRn3l8XiCyJoN0I+EUOIAbhb1POB2u2Ys9+3Qx+UvibWulBJWZVdWRzRasd/VZJpoNXJUmSUiaRUak2kdNrXjlGEwjyDaYYYPFioYAVRsEcnnuIjMXjcV2gok+fPpg7dy62bNmCeDyuNb53w8CBA9HR0YHt27drpcHUUmGidevWYcCAASWfq76+3jD7hTqJY+y2gDa5l8tKmZX5EAoGlOX2/Zjh9nRtUFhXklu5GopjtVTGOINZ95xdH0q93IMlIPdpilLI7jX9ewnBmKTN4Fk136dubBWEfU84LiudjA0TeahZ6TmnuMm98QlPW9TLJvehIc8pBrVsp5F4TNGq31i+1nmawdJpUN9uaKyL47MN24sW8ndkcmisC9b8gshx2Pm6665jcMVjR+zVF787/SAM6ls86dVsFmCRmg65EX2XFQIPitbQuMUgwOK0RNiCXx+Nvt3qAEgXM+GtiBclt3qwyMEnLVMHilb2ZouF3jdWeFFaRX1OdfLN6opi+aJQapWOdtNRIn1Q3RdKvbxpk/uuv2uyxnuwqKwcOm6Xr6sE+yAA65vb8dmG7brveZ3BsnjVFnzVXFzeqRzxz7V0nXF9+1Lp7UbEgEoQm/xVkmnhVZkQcRWOlXOeumLQ7fOj0fPJu65ZibBqHvtGL1XNDBqiMBk6dCgOOugg3Hzzzfjkk0+07/fu3dvV4AoAfPbZZ2hoaED37t0xdOhQJBIJXeN7AOjo6MDixYsxbNgwV1+71ojnwdCUCHNhLFSdAIs+MBTULORySt1DyJkI5chZPapqls4yIgYa62yMjZJlsl1k1Xyf4njGysImrxi9cjymaPMMXvZBCoKiJveVZrBYvCcKa2C3lsm3IEG/JsvzbvZLRnqXZSdWcVHP6al0uBauRjevL0KMBkhmqWfiJIfRidnpBJH4XOrFQgG0AIvY+LbwuM7/203hakjGsVPPBgBSDxbhYBY/k0I9ensHW1F/GvnzEg5wNcj1uTRx6pQY1HBrYkruj2L1hGcvgwW61zCinvRKTXg57cHy6idfY9ai1abPGwXivmHlyCnXPLSawlan2kwmm0OrwTnNiuXrtxV9z8u/zQdrtuKUPyzE4TfPs/274jH6VXNxGRdACrBYGDAmhGwMK4+vNjuXifOP2kv3tVd9PtSyFoC1m3ityb3Lx5vRub+4RFjhb5rz4DpmhdGfQb7eleoBRlRL7r33XvTr1w/XXnst9t13Xxx66KH43e9+h5UrVzp+zg0bNhR977333sPTTz+NsWPHIhaLoVevXhgzZgweeeQRbNtWuC7OmDEDLS0tOP300x2/PunHikGdzFG3sD5Zrsl94b6ynEJzdg8DLF3/VxcwhW5sa2Gskowr2j2XpTFq11PKGSx+TwKLE4Xq4pNsLm84BtAWTioKkgl1cZq1v201S4TpVocHsPRyNYKcQSDvQpX3YLF2nrabXUXBE8QFhqXYDerJC+zM+mRXQqwgJF/vU9lgjnlUDLCEgNFEudnAUpzk6MjmywcRLBKj9oVm6oXMDnHSRSWWErPL6OItvhXxKeMOJ5uKerCYZbAowF47dgVYvnYpwCK+rstN7tUJTqsTTLZ6sKirukr0YFH3MfV5Gw3Szos+ayFtGyi8B3lbfvjHNzDl8few7MviSeyo0O3nFlJYgrTCLqwZLO3pLH7x2Lt4avEaAMB373gZB1w/2zAzrxyjMYaXg+S3Vmxy/Lvitn7dYhJgEcuQWJnEsZnxUm12Mh2uOH4I/vObcThoYG8A3pUsFA9z+Wb6iv/ar+jxZufHShlNNMiD5u0mx0R1AywGgSBp29n0nqjT+eefj3nz5mHNmjW488470a1bN/z3f/839tprLxx55JG48847sXbtWlvPeeaZZ+KEE07A1KlT8cADD2DKlCkYPnw4mpqacMstt2iPmzp1KjZt2oRRo0bhvvvuw9VXX42LLroIY8eOxbhx49x+qzVFPOUGcTGDyM2FQHZX2joiLSYL20SneP9qRlEUW/1sChkswWpyrxJLhAHlAxNWetmJ96/+lQjzMYPFJPBZjT5IQVCY7+r8v6MAi/Bvq03u2YMlfOSjNCw9WFR2+6TJ79fNe8DCQn5Fy2CRjz2r2WB+YYAlBIwmyi1lsGRyxUEEhyshdJkkQmZHt66GxkYTkVqAxUGEpd5gAC2+FXHi2a0eLHKdU/VzV6Bgj75NAIDVm1ttvYYZL3qwaE3uY3YzWKSJqZIBls7/W8lgUR+rZjmJ5M9aXFUEAPEyqdurNrnzdwgi3X5u4fFJk4uPH8Ja0u2PCz7DM++vwyV/XQwA+HTDdmRzeby3aovt5zL6BLz82yQqaPImHvumARbhDVkZMIrvP4gDTLsT7w3JeOEaU4VJe/Wcp04inXhQcZ+CwqICt5vcFz+f/J5bTJrcV7dEWPFryeeesAZ7ibyy884746KLLsLLL7+ML774ArfddhsURcGvfvUr7LHHHrae65RTTsHXX3+N6dOn48ILL8Tjjz+OH/zgB3j77bcxZMgQ7XGHHHII5s6di8bGRkyZMgX3338/zj33XDzxxBNuv72aI97DBHExA1AYP4glwipd6VrNJvd2J52CplwfRzvZQEHtwSK+elLIBja6fxQX8xWyk8zfuzjWqGYvFPEQCeIke1WCnAFQ2Oe7zl8O3q9Rk/tygnRfT9YU9WAJ4P2vSK4coy0msNj3p6iPtYvXAaMe2HJv26DPN9lqck/+uGTMN/DsB1/qvmd2URN3uHQ2VzTZ53QlhHiSV19CzGDpyOSQzuZ0E+/qmCBmswcLIA5qxSb3hW3XZ7A4q0cvP1zOJNG+UoCmus736dYJU4ypuNaDRW1yH7cXcJLvdUptj/oacg1e0V0vfIJJo/bWPt9u9XF83aJ/TNFnLW1EskzQLOgn1lJyuXzJoKNuP7fS8DMenBvAqqbQu2jVpjbt3+JNlN3yhoDx5K+XNyHxmPN1ElYyWMRDzUrKs7j/BjFFOu9gk+KKN03lVUY9udTP0ej6mRTKYLjJuAdL5/d61CewLZXRN7nPFz+uGoxeSn79MF8jiLzWv39/7L///hgyZAg++OADbN9uLzt78uTJmDx5sqXHjhgxAgsXLnSymVRC0BcziMo1VBcnVMrxowdL2EqEWY1hacEqG2O1oh4svpcIK2RZJIUMlnJ/s0J2Uql73oJqvk8xc9zPHiwq+bisRpm+INACrckY2tJZR/fZ4rFYWIBqbd/0O3hJ1sl/qTA1uQfEaijWtlt+vx3ZHBrhTtN58fCoM7lG+X3dKYcZLCGw3y49i75nNJjO5/N4e8XmwmMyWfdKhJn0QhGzE+TSIeoFJF5BgEU8oPQZLIV/O85gkU4PRVkVQiDJKKOmEuJruzUxVchgsdfk3k4Gi5UeLABw6/PLtL9/t7riOK6ctVPIYOn8v7ZC22TCPqwT+W98thEH3TAbM99eZfoYs0wtM0GqhetVCSWvtQrn03bhc3SUHWLwEXgZ/CpzKJYkHvsbWzpMalYLARMLq690AZkAlg9wkoUSd3iNsUp3M51TSyx2fm20C6r7pdv7ldF5Vd1HejYmAQDbO7LafuJbDxaD78nZuWE9FxF5JZ/P48UXX8QFF1yA/v37Y9y4cXjqqadw1llnYfbs2X5vHtmkXxnt//ivFHFSvtLrVjWzSupCWiJMU2YIq/bGsVUiTBp0BuHeQyUuijLaP8RV2+pixHTOPKtK/H41g2zicMrPfc9suFxXIyXC1HNsQwUZLKX2IbPDkxks4SMfK0G8/xXJ21vY55yd59w8TxXmBBVtu+QxTtCvyQywhIQ8oDEaTP/z/XW44JF3tK/bOnJFMxFOV0KIAxVt4ifWueOrg125TJg64VJRDxaTA0iceC5MxleYwWJWtgrQVlu5tSLbk5W/LjW5LxW8KPRgKX3qWLquWRuYdDcsESZnsHT+X12tXa7HQFjLv/z80XexLZXBr5943/Qx4k2zldhkkGpE+7Fq/Mut7Rj/xzcwZ+l6x8/RJjS0F1edWAlwyYwCm14OkivJYBH/XJlc3niSRniMlRU54rsPYo1UOz1YVJ4HWAxuprUatCUyWNw+5uWgxPrmdtw57xMAQI+GwnlcDUiKj3bj2L/i70tw3p/fKru6z+jnRZmYIQ3CE7ltwYIFuPjiizFgwACMGTMGjz/+OI4//ng888wz+PLLL3H//ffj2GOP9XszySa75TurTTxP6wIsJcZD5UpadT5X1+p5D8cX6pYHaXxth9UybPZKhKm/E7AMFvUfijohZ75Ar1AirFDbP583H9uJ365mlQDx7+f352vEzZ5KQabt80nn7zdvsA+VOzoreT3yh7xouz1sGSw2q6EU97F2McAiZCWaBXODkNlXCkuEhUQirkA8Vo0GQ/9YtEb3dSqdRa6rR8qx++2Eef/5ynENUX2zeX3gpHt9AqlMR1GApbIeLMUDaLPxopaxYbsHi/7r4sbrhZUubtf81U2ouTQRlJUCLE6b3FvqwZIo/zdVH9tUX5wyWDwZV/isgfI9WMKWrq+ycijomtxbeM4gDXT9CHzd+K8P8conX+OVT77GiltOcPQcrcLJVZyocHK+rHaT+0p6sMg34R2ZHBrrpNIdwr/t1OkGgjnpY/c6ARSuYd5lsBRsT2Xw80feKWquKVIHnG4PMOXSjRMffhvvr94KoDNbNaZ0TjhsT2XQvT6hK7fmJHAl+8ubXwDoDNDvP6CX6eOsvFZYg/BEbhs1ahS6d++OE088EWeeeSbGjRuHuro6vzeLKqRvcu//+K+UmNI5od2RzVU8Vq1GWVz1EuPVtdZr4gLBUuxUZ1AnEIMWYFGpwblELIZ0Nlv2PjEhLBTM5PJIGFS38SuDxaislJ/kwGet9GBRx5qNXYtsm9vTjp8DMDhWTBbxFc5xwbuHImuC3oNFVijFZbVEWPH8gVsKGSxAvUkGSzV7YjnBDJaQkCfRjCau5H4BbelsIaU3UdkqHPH3xBUgQKF0yLZ2uURY5/+d9GAxGkDLDZlU5cpJmclrAYnSvy9msLh1E6MrreLSoK1QvsteQ2Z5krXUSmR5VZeZdVvbtJOhpSb32j7V9fxlJjTDOnlmNyPCyuODlErsx6rxzdvtD3hl4kBI/LeTVflGv+FtBkthH7HbPFZ+tFEA2W7ARHzOIKZIOzl1OC1DaZX4Gc94baWu55rR9bPOo2NePi+rwRWgs9Snei5XF1OIA+xKM1jEz2DRF1tKPtbKaYY9WIg6/e1vf8NXX32FRx99FCeddBKDKxGhuzYH8ForD0dKlbO104NFK2vlaQaLfsFaUIIIdpW7h6i3MakmB51Ufk+yF5e66Sr9ZVgirIui79di9vcNQqmuUuO8Z95fhxmvrajexnQJ0sI+T3X9/Yf07yzVv2TN1hIPLvkUAKwHaqtxjiN3FZUIC/jfrnDN7TwPNnUtrrQcGPIwgwXCnKBZD5Yg9B0uhQGWkJAntI0GNHKvk0wuj3TX47QAi8NJB32Te30GS6+uAMuWVv1EpzrB76RHQOHiIhzo0iS8ym5Td5X6PrQau1LdQbFEi506tVa4XVoFKGyvuirHauCmqERYid/L5fU3HWZWbWrD0++tBQB0qyufwVKIVnf+LY2CZrqU6ZCWfxGP0UffWGn4GLsZLEFaYefHnKZ8s+eEWPpK/LeTC3i1S4SJwXen50CV0XVFFzCxMvASfiGIA0wnPVjUIIeT37VCfNaN2zsMX1uU9KgGfalzfyxWKPeo9lsTdzcnmUEi8aO9+h8flCxHJ6+cMhLWIDyR20499VQ0NDT4vRnkssCXCBP+rS/14VYGi3fvuTiDJXhjmVKsDlXs/E3Up6yXUj2CcO8BFIJz6oLITdJYSpYUyusavQd5wVI19wFdf6USr/uLx97FNU99iE83tHi6PbXe5P6QPfoAAN5btcX2c4h/y0KT+9K/o36+QZ9EJnNt6azuHPLvJeuwZLX9AF21NHX1S261WNpM3oWd9m4xfu7C/GtYS4QxwBISibj+6mYlgwUoRCILQQTrJ2uxz0ZKF2Dp+kfXy/VuUgMs+sFMqRryVl87pctggeHzaeWkHJYIKwSfzLMq1AZnbk0YetEcWHs/aoDFYZP70j1Y9K9hhXEGixRgkYJnRj1YxI8prJNn4jF61awPDB8jTh5aOXTEfkVGGQx/fnUFbvjnh7azG8IiGbd/fpGJAwpx9Yad86XK6GP2cpAslmCstA+VYVNQ4TFWVraI+28QJ32cBAISDvt8WVXq0FQMTrVi4103j+tS7y9mlMEils+o8LORr0OlSjFYeSlmsBBRlInX2qBPdCqKe5mX1ehPoH6yhW0O1/VEuk03ZWui3CSDpSMg2VPqez1sUOdk+EvLNxQ9RqztH4sp2j2ZYbZL0Qrt6u0DdkuErW9u93w7RKWy0aJEHZfu1KMeQHGvYUtK/C3Njs96k1X7FFxGx4p6Xl2yeisufPRdnPj7V6q8Vebka0S3rnL+2y3u4972YOn8v4LCgm55/pUlwsgVCamRsdFgyKjXyfauiUP1Ymhn0kEXdVcbcwnfU1fW9u7KYNnapp8QUefp5cwaK4zSI+VJeJXT8i05abBYNOmv/kOB+xksHqQdqxOHdjN6iiZZSwyYrGawiLrVGQRY5AwW6Y+bMOjBoq9jGq6bHZWVfuT6DBbrJcIA48/luqc/xEMLV+DdMmV3wsrOvmhGvDnRBVgc7WfFv+Pl5IeYwWL3XCJPzhsN5sXjrj1dfkJf/HEQJ30qaXJfaZaGOfOAe6kSYfm8u4EE+bXFgHA8VgiwbE91HiPiwysd7MrvonQvMCsZLMHb94iI3CKeIoO4mEE+TxcWAxmUIlVXrFp4XrOa7K6S7w9Dej0pd/ttp7+oWQ8WPyfZjcYC3xq0AwDgk6+KszrkUnTqAi2j9yCPFauZwSK+spXP1+uxtrwbud2XNqi0JvcVZN+Jf8tS2UiiWvl8o8Qos169Ln/2tbcZZm6wn8Gif78frN2Ka5/6AF9tqzzYW1hQX6rJfbCvyQywhIS8Srsjkyua7DFayK1emJ3UkZUv8Fvb0vjn++u072kBlqbOes5yibBCKbEKmtwLB5RZWZC4w9XF5Wrsij1k1AyWdDbvSvaEOCh0KxtDfRo1OGH1eYvToEtNbHX+X1zB9P2Ddy35/IYZLHK2UNf/1T0lbhA00/872CdWM1aOBfHTt1SPWvhblMqUcLTyJgQqDbBs2JbSDZpTugCLkxJhxd/zMiAoToLbbcIp30AaZrBIX5e7wQh62RInp1un1xirxM9M/puUanIPuDvIlLM4G4TXiSmKVu6xtaO4B4vT8qOqon2xxH5mJUYW1iA8EZEV4tg9iIsZRAqUiiYpRdVYPR/2HixWM1vrbfQXDWIPFt2CtK4bpp4NnYs+rdzzGPV71Z5b+jqTy1etEoD4Oi8t34B/L1lX4tHWG1Pb3g6TeZdaa3Jfr80BVVY2WisRVqbMbZ1HZYDJO0anBnXBprxIPojU+7vtHc7miq6a9QEefm0lfjXzvYq3pfBZKqaZr0G/xwv+X5wAFPpqiOyceOsd1JHNSxeFCx99B5P/skj7njrvo/VgadOXCFMnxJ2cVxqTxSW5zJogOs1gUZ9PbewkDxTEFVVqTdfOx1U+kBG31O0eLHUJmxks0uNK7SPqPiEG/IxK04kaksU7QHEGS+f/1QFyoURY8d/f6PfDwko2lzgYsxJgEQMMpW44Ky+kFUyVBli+2LRd+3dDMiZlsLhUIszDVUhiyUT7GSz6rw33H+kx5W7EdWVLAhhgcRLQ9jqDRXxW+SUMe7AI5183J5nk/aFeuO7FY4pwXc4WPb7iDBZ5P7OQSVlKWMtIEhFZoV/MELyJOPkMbK3JffmRajX7P2glpENWIkxVvkSY9Ylc9ROQe7AEpUxUodSNvlec8WM7H12n9rqwkMECVG9ST36VCx99t+Tjqx3oqC/xuUWJts9XUJZQX+5Nf09kdrpjibBwU+/R1F6S5ebJ/KCVS+zatKau82ZrymIGi8mpcLEL1VIKPVjMg7lBX/TAAEtIJAwOTnF18LRnP8I/Fq81/X2zMlil6IMAOSz8ZKPu5+rEj1mTe3V+w0kGS0NX0ENsdFvIcpB7sHRNxts82NTBk5oWJzfVFQM6YpaAGzcyOZPMjIqeU21ybzODxUofBpX6UDEab7RviuIxBc9eMlL3PflvJZcHMOp5oOtbE/DItRmjMn4yuyXC4iXqCLu12ur91Vsw47UVgezjogYUnRI/smwuj7aOwjec3ExVu8m9+Dexm0VQ3OTevHSHqlwfFl3ZkgDefFUSYKlKDxbpJYwun/GYon3fyxVu9VIGi3xd1gdYKvts5MOmVPaTlT+DlX5BRERhJZ4GP1rXjPdXb/FrUwzpzumKe5knVclgkbI15OzOqHAykVvUg8XHiS6joUB3qZRpKfUWgn6iapWKM7rXkseuugw2jyfi5cBnrZSwUj9jtYpJLu98rgkQy+2X/p1qBpHJHeKfVF2Mpt6HiIvigjiPAtjPYDF7F25cD8SuAeq5Rr4nZICFXCE2uVfnaMUBwf++9FnJ39fSnG1MEOn7hBj8Xtd2qIMZuW5fJSXC5JNT5/YIR5zAbkCh8Hyd/1cbO7Wm5QCLOumvIBYrpKl5kcHixgm3kMFir9+OndIs6mPFP2m5yLyiKBjSvyeuOn4IvrFT985tk/cnKTtJ+5ua9WAJ6epkS/2IdCnv1p7XLIVS3AccHIaak36/ENc89SHmffSV8yfxSKUZLOJ+lcnldce3owwWg+95eQOqO5fYHvjrv7Zyk1mu7JeuB0sAJ7lfWq7fh3fuWV/2d9Tj1kn/FivEIFZxibDiA1dRzNOm3SQGWOIx8bpcXOag0gmo4mBf+UzKUja2pCraHiKiIJPPmSf9fqFPW1Ke2OS+0klDt0qNlaKtXK/CddYLVjOCjMpxmz9ncQUDIDg9WNS3qt7TG5UIkythlCrFZDTMqFYmk3EmvHEZcwBo9yjQYTbUKhWYihKtB4tQicPuwjt9Bovc5N74+KxGEJncJZ6L1IXb6oJscZ4sKGXfCovWO9nPYDE+DtxYiKhtm1KY4ynOYAn2PCADLCEhZgw4qX1ZSHO29jvFfTmKf089XxhlmwCFwb+T+U+1bJc+wNL5f/lyFI87W10sZ7C0l8hgAcQoqgsZLNLn60YWi/oUakmujmz5htRA8QCqdImwzv+LY/ZyGSzqTycetRfOH7U3AIMSYdpjOx9ttGJc/JXQ9mCxksEiTFpajYmoNzzyOUHcr6xkw5SzclMrgM5jfc7S9YHoseFmgCWf1wf/nJUI6/z9I/fqi/859YDO5/Hwpkw8xtvTOfzzvbVY32ytyVxRk3srAZayN3L67QmaJWuaAQAXjNobs6cchXm/Gl32d7RrjEcDutI9WExuwLTa8N7tW2IpELFEmHpdFs/Jv31uWUULBaxkU6msvMqGlo7yDyIiCqmALoTVyNmvJUuEdf3fyijVrOmtm9RrWZO6AM9i49+gKVsiLGl9PkELOgW2RFjnu9UyWCysxNaCfgZjVcNs9CpNjhod2vL+Lj7G8wwW6etq9mD5x6I1uGvex56/jpHCPm+tFLfhc5QIsJiplQyhKNFlsNTpyymL8xRBDQzYzmAxeRuuVOURFrizRBh56jcnD0VdIoZfj9u3ZFM2M+rvWE1vlQ8co4kldeLHKNsEKJTBslJTVybXehe53YNFa9yb1p9UxAgqIDQDdOOCJ3++bkR8pVTWfN7a88qDyFInLaOybzt0K70CXHxs0qC3irqtgJDBYtiDRZ9pEEZWynAaNW0sp86kAZ8bn5O4Cqx3VznAq2YtwcSH38aVs5ZU/PyVEssVOOmRUdz7oXB8O7mZUp8vHlPQt+vYSHmZwSJs/x8XfIaL/7IIY6a/VOZ38ujI5CxlsMjnh3JBk2qsqquE+n7692rAPjv30G7GS1EzWLJeZbDoAiz6n5mdM6qxwk1ctRdTlKKbBjmg0tzmrDkiUPy+S+1nVjKJvt7GDBYiii6vMiq9IJb6qHSSujpN7jup4wMrDdODpFwTbZWdidxANrk3+F73BvMeLHI56kIGi1F53AL1Vqxai8qsZbAUHuTVRLzZXlTNDJZLH1/8/9n77nBJqmr7XR1u3zg5wxCGPOQgSaKAIGYUxYBiADPP/B5mDKBPRfCnIqhPxIwoKqKSkZxzGmYYJudwc+j4+6N6V+2za59Tp6qr7/Qdan3ffPfO7erq6grn7LP3XmvBJTe/AI+u2Nr0z+LwlEGo12lUr0tyFn2TezPGs4CVIhnQZxZ9m7HxnObBWqUgzYHN5ibvqvECzb/q1IOa1fCYFNICywTB/jtOhmcvPBU+esLuRlM2HTwGi+UNybeSJhQcL3TFEEyYWMkiMeDgRLuGfAaLur+8VzyqRSqy4KSHtDjqvaB8Xv34G2Gw9A2XlOvFDzOJ7hOsRbQTY2Kbe8QmyeoDi2YA3z5jfzjvuAVwxIJpxv3TBKHvl8MZLOr/JQYLvbYT0YOlXKkGWF4SlKDect+6YDeJ87SBsCGw8PWXx1a7Px9d3fD+G0W+QeqtSSIvDvNEMmcbD61wAIBbnlsPAAADo+YA6fw/PA4Hff2mgIySqbMUEXYP0+1bgeHEwY39bJD1ivjND4x58VlXZPVkP8fTgyWv92ABANg63ABrxFDo5LC5DJtSibAUKVJsx2j1+go/PpMxtk4CWsJ4+BPg4fQYkvUTAiHn0zuXEdagBVZgaRXJG/yuaHJfqtSCrA+2rjfF6HRtYGr6bAak4im/3xW/w3Fmi2+LAsCG/vGP6ej9Eqe5GUC9Tvy9epP76Hm+FNsY5DqjCo/UZNgyzAs2FqL6je1Y0sz4A/edcQiDhR1Xy8w7GqQFlgmEXH1wj9M54BdY4kmEDQuUMY/B0ubuO8BgacSDRTS5lxNj7aTLNkoXByZputrkwIl3uuDnRPUV2Dw4Bgd+/SY48Xt3BPaN+MhvH4m0Twl4vtXzYVNgYQlmQ1KeMljOOnwn+MLp+ygSYfMmtwfeQ68/St0FJMLYQJ+vb1er+awE+paWmaAi4IzL74Wlm4ZCt5M0hcOAzCA+4SRhzLmOFFhsFmHjbeBGqbdxgv1AsZPs4we3vAC3PLs+2v7qb3ccxzu2YjOlLOhnW576659YA8PFCizb7Eq++RJzQhcfZxaEfBe1q671nlNbbXIKv8DSjCNS54On6xJmYRiPBW6YRFiSBZaARJhhrLG5zbcMpRJhKVKk2H7Rqma5EhySKJkIJveI7oLL2h4uVmIxpLcVbG8NWz8beq8FCizb1IMl+LeuNp+VHGZ0b/IFovvmngrNhvS9+DHSuLHpUlIsXN4WBYDxXvfztXhUqX1pP6VKDarVmoXJfcpgmcjoCDSjBVlMrYb2JFV6GgRtuNB7sLTmeUSkBZYJCG7Kdvvz4cbTOFjbUqr4Vuv69Jr+HXk38Fi5ZVgZRJBxkIlxlxklwtj/20kSKErw4zFY6oHTcLGsHH/QgwUr0tEe6gde2gIAAKt7R7y/8Tj93hc3Q/9oKdJ+OVC+Jp/NeAlBm4Hcxm+Hb0uvAU1UXvL2g4JvEvxa9B4sLrLERBG3VSaoCchgeXJVn9V29NTYS4TJgZ/C+om5GKeyPzjx9jBZJcpSSkR/MwKor02cwIAvmvkk/sGrH460P3ovmww0k4I6ZsU7935gJR0nT3xPbAZLVRjDwpBrMoMlzmXDoljSQSa9h2ixHgCgI682U/CiSO9w/DksIEVn8mCxOGGtuohJkSJFiiQgjYKtWgRwQC/1AWBXNEckJTWmA51fUG4KwF6bvhXgx6EhJvd5/TVR9kcuUCt5sCielfWvSptBOPOIrzXx+xtZVWDuSG8Uo6Vg8U6SeDOZ3DcrEa+LtcbDB4ljvO+zG5/xm+syjqNtZAyDSRFG93SmEmETD/SZ5XLKJhbTtkKwiRyP2bIRP9KsHQ10nC5omttTibAUicOjKdYH3vdd9VDoe6LKifBkxybBMNZnsGTr7wG4jBiRUYpXVHQQibBv3fAs/PKel7Sdx5mM3xnFWTQm4IDXVfCPnw58PECNy2CRNPSloCVM1icMCqUua9/hFUUirOpdA/9vWfIFaecQQmGweGbRspas58GSoQWWauA4t+fkmY6pZYIXjLHz+vCyrd7vcRfe3EQdwJdNQORIFXVb+uPEuS+CDK7G7i16Lxe8wlfzzgk93XEbWjGwkr57gMESxYOlBU3u48xLmSYzWOJA57vUKGiBlCZSSpWqv2jAriz23sYYLOr/TQwWG++BUosmGlOkSJEiCWxLE24b8MOzYZ60isk9oj3nN6yFsSG2BYaLZVhRZyJLCAtzTAwOCnopuQdLq9xz9KvyBKcOJtknGkJ0CqoaSaBvuAT7ffVGOOvK+5W/ywwWWe4MoPnNTPw22hYMi/G+zz78G19ZRGmYa4DBAmD3Pfwc2MQp6r7cURPGC1wD07m6VfNXUfy4AMZHIsxxHO+4eH43ZbCkSBz5nD07AdEWscBi8+BwDxYAgEtv8Qss2DGftXH2ZmgnsmM/u+sluPD6ZwOdJ8r2nj+KfZCBk14HKQookmQs6R+XwUILQrhP6fwOxGSwbBocg2fW9Pmd2Q7pyhGM+ziimNz758T/TvTydhay/C3K65iI5yyHgMm9kLCnxzmRzD0jw2dGWsMroLJ782O/e9T7PW7hgzJfcOKdVDe7R2Qb9EFpBLRwlIREWKPBj6Qduq5/FC65aZHCYksONeG3aPAYg8Like8zbIytKgW51ktISEXiMLQig6UtGz0OkD+bj//+/2kipViu+h4sGgbL1gYYLLwbyvQs2wxlvIifIkWKFNsTpHmjFedcAFVihzcCRUWUBrI4oOfVcRxPRroVje7fceX9cNx3b4dF6waUv1tLhCF7ObRxRo4LANz13Laab3Xfk8uZ+turCyxT0px+Z9uCTVTc+vx6KFdr8OCyLaHbBhgs0Njaxwa622g8fJA4xjuhSu9zup6LzGAR15jmB3Ryhy9N2OqJ5BQu6BXl4w9dK7Xq9YzOYGkeaL4XzyXPYdl6im8rpAWWCQjbjhPlPSgRlmBXp8dgyQeT6gCgJPyjQtqnyQSRm+/aAHdXyGY86icNxvjHxWWwZMkJwAEBA6MDdpwMu0zvBID4DJbDvnkLvPaHd8Oza1zt/mzGZ7DYDJT8ljAXWNyf9BLQTnBbBgv/DJ+q6L5OGSxo1E6LMtuSJREHUSZUb2KJ8ODYmO/FTQ5LRoqUwVKr1VTG0ThPevTT4nSXmUzu4x2PT7ttI/4wP7xtCbzrZ/dr3tXA55HDj1t4nNThXs8BIYHA9xmFJdiK9HacR6LU/XEMiyuzF4Y4VOukTO4DBUbN/kqVqienqfNg6W2AwRJkSjUmETbR5ogUKVKkCEPfcMkb/6QhrpVYo3xeM/mHRvFG89Zi45BUdgCgu9C6RvdP1KWH//HkGuXvXP5FB9uuZXpOssI1agUWC7138B7RrQlwS7PJvf87SpFHiX9tQD0k1c8OZ6cpEmEvA5P78e78V6SwiRdE1OMwNfHphjvaxNg30ph8fIrxgSqv7I4Xf3xoJVz32KqWZLDwxuZ2S7lI//3NW2PRBvd2TY65VQtViLTAMgERp4oe3eQ+fBtMUCHbRH2/b+IlBWNhkB4ok3Y+dpdEMrkn1QKpQONLNbmfGJfBQj1o8Pg8I2zwNX4HG5QIW7xh0P28iJ0WfJA0BUy4JS2aUPaCxGChl9/vBDczWDIZx/sdjdrpYTark7xZiMascn9GeWpsqMtxE44qQ8T9HlQ6qFytKQc73p1sNHCJs/gJ3v+NLaBooiDPOv2WbR6GJRsGhHc18HnCZ0cFdktJRd5GJMKiFqPHA3EKmLpxKynEuW7IUmw0oca/E40RVN+rqk/VFowbAZI1uTfNXTbnK2WwpEiRYnvCrc+thwO/fhN876ZF9b8EB8JWYrAoTBBI0OQ+21yDbT6vdbVogaWPMEZ18UxYmBNL6knYZyskDSWJsACDhb3HWPQDvxnHyzEkXMjIZ+ULhLdgdyEHC2Z0iZ+tsMWbJJenK3yazluzMN4NW7TI4TjRlGA29I962/FCs805y2Ycr5Gx2QWWWq0Gq3tHmpowfzmAnj2UCFvdOwKf+uMTij9lKxSjJbR7stM1q7XueNwtDugLLOPp/xQHaYFlAgK11yNJhHkFlprVIGrTUYsTbpvQgUGfzTgeLDmSYEeY6GA4MERJNuExZhxH8XxBaKu7ERcw1GQQrxlN8vUU3Em8UZN7RMaJphUalAjTn2eJlTR3crv3e6cwEDoKg8W/DymkogJPatLjbHVzK44o92UsDxaLwC9ucpiedwxws4qxfFVZSI+7RBj57DgL4KQlwqgElTQ2vucXDza0f44kGCx+gSU4BuEePRmxUJN7uuhrvUAyjsk9erD86eFVcPE/n0t8IRJnb7bXIwz8nqFjK32lWK56HXxYrOXH3YhEGH8OTQUSm/s8ZbCkSJFie8JX//4MAAD8+PYXAUDDYGnRpIMiESbGBfZxr8mYPAkoDBbHT5YNJ+y/0ShWbvW9Vzh71FoizDKfELa/bVVgCZMI4/ERLxiY2P90W1z/J/18UTlsGlfib5M78jCjuyAeI/3q247BMn7PxF2LN47bZwGoSg1K42rIvf7C+gE4/KJb4Y0/ugcA/IZaRLFStXo+cV3W20BcbYMr7lwKr/z2bfD/blvS1M95OYGr8FB5SXr//O3x1XD5HS+O23FR+LdgvYk8749FNuvK8fJgac/LpYqRFmLrSkgLLBMQVH/WdnKjiT6bxEOUB4d3NgwXy0oCJBPDg8UhRu0ITB5LnTphdGAJPhuDGlJVAq9jgSSu5mhZYQCohleO40/ijZrcI1xTKPsiHB6eb8gd3jlMi2ZTOtvgH584Bm7+1HFeAYVC9WCpm9xXNYEiLcbUA09M+NF7qlmd5M1CLAZLFIkwi8Av7jmj78PvQa9psVxVFgbjXvwinx1nAczPS6NdUopEWC74PKzpG21o/xz0uWiUwdI/4o5BjyzfCpsGx+r7dHdq28U5nsabcRDH5N4ft2pwxZ1L4b4XNyd8TNEvXKFJBRZapKWPRrFSg7a6/xsWP/h7G5MIsy/025ytiVaET5EiRQoT+JSFY+YkkghsLYkwFUl5p7SRQn8z1gKceeP5lLRYw8j6fj+WXNMrx5VOSCtJwVJujTbOSKHTtjo3uuPifnE6mCXCfAZLHBlyG1CWO72XqUSOrpihxNpNLnTwa74tGCz3L90Cm+vrkvFAN5EIo5LPYQyW659w5fqeXevKtpsYLKZ1/pROXJc1t8Dy7X89DwAAl9z8QlM/Z3sHfR4564KuZ+jv//WHx+E7/34enqpLPW5LtBNlkkbXlY02IdI8is6GYqTYWoxSjrTAMgHhT2wVrazUPMIqAFATfTaJh6id0J86eU/v976RkhIoxKivAEAwOYmTkjQfecmmCEGGpPFnw2CJOvDQTlyPwUKSfJ5EWEL0c9ppYRP04rUuWMiK6e6L/XaYDHvM7tEeDwI9WIISYcGuckxq/ub+5VCuVJVkX7O7k0eKlUS71ONI18UxuTdd77jnTJF88gqE9G8VJXzkxbNmo3EGS3T6ts3xZBzHe6aaiSTOPVLhB8ZK8MDSzfCWy++Foy6+Vdlmaj3YD6Or8wJLq9HO43iDZdkk1pvwgqcRBkujXTx8LC7qJMLKVa/o7XmJsQPfOtSAyT1nsBjuZTsGS2slw1KkSJGiEfBkOQ7dvzv3SO9vrSTLyef+pJKydG3YjASvkhB1/ONutYYRmqiLq4Bg7cGinpJAbNsKsjf0+fDioyI/LjX+M62VfWUFJ7IBtC3yJLZ8giRZ/QZQR/vc0OereQwWOdbaFh4sAAD9CTWi2gALHAibdTbdDsHDVa76oAM2vqUeLBMDVH2E5y+lPCDF6t7hwN+aDUmaP5rHt7uDKZ15OOPgHZRXGs3Rec+HwYOl1RilHGmBZQKC+mtISfm3Hroj/Oy9h6nvIQN+ySLxEPXR+K+T9/AMwcZK6uTBk1O20AVwogdLjOCHFjk6Bb1WnvSP28VUIgPNg8u2wI9vX+J1JDjgG6k16sGCyDgAhQidYngecBAzmtzjZ0S4phKDJSARVv9Jk57ZejHmijuXwlX3Lhs3BsuKzcOwz1f+Def/4fHE9hnnvowkEZZTE58SYjNYqM5vqQKVag0eX9nr/Y0/78Xy+CbU6WI4zoTLA11pobh4fQTfFJLA1xlYJgm6yIr7WFAPljvrNHyeRJ/a2QYA4cUFej2qtdaTaorDYOFzWNymAR3i1KA6LDs0w8Avj+LBwv6eZ3IaSZrcm6TKAttaDKcpgyVFihTbE/i8g3N/Z1sWFs6dBACtKcuJMHlDRvEepGvDZkgUKcUEkuBpNQaLmmDn7Aa7RpI4ygyO48BDXzoZ/vO5E2BGtxsXtpxEmMaDhaPd+/7B7WgzjidDnrREGFkjvOXye73fJQZLsMDi/95sqS5+G0VRyUgS49mwNXuS36jcVchZrbMBwgsstudsUnuy8vEpmgwyh/ECC11XSTm2pBRsGkUhQiM5nbNPWThbea3RccGvr+gbVYfSAkuKpEFp1tJDedSC6TC9q6D8jdJQTRJQiDhzGO1ooEnZOB4sAMFJCic1o0RYhGSTHzw5XjAmSoQhgyVmFxOtXH/+2ifhuzcugs//+UkAqHen1IP3pDqA3H3iQib8WNHE3EbXWGKahCMo+6U1uSd/y5HV5AMvbVE9WJrYnfyr+5YBgE/zTQK6e8YULIZR+yn8bi39JB3b5F4psFThBze/oHTUFCvVcbs28vH5vw/FoIzaMFjO+eVD1vuj40bc4vJ4gxZY+H2HBZOpXagHbE6i81u61bo+43gc8esYRb7PDtGfTWnOioMqGxdKtEBKfnULLGaJsCQ9WIwSYRYBik0jSYoUKVJMFPC1lOgR0ULzLR2lHSe5pGwum/GKTc1O8FKT3VY6twC8+Uk+D9Ym9yFNYJzBMqk9DztP79pmiXbvuMjv9LuGerDU/29iptBmt4626DLkNtD1YNHjxGs0wBpq6XdvljSgLtSyZT41/vl6hnWzgR/98RN3BwB7b1uMk739cIkwy+8wXuOOJGWdIjroVeYWB/T5lK5nHPWNZqAQwc/az3U4WsWhuKBjr6NRA0klwlIkDjrIS10nuWzQFCjrOF6SyCrRqtnk4J2maN9CJ1yaeImbi9JKhAnbeh1GcQosABqTe7Wg4zFYIgYyRr1Oh7I6kgkcqLl2NA8WCwZLjO5vmpvMar9rLbBfav5XqdaUruWJ58Ein1MpiRiHwYJUZlOCsxLz/qIJ2P7REvzodtUIb6xUDXS6jyfoWDM8Fj0QtTG5X907Yr+/qr4Q3Awk0dCF7JS+kVJgfsDnzmOwhCTR+eG0kiY8gP99olyfQIElyQOCeNcwKU3wgAcLGWjpa9Tkno9buKBspLuTL6RNhVqb01VJGSwpUqTYjhDwYKn/pB4RrVYEQDhgNommyRobxPXEjAqa3Gk1BgsN1fjca21yn/fX7abGBZ3XiYmVtC0RFh/hfWbyb6XrXRPTpRHoTjl9HhbOc9lptzy7nr2XMJjG0WweAJRnopmsEpv1WbPAWWC2Hiw8dyV9B150keAXzZv7nQvjoLTwcgBteOD3AH0+JaWNpCwCooD6nCC8e85iPKGPfYH4twA0ngfix4YNhRSpRFiKxOExRSpVhR2ByGacgGZdxvGTIFayUZrB/6S9Z2nf4zExylUlKZuNmWjUm9wHt9V1q5hAg6eONlema8TgweLp8EYMZEyduBnHpwgnlZjOZprvwRLlktKiCSbotAwWoRiD26ssieYFdM1Ii+vuS+maS5NeGKbUk99bDeyCuPlGeqq3DAX3P1ausE73cU5sJsxgadzk3sV4cVdsAvUwzJ5UgPZ8BirVGvz0Py+K+5/aZSkRxs5nqyV8al4x1/49fA5LevyJs7c4rE0JFV5gIfd/TXmuqx4TtsQYLFgMr9WCjBhb8LcZJcKsGCxpgSVFihTbD2jxoUSYw9QjonleDNHBh2lf373xmKCZHhD8uFuRHQSgzrX6Ywsxua8nxsLkXFUGi7/PKM18zYAuua8zuedbtxv8W32Te6dpJve6U07XxCft48rvvLB+UPveZifheeFzalcbtGUzUKsBrNpq34AWFQEGy3gWWOo/8ZvbMlho7qpWqxm/gymX4rMJmjvuFPJpKjhJSBJhdJ4aFvIUnJ22rYB2CTaMGpqryjHWVsN5FJYTbM8FCyxJj8VJI32qJiDoIC8FRDliVOTBAcjXkyA2ySHdJj3tefkFUDsa6PvjSoTpNQwlibDoevQK/VdIVvmTa2MMFqkIhnDAgTZPdiWZhFDGcTztTikhzoGTv+fBYvDQ8LtqIhwPuYyURUWDDn6uAdQBu1KtKQH+hGOwaBaUYicf6YKwBRqQm9gFlZiSOfRcbxksBq4978YZb+8DmmyNZXLP7qUobBX5eNyfOO595y37N7S/0M/TXNYoie5sJgO7TO8SX8PTO81jsBTNnY7spWZ3uEUFnpYoEnycwTJeXYwmJObBwu4fWiClz/VYueoZspaYBwuVRIhbfOL3iKnhwOYjTPNuihQpUkw00FloaKysrGGidJ6OG2hS3rEzFLeFbbIzDhS2BowfWyYqKkqBhflzWO5D9bOxY42KDJYWODeSRFigwOLFfy5MhROaYG9vs5fOiQIe9+D/qcJGV70BNCB3BvT6N+e5191H+WwG9pjdDQAAz67tb8pnS58/vgwW9yeuxb0m5ZDYksrbl6u1IIPFQrodgMoAN/c7B/KFKWLBZHJPn0/JOyQpD+YokBqb50zuAACANRHyII4TzPMmxWjEdTpXZQJIGSwpmgDaMSIlIRzHgUzGUTwsHHC8hLVN4kGXEONVSgoqEUYDvyiG6BRaiTBhd4UYVEraydwhBFnBCqq6gNk4MAZ/fGiFWI2mMCWcMhnKYEkmCek4ALvMcJOlyzYNhW7vS4SFM2n84FR/Tf/7tL3V4yHb5lnRhO+X7jbHGCy003qiGRjrinKi2Wf9Z5QiFrILTAW1y25ZDOv7R+13WgctYAyQRT2CF1Rtg0eOcqUKH/zVw3DZLYsjHp//e5wJN+laHaeVo79Js6A7/CgeFBkHYNcZmgJL/WdXwV3klSo1c6cj+//3b1oER118W6SArZnA6xOJwcILLE1eZNugI4YspoSAB1ElOAcCALz9sPnewrFaU1mF6oIy3rnhZ8DcTRt+vprJckyRIkWK8QZNgA+MlhVGuVcEaCEGC4eNnJTttNxMD4igyX2LMljIgWoLCSEnlCZXTbGEbs5ta+J1sIFulkfPlNGQNYGnfiEk7lWT++YUMPnx4zNOk/t4r5erNTV/Q95crtaaKs8s3UZ7ze4BAIAXNw4KryYDab05XuCKHdYeLIGipfolxkpVq4Iydu032kQVhkI+yA5IER00P8Y9QxQGS70RlI6preLBMn+qW2CxYaX5h+8EvKQalghjzx5VZcJzO1KqxFZMGA+kBZYJCIXBIiSasRJKCxSuRJi9Vqp0y7ZlM0a5Lxrgx0licXCTezxuaZdxunmrJIDxJMLI+2kHCUCQwfKe/3sQ/vvPT8GFf3/W+DnmxYRDdO2TM7nfdUYnAAC8ZFVgcb9nmM4wnQxM1/UjJ+wGrz1grvd/esvkWGeHt29BFivgwbINjNSHxsrw87uWwsotww3tR8e4kRbD/L6zwVTCLtBhqFiB919lb9bOj0cHrt0ct8Po1uc3wC3PrYcf3PJCpPfRw4tTeLORG4oDvH58HEsauoWv7lxI21PWW/AN7g86n5iLsOr+//X0OljXPwo/uDnadW0W4jDEeIElab3xOHcgdrc1LBHGxibapIAvnbzPLPjcaXspDRaliu+9xDv24iDgBWNR6DdhohXhU6RIkcIE2kBSJONvpmVN7jkTJDm2Q3MZLD4caJ7/RqPgHmlSsiksyskQxYtYDBaL9zYTOukyLYOFdJkDmP1baazoxVuJS4Tx+KuiHieoyUV6nvnlbkYi3hRr9bTXmTVN7CRPWsI5Cvy+T2Sw2OXQ2kicXGQNiPz9pmZVHNMbbaIKQ8pgSQak3hAssJB1FTJY6H0hsVq2BeZPc3OHNjkvWsQPMFiSlggjYyA2ewI0v/jYCNKnagKCemVIiea+uka+wmBx/ES+TeJBmlRzWSeQaFKOK+8HWjhwmLYPAx+gSgYGSxyDxzCTe4SOwfJcnRb7tydWGz/HdL4d4o2TVNEg4zjeILm6N5yxgN/DkwjTBA90MghLTtIJWzWul6VkwjxYylVVZmi8upO/d9Mi+OYNz8Hpl90V6/2jpQo8v65fyyaQ2B4NSYSF+GM8syY6lTvsVI+VVZP7uAFwX4h5ug6NFt7wvso1Ug0Wjgfv+1yzCyyav+sLLPL2kg5vrVbzFnp0PLaREeRoFXmNOD5SfAGSPIMl+nuwoaHRBT//7IFR+hy6L560z2wo5LJKIaVU8cfkfI6wDWMWNvij26gHy3gV4VOkSJFiPMAT6rTL09Prb7EiAIIa/8om99HmZfy+zTBXp2sNxyFr2xZjB/HYnMZYUbz5wprrOBQPlhaVCLOVDTd52dFG0facnunSENhl8hpcyJpYJ+PGr/F4359e0+k4XvtmPO86+D697k+810sRvq/bgKj+rcjWzDqY/IGSRKt7sJQrVXjL5ffCBX95clsfihF03mjLqqygUcXk3m2CV3IXEe7rlzYNxVIj4eAFRACAuZPbAQBgbV/4/mkRWKc41OixYYsAlQjrIMWWVpYJy4VvkqLVQAMaSVYKJWnySpLbl/eySTzQYBfHgOFixUoi7P/ueQlWbR2uvz9+0pIntS6pd0BLFX8sfkQJMGgiu6sQNHbyFi8hHixhsmRGDxbH8ZgaSUmEUcmzsI6rpRsH4dEVvQAQLhFmy2ABUJPV2gJLhQaKLrQeLDV1MdFMDxZ6y96zZBMAxDcge9sV98GTq/rg2D1miK/L9070BDDtZq/Vag09dxxh59r12PD/H3diHaP3Q8zvUIzFYHF/nrrfHNg0MAYPvLQl8j4ouNxd3jBmJgLNV9YV9bipOYBq4klB9YPzWcebD0yLHF3uu1US3rTr1xZBw8KkZSKi37f+M9/YeeX3w8AonQPdnxnvXqYFFt8XK5fJePdGUgwW0/1i5cHSwtTxFClSpIgKOkbSuIvO383W648CHgtETeSb0BZjzWcLPnOMV6IzKoLs04oXF9hKhAG4CdaBMXPsrovrbGTfmgrNcekYJ1TWBsDcnFmVnq+EE3r88Ec8Bov/2cgyKlaqynHya9JM9poozZ7g86yDVJwYL3CZooIlg4UeM1V08f5maXLfMU5jOs21JZ0/SAIPLtsCjyzfCo8s3woXn3HAtj4cLai/U2DNSBksYxVlewD79cqWoSKc+L07AABg2bdfG/tYdZhWl5vvC2nWBVDnmIVzJ8HJ+8yGW55bDwDNZbBkMgBXv/9waM9nYVJH65YxWrtsmUKE5MFy7B4z4OfvOQzOOXoXeMNB8wBATYZQKaqiofvYAxkoKLIZ/S2DHUVPruqD793kFkNMkmJh4ANUfz3xI+0yjlwKBqe5rANT6hJLW4nEkpcn1TBYbFEyebAQBktSEmGUrRS2TyyuAJCOMM3AqDBYQojntGtfx0pRzJSFrnJajKlWawr9fbzkX/g9GBVPruoDAIC7Fm8SXxc9WDTPngl47cKS33EQ5nfAg+u4hUJKg47yHeJ2gfD3Z4gMQCPgxcJm06913fy6Z0TaPpMJMgZxH/71d6wo8lEZNeONagPPFyLxBWWMU4OG842aufMkjVJgqf/EezmbcbxiS7lSVc4ljtdJFb9N44hpTMLjqNWaW4hPkSJFivEEjYFd6Rm/g7Q1JcJ8OOB39YoMFpb4DkNhnBL7lEHQagwWPg9Ka9OwtRoAkfc2rW3p+o9KhG1jBguXoUN0hKha8MSdbHLvr0s9T5ekm2tYiPKj25YEJLEBqM9sUMYc0YxCh6n5p5k+SLrP37Ym93Z5FdWTVJAIs/wO0jVvBmieY5sVSg2I0gzXChBN7kMYLLb5vxVEuqvh9Y2Qd5vSgXLz0RRFHMeBn7/3MNh33iQAaPw+4rYBlLXigAPH7TkTDt91WmBt3kpICywTEPjgDhcr8OlrngAAN6lw8sLZ8LU37OtNAgrbxPETDzadxFU2sSCO32MmAADsv8PkwHukBF0jqjtRkttxJMKwYpzLODCtqy6xRAYVPrnqGCyhnxNi6BhFus0G2YxPxQ9LdtPuelyg6d6jBLIhl4ZqkNJbyGXs6BNxaoGFe7CA8v9mge662YO3LJXgIkoXCaVPYrdLHONsCWHzJNeHLcYMtuniIMpCIU6QQoH3EpUBAAA499hdI++LHo/U9d8M6K6ynokW/JuOwaLqvPvFIiNFXlfwaZFktyf7EOGyBBks234RgkXsRs8rHycGCVuvKlR7aZGNFsazEeILCVEYLKahjcuYpUiRIsX2AM4UprFiKzJYOJJkO4ybyT04E4jBElQFsIENE0FXyChkt22BhYKumbQeLOzEYFOVaHJf9ffrSfAlnOzmcc+fH10Ff3l0VSD/0C7IcY0ng0UqfPrnpHnXPlicGL9nUGdyHxb/02dlrFQNFokqlib3MbyF44A2xLbCc8yheDxOgJjeASc6g8Uy/0cLDUPFeMoqJkzx5Ob1fr4If3mYvGSkkcEyQeptaYFlAgJv4PuWbvb+Jun8c4mwthAJKApaPXzNfnMAAOCQnabA5M48PPf10+CvH3tl4D1SoifTwJOgS0xKe4wT/FTq0VM243gm4VuGKINFraB6hmNRGSyGgTPjOF4hLDmTe//cVao1YzGCFsXo4kdKzquLDjNyGg8WAD8RR7+vNFBTtkvQ5L55yVo6MTSbfSAFanEYLG3ZjDcR4f2ZlHd7mN8Bf+biLp7pfqI8x0rSIUaRUpXZCD4PcffnjFeBRfOVdc+IyGBx5AJ5iSwEXGZc+FiFH8s9bVqnwOL+tOnsRASD5ebKRNggiuSnCUGJMKHJgLxOGwJoIwYWxOM2CvDbI64HC20aSBksKVKk2F6geLBUKkqsEZdh30wEvExydusSG7Q1M7HPDq27bqprI5synuBTpBQ32/Rp2citKes/J/mEWlzoQoF2japFYF1Pjr/K7km6bbNM7qXDf27tAGEPu8Bnx7Q2anaxkaMQMycS7fObz9LRfnb9Z8DknhzDis3D8MyaPuV99DbSebAgTI/neBXN6VqtFZrHOGhM34rHh6DzccC3kzwjGwfHoFarxWoOpbsdHE2+wDK5XmAZLVWt8zB0jrFRubABt2iguZlWk7DTIS2wTEBISV/pb9zkPucltsMDW5p0/PZbDoAvvXYfuPzdhwKAG2hI5vUrtw4H/tYItU+X4JQerjh69D6DJeMVWHqJRFiVDJYAhEYdcbILGzhtaae2yJBEaNh+6Tmm8m/SPUKDhLDrStlTfFta/PH2LfiOqB4s6mRUaaKfA50I6flpRrIuCbNPd1vHY1/g/WljBG0D3M+Zh+4I8+oGaBQ8+Iuz0Hp2TT/8v9uWeP+P8ozRy9KIRJgrA+B3ScRlL/nGmBiUNzcY0FH4h4tlj4pMId/Gjl4izNvCroML39HBGDHNfGajII7JPT83uu9fq9ViLTbxUW2PYDbpMVIbZD7yy0IZLD57yT9ZtMhGExA+gyVugUV9n00RTwIds1tFli5FihQpGoWSuCMxEmWgtpqMFYKa3AME48QoniEAfnK3GYl9ha3hAMye5Ma9G/rHEv+sRhCQCKMJsQjxf8HCs5PujV6ibe3Bojsuj8FSNB8X7YzmxUnR4yjh+01sZgRfmheX5VKyPSARNt4m9+MgncfPzraQCAuY3JN7/bjv3g6v/eHdsGFglLyPMFjKQbaKyz4Mfz49L90mM1hobqMVGSxUzaSlCyzkmhby+jXjxoExWLppSLkDbKXV6fpqMKY3MMJnwPp/6ynkvLVcmEwYL1YDhHs5xz02mo+ZGOWVtMAyISEVHiSmCGewREnke4+wAzC5Iw8fPHaBF2TqsHJLsMAiFWJsEYU94JvcR/dgyWYcmFo3dhoqVrwglXc6exrH9SDMNnFqSvKMlivefpLq8HYce5kUXXe99B6+6DCBXju+rSQlI60FcgEGi//auDFYyLNGO7uTgrSgobT0KOAa3EmdIgziuwo5+K+T9wi8HmCwWAZA6/pG4dk1/QAA8IYf3a28FiVJXYvRBUKB5ylLZAAAZEaH3fG4P00MliSLdbp19Gt/eDec+L07AudSJ81XECTCSpWqotNqM4d4xQLmZ3PPks0w1GBAmATootkWfM7VUfb/6w+Pw75fuRHW9Y2Kr2uPqT627jK9y/o9uOiI63mE4It01eQ+WIxSJcLcv2VCpB9twO9j0xiP50uKEZS5r0WKeilSpEjRKLjJPcKB8ekmjwo+gtN5tNHjxLG/Kb4TlK0BfoFl0+BYS0nU8LmWxt6cAWGClURYTV7/FbYxg4WCHpfOg4XH54rkzpi6LZX7pUyXZsfvtVow/yBJ4gUkwpr47Msm90HZsqQRKE6M4/PH418Ta+7FDUPiPsbKlUCMrTBYDA/oePlq6eaVVgE9R60wzuigmNyztQlvRH1ubT9TZbH7XnTsGWgCg8VxHJjS4bJYqCe1BC5jCJAcs5SrJyj+uBOkwpIWWCYgpAKL1K1OCwAOONBZv0F7h0vwy3tegpc2yRMCAKVn2eP4PWcF/taIVp4uwSlNSLE8WCrIYHFgUrtftfVp4OrkisFEqeLS2yXPAgmmJM/gWCWxRBkiQ0zuAQCO/+4dsKZ3RNyWFsBoAUVKoNKYMpTBQjoO2hkTQCooSQM1lRnjEmHNlH6hARw9D/0jyU1m7YbuO6krwG6faoeTTYeMDfAUUG8fCh7Uj1kGwEdefCuc/sO7YMXm4UAyNQolOo6OKQU1uafPNB1/otS6yDIUAADywjlLMkg0ee2s7x+DFZvVwre0faVaE8db6sFCac9mA3L3p8TGuOHJtdr3jReSYLD0a6RC/v7EGihXa/C7B1dEOiZp/AsDjqONMoP4WKowWISuYioRRl9vVLKM35dmiTD3J+8SA1CLPSmDJUWKFNsLaAxM1zoZwmBuKZN7NvzmMo43lwQYLBHj3mYmdxVWhOPA9K42yGYcqNYANg2Ga9OPFwL+FELsbRNT2PjZ8HOCsPWlaBZ08W8HkQiTtsHCRSbj50Z4AxCNy2iCL8kipm6dxpUMJAYLf2czmCQmIlRc2fRon68vTjQbfpHSvQjc27amSZDTcbpvpBRk4ViukceLHUbXAK1UoEeoBaDWOz6Ev1Z2ghJhbF4eHqtAjVxW27VKJUkGCyviIrrqkpjDIXKI0hEn5sHijX/1BneSR2xEGWk8kRZYJiCkRBjXDgVQE9SOA9BZf2guufkFuPD6Z+HE792h/YyodG0AgK+8biF85XULYYcpHd7fmiMRFvxbh0Zv1YQy8WBxHCfQ8cIrqDRhuGFgNCCBo4OpGDA8Vm6KRFg243jFky1DRbjk5hfkjcmhVas1f/EjMVgiUM7zOf8i9bTnlNeyQvJL6rZqYwUWNZhpXuKMBqlUbzfJIEcyLETEefYAgoukpDxYfMkrWTarUYkwrl8LEC2IUnXJo312tVqD7964CABcKj59xiVGR5Tj8U3ugxcy0QJLyOs8CJMenWK5Kl5b12cDEx+OlY8X7l4aH7vZWLAtkASDpbdeYHl8ZS988g+PBRgrUYseUbpNEdI4Ggfcg0Udl/1rjxAlwogHS9ziN3+bmSXlbqxrcpBYkilSpEgxkUHHSKWQ4vhJkcGx1ktA4VTrmoUnk5BvZmJfYWuAm4Sf1VMAAIB1/dHYqc2EqTM+SvxvI3+t299ky27nZkFX+MHYoFKthTYv4rPDTaNpMw5N8CXpiSEzWGra/IPKYGGNac1ksAh/2xYMlnH1YOEMFpY8prGu1DAKALB5sCg/pxbPZzNZehStLhGm+Ky24PFx4JxBwZ/N4WI5Vu5CKbA0gcECYFdwB5BzgrQQfPvzG2Btn9zcHQa+a8WDJdYexx9pgWUCoi0rJMKEpIbCYHEAuupFCGrkrkMcI+DJnXl4/zG7ws7TO72/SR2mttCb3AePKU7QjgMVdt7iAzzCCiw4UNIE5FEX32bNDzDlmw7eaYrP6IiZwOd5Qk8vlBUowo6tWK4a6X1RGCz0dV5g8cyQlYAk2FVOPViqtRrQ0zNeDBZasEuqAAbgJ59NwUKUZw8g2OGUlAcLnutMJtiV4X5ePIkwEyIxWMjvUa/RDU/5jApaZAVIUCIsE9xPoh1wIZf5jw+thLsWb/T+L90XpUpVZJyoJveyyWPweNw3dLQFiylRZB8pHlm+FT71x8dh40DjGuhxGGK8+ITatG/68T3w18fXwOeufUJ5PWrRQxr/wuAV5hssIvDmDJlZ6L+eIywmz6cMkvdgMUqEIYNFeEbpfZoyWFKkSLG9QGGwkDk44/iJbh27cltA6s7H4+T67lHD1fEyV8e5rxXPL5+74yZifXm5cG89HqPM6HYLT5sGW8ufhsaztFFOimm6scDCipN+R3p9/ZNTcwRJQApzauQ48UClIhh/b1MYLIZMx7bwYBkJ6apPEr4Pb12NgBl40xiVxpr0umwdLga+hCrvqA/6x2uMa3WJMDo3tOLxIWq8KkrAi7zDpYpyW8RjsDRnLrKZDwBkDxccd//2xGp431UPwTHfuT3WMfB9UwbhBCGwpAWWiQhRIkwssNCKnwOdQsJLB5xU40h8YTcIQFAeKgqiMFjiTETU5B7AD2Awucs7crifDE323fzseli6cVD8HKnK+49PHAPfO/NA+NypeysJqzjgu/eDgWDXMUdFqaDXzBJA5E9hAxwNuHjXek4oKEkd3PR8lwWJsCiMmiigBQNKGU8yWYeThSgRFpfBomFgNQocWjKOIxZM+SRs8wzSay99z7gMlqjX6IGXNnu/Zxy1I54yAPm5rNVq2u/pyyvqJcKSDBLDnoM/PLQSzv7Fg952OFfQ4WxSR15ksBSVAovjjSM23TYdwr0SN/n+nl88ANc9tho+9ttHY72fgi+abMAT+b1sbli6UZXbjDqWS4FqGHKeRFhjDzq/Jsq4LJwryrikRqyNynLhZ+F+zCb37sZSgSUT8T5NkSJFilYH7WoHUGNsx3G8AkBfCxUAEHRam9rp+l1u0TAerE3um5h8lFgRfhJ+2/vIITj79ImVvXDmT++FB1/aEkkiuOB1yofH3fzyYIFlbe+2Yfbowt+2bMbLCwyEJCK7CjqJMIyVUaYmeU8M0eS+5t+DGKfjc7NakftmDJYmygOKHizjIBHGG2+SLG6FgecljAwWJW72/75lqBh4Fq0lwhS/w+Y1CykSYU0slsXFhJMIs9h2pKh689g2hybpwaIrCNkwGt33199O3o/vfXq166/bqCen54GdSoSlGA9IhQceaAGoJuEZxw8ibBBHEx7RTQosjTBYdN3O0hF5HavVmlhsklAhHiwAfuX1S399Cr5w3VNw07Pr3c+zOAXnXv0wfOQ3cvJPmhcnd+ThrYfuCDN7CorkSlRIky4WJuh9omMDKRTFctVLBsseLP62YQMcDYJ44tZPoJFjlxJ5pPO/KhRUmsVioV1M9PdEJcI8anUwWIjtwYLBfxlN7v3zM6du0tlTiC7RhPvJCrqiAAKDxeI8hRUY4nqwRL1Gi9f7RdEMY7BkDff4x3//GLziW7cEEu0AwYWRVNxMtMBiuR0+b7RgdsXZh8I33rQf7DazW2SwlCs1JWiMYnIvSYTFfWaH6l1rDy7bEuv9FFTyzhb8vu8bKSnzDCcpRfZFIcHk/77lANhpWifsO28SXHbWQdq3ZMk42sjii18TWnDx5eF8tFGJMHLcjcpy4XewYZ/gIUoSYY4DXjPJeHY7pkiR4uWDi//5HLz18nvHLeHDh3gqOZJx3CYJAFcStGWM2IUhfHp3vcAy1BjjAdc3/3fPS3D/0s0hW0eDNJ1io1ijuvdJgq91r7hzKTy0bCu87Yr7IjVqeYlyU9ytmY6xwLJ00xD8++l14R/WJPDvSc2aKVtKWl91tcnXljJ0Afx4I8m4QjqtNagFYq99500CAIBn1vT72xmYEYkdnyG03BYSYWG+EMl+trpW4I07NEYtmSTC2OkplitW6zYc42q15sqi01C7WGm9mLnVGTaIKMuwYVZgsW0USNKDRQdbiTAEZWHZelOHgTMmG8klbytMvCNOIRdYwhgsTlQGS/19kY8OmFF0MxgswaOi29omWXHCynoFFr/y+rsHfJNiOniYgtVF6wfE7iZJkofqM9LiUFRIA7ofDFgUWKj2ZsUsEaZ0dYUcl6mTRtLql4JeKhHmMljU/TQr4KA6vHQCS1IiDL+b2YMlnkTYmCcR5r/2+/OOBIB4ckLUU0TyJYkjERbWaRX2erlSha/87Wn411NrVW+eiN3z9JpmHMdb/AMAzJpU8BY1vPhww5NroW+kBH9/Yk1gn/z6NVsizPYxwHHRv54OnLrvHDj7yJ0BQB5vKUvBceyYgvgsS4FW3OT71M58rPdJiPN8cT3dak3tHuIF56hjEw0m3/aK+XDn50+EG84/Ft540A7a99D7qpFic7DAIjALNRJhlOmK82ijHiyeZKbmXqFjsnSPVao1vyO12DrJsBQpUmw/uOLOpfDw8q3wTyIz2kzwdYTCYAEHJhGm+DdveA4+9cfHrZvNmgV//vAnkGldbkJ+s8Ys3lYal64tz7ry/ngHqIHE/vA9blpnTrG5vDbn0yZRLl1LAICZdW8aAID/d9vi8ANKGCamzpROO1aXjp3E/fpQeSBZiV8Ng4XFqQvra5EX1g942/Hrn6Q3jA2S8lMygV/fkdL4PX/8GuB9Mly/T2iMqipy+Me8dbgYNLmnEmGGx1PJazXxHNN5ojUZLP7vrVxgAW8dFz7mDhfLKiPVlsFC3tSoB4suz2v/XKtFEIBgriQ2vLHX/UkbNuM0/m8LpAWWCQipi1xKalAqacbxPVhsYNISDD8+/01xfQwADAUW8TP9bW0T4Tg5YrJbZ1pPn+Ww0/Hc2v7A30xFEAA7SRQdpOINDj406ae7DqoHS8Uzp5eKVPSzwsY3Y4EFO6BpIk/otsqza8q/a5RE3li5Au/75YNwxX9eDN2WBtmDTZIIw2SkWGCp/4w6h+DE5nU2ksPFe3usHJ1qrPNg2aXutRRHIoy+RzoHYRP7Xx9fA1fftxw+8ttHlXs46jOUVVh+Dsyd3KG89stzXlHfr3zOpLGYGmMCqMl5DNDjBMubB8fgc396Ah5mLA7b6zlWUplN/P7aeXoXTOtqU/5Gz6cDDpEQNMk3uT+l8TTuM4TduUmAFgwbAZWQ5GynqEWGONMtL0DHBR4rfoWywCykcwllXHpDuOM01CgA4F+XtnqyR8fMue6x1QAAMKk9B9PZ/QrgJhnQ/2e4BQ2fU6RIMbHxAGFM/M+fn2qqfAuCD6v/d89L3u+O4xa+Mb646t5lcN1jq2ERScZuS9B5bVo96W3jBWqCbn2YCIT1SM8EkAijiHJHenJrFsxkHqPQOXinaZ0w7jDETlM63GNTGCxCg42ueMZj5XYmI54EpEvoPutq0yFKAFIGBy8+NNfkPniGfVn1JsZZ25LBwhLIOL4O1O8TRVqLrOnoWD0wWg7kLmwlv+j6spkFFt33aBXQc9WKBSBEFNbgcLGiqm9Y5mbGh8Fix0yT5oTkGCz1fddPJiUITIzySlpgmZCwZbCgZmc+67gMlgjyQJwaG/f4GnnYdBJhUhAYZyLSMVg46DkIq5yu7w/S3kUGi0bTPiqk4RgTh7S7wloiDI/FwKwACD8PZgZLvdOZJPJI6cb7jSa/x8pVo5RNGP72+Bq4fdFGuPhfz4du2z8iT1pJMliw+1yimusS4GHg9HV6bbH4UqtFl9HSebCcvv9cAIgnEUbfI03iYc/wWlI8VjxYInrzcF+leVPa/X1Vat7zUKnWvPuP7l96rvyuEH/fd33+RLjpU8fBrElut1+cIPbC65+FPz2yCt760/siv5d+Jh4+/+7dhRzcd8GrlL9RnVjF5N5QKMHz0y4U9OOyG0xybVERt4DJsZkkiDjDJbIHS4yDyhEGSyMFFnxvOylseMclMAv9QkpVkcPLCuN6FOC7aDOAdL9srZ/3k/eZDZ3CPTZWqnjNJCmDJUWKFEnj7YQxMVauKrI9zYK0jkBwI3bEeCYjJUiHPLWekN/aoMl9HLlbW0idvX4SvnWK9qZ7IpJEmGdWrv9uOpP7TMaB77xlfwBocqI9BNKadLIlg6VLZ3LPijEY0zZbIsyVxMbPdn9KeYKARNh4M1gszbAbAQ8Bx1P2NcBgITKBtVpNibvpvU+vy8BoOXCdbHNUuWzGy+ckmX/giCNVNZ5QGoFbRf7SANOQi7lKLhEGYLduTNKDRQdfMtL8rPEiCIAvVa9sJ8xT5ZAio+9l64Ka3AuiIC2JCXKYKSgkCpaUiPjq6xfC6w+cB//6r2MBwNcZpdDf4H7XelTQAkszGCxSEJfJOLK3hwY0gMFElY7aFoXBIhmwSbkvqcASp7tbZscEz4MuyKbU0D1n9yimasHPsu/8fv8xuwIAwOn7zwm8liMJOn/fweOkHdqVag0WrVO78aIka/uG7Yw/f3LHEu0Ejn9ftG4A1vaNiNvYAr+bdL9wcy9bcN8BOnl3kcXosk3DgS68sXIFrn9ijdhVWCWFSFrIxH3ybi6bYDuMwRIWTNJLz++CKMltWmSo1mpKgqJvpKQY1OMx0WsmGdhLBbL50zphz9k9DWkWL9s8JP7dNjHBjRklHyUu6dg7UlKeTRyTS16xphYYj/FwRAZLzEJAnHlIB//6NLbPt1x+r/c7P7yoHixxzorCYGlg0YH3AwbVFUtmYams6oR7JvcNM1jMhSPcrqMtK8YII6WKNxZu6wRjihQvJ3zrW98Cx3Fgv/32C7x27733wjHHHAOdnZ0wZ84cOP/882FwcFDYy8RDM/XxEaZ5HudyzvRsFbYFnT+wKP6PJ9fAbc+vN25rAjarNANmloPdWmI8YCMBZ3M6C3kLiTDDumRynSkSVshoBkxnwPNgGfHXNdL23RpJUb7m5T6XSUAqkrmKDe7veA8WBHle/t6mMliEGwmPqVKtNc33KSgRNn4xHffB6Sm491Ot5saWNGdD18H0ugyMlhSZZYBoRYy2cZBhUxksrRcz0zzl169/dhseiRlSwYED5Yu5yT2AXfFIKbA0OL/r5LJtJcKkmERqVOc5meFiGY75zu3wgV89HL5vSSJsgnBY0gLLBERbNhOY7KRJeo/ZPfD/3nEw7D6rBwAAOgWTe90D3YBCmNLV3VCBRcO60HUw5A3+IRx0QYRJVslfgm8bFvyPiB2zEoPF/z2X9RNTvOD11Ko+OPxbt8CfHl4pfp6JHUNZKLqkM43Pzz9pDz+BKhVY6j9tEpMH7DgFHv/KKfCjdxwSeE1KxIkeLCxr+ZM7VHmvKB0dtt4j//vvRdrXypUarOsbhVMvvROOuvg268+WsHNdXku+l+MxWLBre7B+D9Irns9mPB+LUy+9Ew75xs3Key+56QX4xO8fg/dd9VBgv7RgQBksuFCO48GiFFiEgDlsYqf3PX9motwXWdIKUa3VwHEceM9RO8M+cyfBsXvMUJlx9f3SLjd+j7oH5P6QXpIWSbaQCiLux9kld/CcRmFIUf1gBxzCYHH39blrn4T9v3YjrNwyTA8IAHQFlniLhEQZLN71ibZP/D5o6krB91WKmHDj3To2oPdeEhJheG/SRWOVR7mgGn3Sc5mcyb3/WeI8JBT8KMrUg6VFEowpUmzvWLVqFVx00UXQ1dUVeO3xxx+Hk046CYaHh+GSSy6BD37wg3DllVfCmWeeuQ2ONHmMh6m8SQ7KlxFSm+iGtzGDT4pNsIljYLQM77/q4disByrnmjSk9UiPhuUwntg4MAa/vOclr2HMNO3bxoUAdgk1b29CkIJeJ73bosBiyFVgw1SfIhEWjH/1EmG4b1XlIlEGi3CZxsrVwD3YJsi4jQeDxVTYpQ1ZzSoA8M8fX5N796cnEZfPeHHu4FhZiXUVBgvZx+BY2buP6PrP9uk0Nb0mBTq3tKJEGB3nNg0GVWJaBTZ5U2RBcQ8WADsGoCIRNtqc8bbdouAOIK9bpQILHy+fXzcA6/pH4bbnN2ilQmneAQAUtYIJYsECzePYpmgaHMeB9lxWqeTbNG0XhILFaLEqGtFHSaZzJCYRpinO6DoY2nIZGClVIleBMVHVLpwHADXh5D7s+pNty2ChnfOq10gN2nL+a5/4/aOwYWAMPnftk3DmYfO1n0vhdUlUaIFFPieYQDtqwXToKuRIkUrfOWx7R0zpDOrjA5CCkpLIU48dQJXAkRAlkU5la6rVWqyO+FKlCks3+h2X5UrVY+PY4qS9Z8EpC2dDxnHg9w+uDGGwRENnQfUd4In0Gd0FT5aBT5x/eMgt4D2xsjewXwy+so6jjBU6/d2oJvdxJMLo3cmDlChMMJLL9c7X19/od9/S4g0WLGnSQkpsm8ZOvxsp+iKBS3rV6gUh29w6fiaVfAvD1qEiM7lXi7fXPrIKAAB+de8y+NLrFrrHVX+vVFyP68GSJIMl7vN13wWvgg0DY3DZrYvhhidVY2N+baLKZPn3jP17nHpRw+0ejF9gwUUiPs8lweRebQjAQkxVuTdwXI8rA4fXRWGwCN/LPyZHO0ekDJYUKcYXn/3sZ+HII4+ESqUCmzZtUl77whe+AFOnToU77rgDJk1yzZp32WUXOPfcc+Gmm26CV7/61dvikBPDeIwzJjkonMu5RNi2lrOSWA88LhgpVqA9nxWLGibMmdQevlGDkJLwzZJlscEHfvUQPLmqD+5Zsgl+/t5XWM21kSTCDHGpqQnEM5O3VApoBqTviWuiMNZDV5tqXo7gsmjYZDOaGFjccgABAABJREFUYBJauoKuVyYon93G5Ip5zOke1/g+7zRWGytXoasJpDJ+fkbH1YPFBY6vjuNAT3sOeodLdekv/+he2kQUBsjfqzWfGdWez8JoqarkZsJybK4nYXn8TO5bsMDCmyiL5WpzPbhiwqaoPak9DwAj0EfUIRC9w0WxgQ8xWqrA7Ys2eP9v1IMl2D7nwmY+oO8HZX0YvJ9HShWYDH5sQmOAh5dtgVfvG1S64eMflQibIPWVlMEyUcHlrOZaBJuSnI0u8GiEwdKWFIPFwpidIhqDxd8GBwSdRFiU7rSRol5ai4JOqnnFrFh9f1hHkLTokgzUwwosmKcyS4S5P6N2fnNgUkxJTnvBu0O2M39OFCko2lEeNwgtVqqKr8SW4egmnSfsNRPOOnwno5Zv3OIm9x3g18s0cZs6vel+6POMzw1fbNgUOBuVCKPPFC9yROn0ofey9DbHcYipt/s5NKiRxhoMVqWr52tdRw9iFTmzag3edsV98L5fPmgtEeZ7sNQC+6P468de6f2+dbikBGE6k3taaMT90+vyhgPnAUD85Ds91Lj7QPgm99GerymdbbDn7B6PCaYen7qvqIySuPOtL4sZf1GE5wPvzdFSFT7620fg3hc3iRRy/x6oKWMVssHiFnvwlNGiicQ8pImefE4+Y6kHS4oU44c777wTrr32Wrj00ksDr/X398PNN98M7373u73iCgDAe97zHuju7oZrrrlmHI+0ORgPpkjNMMTrPFhahsFHhukCW2fF7cye1NFEDxahMNQKrMgnV/UBAMAtz7lJNlPRLYruqCdda4hLTZ4ukzt8BksUD8QkYEpqdgiME6mZReevw5uR2i29CaJAOl9j5Uqgg5vmQ4qMje69r4keLFKklc3466NmSUtxGbzhUmXc7jGpqIhG9/e+uAmuIcoif39iTaCJDYFFWVvpJYpGVA9sQRks29JHSQd+PrfGyL3Y4sWNg/Dc2nieaja+V7PrudpNg8XA87t50Py9vnDdU3DNw6u8/w82y4PFYj6goF9XWp8/umKr8n+6rFtB1S8IeMMFLbBE9TjdVkgLLBMUnHVy4Rv3DX2PJLmlK7D016lncXLpigdLExgsOhQM8lYcNAmECR1J0gaAGTqHnI/hUnDAi8RgYcyRMCqyyYOFIrTAUn8PFuEkk/tqI1U3Ak8ijFKd6z9pQ3IYOyRKwEG/P/cMsUW5UlM+M2wylIBJyE4M/JvIYPELI+7P6d0qo8hUpKDACdNx1DEEryO/DtEZLMFzELaPqiEgjCJRRB8VnZ51Gyvc0m7VqFJ6BYHmbwsqk7ViyzA8tGwr3L5oo/XCxl+Uuf/X1S8Pmj8FLj7DNS3dOlT0vpBbbKovENjx0yIxfv+jdpsOr144Gy54zd7+2BxXIowcbKNmjzZBsAlTOoLMvIyj3j9RPVh8WcBoB4XXY3VvfE8onAsp2/SfT62Dd/7sAbHDySvqVKsKqzGPJvcNerBkHP9+kvZFiz4SKxcgOBamSJGiOahUKvCJT3wCPvjBD8L+++8feP2pp56CcrkMhx12mPL3trY2OOigg+Cxxx4br0NtGrY1gwXnjUCBZZtLhAXRllXXWRi/6fTgdXAcBz5ywm4A4EvuJgXpuHvq0i7b+pxSeL5lwjwYpVErilm5pH+PBYpKtTbuJtQmb5iO+vcKZbBoimdcTmxcJcJY82NekCsOSIQ1ocgR1pXfHjEZ2yjG8x6TmkqxwPKVvz0DP7vrJWV79CDiBaD++t/x/ikShlIYJGm4pEGXK63I+o5aiIiLWq0GJ33/P/Cay+6C9f2jMd6Pv+nH3Nl177C+kVKg2Vcnl4X4y6Orlf8PN6kYZs1gEeZsKXfz0d8+qvyf5mi+ecNz8OyaYEErwGAh69PxZurFRVpgmaCgbIv3vXIXrypqQl4qsAiD6QvrB+DMn94HAPEkwprtwaLdPsJERBPKGRY8BbaNMLFJ9FXZJ8X/nTI1eAIyihcF3/fbDtvR+5sk+QXgd+1jANHmdeubGCzGQwoFMh8oq0QKkudONt/TURKtNHA2Bdv77zDZ+Hk0mR9nksdr3aHxLwGQNYJtgF3b/35mHQyMlkjy093R9C41MWzbBYD7yWYcRappz9k94vbRPVgEibAIJvf8/VEKaHQ/Oo3zPBtX6L0U5hHB4XeGNCYRRp9720IjBkt+wUx/gyFLQ/FgcWgBVvWLoqwD/HM+m4Er33MYfOj43bxiaVTpLARd4DRqKBzFg0bCFInBknFg1Va/yDFuDJb6WHrWlffDkg3xDKO5B4t6XMFzpd4D4L3ue7DEuz6+oawv/SWxYej1o00Y9PlIGSwpUowPfvrTn8Ly5cvhG9/4hvj62rWunOLcuXMDr82dOxfWrFmj3ffY2Bj09/cr/1oR27rAgnDlR3y0CoOFzmt8nmnk3L12f/eeSrrruiZMyCgj1ayu4TjA8FOnvgBgaXIfQbpWipuovPaooOIwLpCOKx9cZ0lrTUyaB03u3Z8+gwUlwhIssAgFDJqAx+OkTUwY8/N3NpN9oFsvRCnOxYEnHUvyQUkWuEyQmkrxXpGA9z4PgbFhmTbYSc1LEniDXzNAG5kmQoElrBAR/3P83+8gUlxRYVpbTuls857ljQOqn8zmiN+r0XtCl2vynumQXIok62nTGM+v5yU3672P/fHP3+94ygQ2grTAMkFBiwG2hYg2QU5DSjZfde8y7/dGJcKa4cGig2e+azHo4ISSyzhe4NClmThpEjXsfIR1yiBowtBxHMLqiJiYE/6G3+cbb9oP3nqoW2QJZ7C4/zea3Bs6haLAM9BSgt5gIPP6A+fBe47aWbufKB0dVDfZFJxhAPTmg3cIvOYWWAiDZSi62RomAfEcSMGM70cTUSKM3L9X/GdpIJFM5c0A7AtUnOX02JdPgfsvOCnAiEHYXJdGPVgow4o/c1EWGbRIoGOw5JksFr1mokQYe6Yo4lDEEbrbwXZfGCyZjg8xte6f1DtcYswC/1zQ80B1V6UCRq7B5DtNnjdqKOwvbOKNY5K3VMZx4Ljv3u79P+44HrXoQ4vzNz6zLtJ7n1nTB4vWDXiFRS7dAiB38FGZOI956DjEgyXe9aGflTMV+us/HXCUGIF2b/tzTOvpSadIsb1g8+bN8JWvfAW+/OUvw8yZM8VtRkbcwnOhEJQobW9v916XcPHFF8PkyZO9f/Pn2/kQjjfGI+En+RRyTO7kBZZt7cESnAf5PPOay+6CWi2KJbuP9iYld6WGBzQnblT3Pkng+e1oC66zo8QgXuOPyeTesLt81vHiyfHuLjZ9Szwv0rrczuRejWWbIdckhUuKyb2Dx+sEmkj589WMIkdYXde/d5pz3fE85LO+HJltnqXxz3ZBxwHpWUPgvc9PGRZlsQu/VpNVQiSgDO54SYSNh9xlVPB7ME7uxQa00IRyjFFg4yOWyzgwvW5WtKFf/R5RC0fNuic8f92wZ1qISU7bL+inwsGXdVJawNRoPF7Pf6NoqQLLM888A2eeeSYsWLAAOjs7YcaMGXDcccfB9ddfr2x3zjnngOM4gX977733Njry8QeV3pKYKRKk7eQOev/3OF2+1OulGQyWA3aUWQbRGCzuNjRxp9P0pUyLsPMhJ8wllom6I57EtYUsEeb+LOSycGD9XOn2y/0YPAkgYeDGyaNRBkun4D8iBTLZjANff+N+MH9ah7gf2wAFQO3kMyXgMdCQCoOlSk0JInstDB13mqZKF2DisMMkERbR7BOBHXYArmQQT45yWUHbBRguAJC9MrWrDeZMbg/sD2HlgUQ+W5QIC3kO6MTPz2GUyZdO7LoOUd5BRL+fiQUkJfAxuRBHpk6VyfI/17agdP/SzW4io/7WrGEwm1pnO20ZLiq0ZyrDSJ8puispOeGzG+IFhHTMaVR/lUsvRIXkwcIXunG/Z9SiD2UORZmrh4tleO0P74ZTL73TuxfbhefZS3sJxbJSVTW5R/nDuNeHJhBxHpIKcrTgR2MEWmCJ0pGbIkWKePjSl74E06ZNg0984hPabTo63PhtbCyYFBkdHfVel3DBBRdAX1+f92/lypXabbclBkZL8PTqvob9wUygDD8dePF/vBksmwbHlLlQYvNKcePz6wZifZ6XCGpSwoUet8dyaJECS6Vagz885D4PnW3BtasXB1vEBbh2Np1H07rEcRzfAH4bJb+k45IlvYLPqO7acgmctiYUWPwmFf9vxXJFXNsX2FqEDzfb4tw30jRmA9pw2GFoTGwGpAYjnZQ8gH+f8fUASjnR4gw+n2Fxe5shJ5MUqi3OYOHl92Y1DlRrjZ0HG/lpx3FgWn19vWlQjYlsckoU5WotkZiDH267ZZ5C+uRCLgvffesByt92m9ml/J+vj6VGDBPDK67M/3ijeS5xMbB8+XIYGBiA9773vTBv3jwYHh6GP//5z/CGN7wBrrjiCjjvvPO8bQuFAvz85z9X3j95spx43x7RLphNh8FWIowiTpdvMxksXzx9Hzh0l6ni9tTkvm+4BCu3DsN+GsknymBB9LQHE2cAasd02PmQAhwp18YNpnNZB6AUp8BiLt6EFW7wzxhA+ttLiS1127jw2BsSbVvYt+6cR2Gw0EnIlIDHQEMKorhEmE0wy78OXncsMolUR4tJWgINQuZP6wxM9rzYaXv+KiShSaErnloxyMh9G4fBQidYfh2idJPSu1wXp3BWF036Ss+VSYKqEYkBWhCh58c22PjVfcvhsF2meUU/03OMMlh9IyWvcOcmvv1uqgGyGJWYAnT/URksmwfH4Od3vwRnHrojLJjZrSw24xYvENy4NCokiTA+XkYtMtRM0aQBdO43Fcw4KKMP9aFNDBa6Z0kiLENYmI16sDgOKeJIYxQtxNSPJeMATKIFlibLVqRI8XLH4sWL4corr4RLL71UkfkaHR2FUqkEy5Ytg0mTJnnSYCgVRrF27VqYN2+e9jMKhYLIfGk1/PC2JfDD25bAJ0/eAz558p7iNqVKFR5f2QsH7jglMjsfQPVO00UPO0xRZXXHUyLx70+sgfN//xicd9wC+MLp+yiv0RheihsfWLoZDtpJXteZQMf5Wq3W8NoEIZvco4xUBarVmiKXuy3wl0d9s2P0EKEYiXDt0V+mf0T/njCPnPZ8FoaKlXHvLjYZnvuNbMTvU4hpvGsbMLlXi0pes1WCfhh4/MftOROOWjAdLv7X8zBaqsIzdV8Cer7zuQzAGI3/m89gCYNNca4R0CaejrYs9I+Wx10ijN7ynQYGC977/JbE481nM65fY82+EXA8PFjoeny8zm0U8CVfs+61SsjaPinoCrpxGsKK5aqRVRUHHfU1v60HNM/R8bwvz1Hw6yktl/01cXC+mSgeLC1VYDn99NPh9NNPV/728Y9/HA499FC45JJLlAJLLpeDd7/73eN9iC2D9oQYLNwkabRUgd8/uML7fzyTe/9N3HQx2n6Cx3vucQv029e/3+BoGV71/Ttg81ARrvnQUXD4rtMC22KiL6sUWOTHIQrV2sRIoOCxualj1wSZwRIssBQ134HLBZkKMnG9QTg6hK6iOPnFKBMgPa+mSQMDjY624L3HJcJsgll+fbgHy3CpElgY+uci2ommnjVdbdmAtBef9GzPn8dyYhdelyQoVsIXu3RRJHqwhJzbEaXQpW4bqcBCjkPrwYJFhfr5ohJIZg+W4PeX7n1b0AV9sUIl1uz39bfHV8NHT9y9vj/9dmjkXqv5xo0O0PFEZbDQZ6HGxhQAiOzBcsFfnoKbnl0Pv7l/OTz1tVOVzqKo8lscNbZojgpJIozfB1GLDHFZa7RBgBftTVD0bOvPksQYlYrqeVL8oNcFu57iJvXoeOXNh8K19js+He+YM44Dk8j83d7kzuYUKV7uWL16NVSrVTj//PPh/PPPD7y+6667wn/913/BhRdeCLlcDh5++GF429ve5r1eLBbh8ccfV/420XHpLYu1BZavX/8s/Pr+5XD2kTvDN960X+R9+8k+B3TCSDtMURnT4ykR9s1/PAsAAFfeuTRQYKGQ4sb+0XKs9UU7kdz5+O8eg8+euhfsOqMr5F3h4PJMAKr3wlCxrG3IGy+sJJ5vEoNlqB5j2qwj5tQ9XDcOjkGlWhNjibA1mu93Mr5JflPXuCRHLcEzuS+WlbULZ5fgvZuk9ChtUjlmjxkA/3IVCH5x90vKZwOo8qz0vYhmxDthkWyhyXKs9L5z7/OxcWdZ0HvLKBFWP/9cDQFltzJ1Fs5QsWLtwzkezDDVg6U1GHoU/Hw2K8FOcwBxGsVsZPTHyhXvHhpi93FY3iOXcQI5wkYKLLradIfQBC2+X5gnAYJNFDxHwXMtMoNFvya2sKNrCbSURJiEbDYL8+fPh97e3sBrlUqlZU0Pmw1qamcrwyUlUHgH/TUPqxT8OF2+bVn/YZ/UQIHFtnCE2Fin233mT094ZlE3Pyvr0nsMFvIZkzQFFioRdvyess40wuSpQcGTr5J/jKkzx993cBvZkNjswYIBtUlj1ku2hR6VGVLAYFpcaRP5ZftR1pbBgnlSmcFSs2KwlCtVeHp1H1SrtcD1wecJO6Yq1VqgUGNDM5Ww+6wemNVTqB8rMdHTMFhsCyx47vhYkMs4Wrm4UJN6cj2kAkHYsdHglAeqUTro6OUJ92BxX6cBTrFShZ/duRR+eOtif5+GwKCRYJkWuMYUBo/9wmbh3ElWUiNtuQz0MF1qqgFdqlQVs1flWa7/pEFmVAbLQ8u2AIDPtKBva7SzqFEm3hQyp33vzAMBIHi/x5V6jHpINBES5fvQuQXnrGwmoxRs6Hb0z34zQFVJDszqcZM06/sb00emHiwSW6lKJiK8H50GGCy3Pb8e/v6E3mg7RYoUQey3335w3XXXBf7tu+++sNNOO8F1110HH/jAB2Dy5Mlw8sknw29+8xsYGPCloH7961/D4OAgnHnmmdvwW0SHKS43DcG/vn+58jMqbLzTMP5DjKecldTZLUuECUoKMZOHdF83PLUW3n/VQ7H2wyFJAxVy/vy4rbxt6LWnv/cI/qHYxGMTFkzvLkA240ClWoPNg/L87a2lNfvDnMS26oCXkpqSFLO/LqLXlnhjkKYOHit7clhJMljIekF6Nui3amNyXDycbiaDRXcfNVsizM8NOEZp7eZ8tvuTjgMmVZZn1vSLflL4TGQcIluHEmEhx9BZf7aHmziWt7pEWEAKr0nHSM9DHL9QXnD40mvdRoOP15saAdx7AedKPj+H5U0ktaKxSuPngq8djQorFuBSZ7z4yn06pWJW3DVxK6GlGCyIoaEhGBkZgb6+Pvj73/8O//rXv+Dtb3+7ss3w8DBMmjQJhoeHYerUqfCOd7wDvvOd70B3d/c2OurxBR3kdWbTHHkLk/skDPzyZBBohMES1b9l6cahwN904xUmwGwkwmhx4ttv2R+WbhqEF9YPituKFWiLcRq19HnyNgzSrmnSrc1gFgzgTyi+RJhp+3qw2SA13mg8KGyv8+KJxmDxtzV1aHgSYUJHWKlSVYJIXWL7i9c9DX98eCV88uQ9ApV2DN672rIeVbh/pKQ8z/HsPl2ctt8cuPq+5VCs1AL09mCBxe5zPGkKdt0dx4FCLitex1KlBsKaL7BPAI1EWMi1pZ/ZmAdLeMcK112mXfVX/Gep9/tZr5gPsya1G81oTfd+GOhzTRd4kWjFjmMtkTWlK6/IgFEGy43PrIfdZ/lzrcpg8T4qcOy28l782GhSK07gK+0rbuBG57TZk9yEFh/3o9L547LW6PgSZVimZxAZJ7mMW9iQzi89rrz3PNQUCQVk0K3r05tWmyBLhOkZLA7xBHIcB84+cme44cm1cMhOU3zj1TAN4VoN3n/VwwAAcPgu02DO5Hbj9ilSpHAxY8YMeNOb3hT4+6WXXgoAoLz2rW99C44++mg4/vjj4bzzzoNVq1bB97//fXj1q18Np5122vgccEIwdbZGkWmMCs8Lz/AZmYzjJcoBxteQXYqZJRSEBOVoqRIr6m3LZqCzLeslBV/aFFwDxgGPnQHcOaarkIO+kRIMjpUAINm5olarwcX/eh52mtYJ7z5yZ3GbfDbjxVr0PugSgu0onejZjAMzuwuwrn8U1vWPwqxJ6ndbvH4ALvrn8wCgTwhjbNtK8i2oRBC21qRro2Kl6sX8PJZvq8cViXqwkM+Q/Ilo8pOvRTCWbctloFiuNofBEtLo2Wy/O3p+vPXTOLEspAZWk0TYd29cBG3ZTGDdP+wVO51AgSUMXRq2QxSs7x+FtmzG89akGCtXlH23YoGF34OjTSrm0bm93EARFZ/YDx67AF6z/1yYN7kdfnT7EgBwi/N4Hw/wAkvI98pnMjAKbK3ZhHNhe4/q1DpO2HsmTGrPwb7zJsN9SzcH5oSgyb15nTdR0ZIMls985jMwc+ZM2H333eGzn/0svPnNb4Yf/ehH3utz586Fz3/+8/DLX/4Sfv/738Mb3vAG+MlPfgKnnXYalMvmgXdsbAz6+/uVfxMR1JB2RredRrHowcIeoDzTjYknERbOCrHaT0QGi5Rg0hlXyx4sGokwkhSc0tkG55+0h/YYZOZH+NIBCxt0UB8mXVI6+Re+63zWUb5HmAcLT7bmDRqziTFYUB6LSoQZusr1DJZ4HiwbDB3Wvsm9TiKMMFg0AeUf6yywH966OBAYuAsz93tix3X/qFrtl7pmbEGvt2/mXe++iikRZuqcpNdGWaSEXBv6TMTxYKFdcjwhHGWRoTBYNI8pf4Z0CX58ZkzXTzbdtAPdHT0/NtR8lLcolqteETEsId/FEiZUkgkA4Me3v0iOgXYIBs8Pjm+2tGs+DiTJYGnk+QJwWY83fvI4+McnjoGpdbkwfkxR5RLiFn0o1TqKRBh9/v7y6GoAcMeJHJv/pWJZjhTLcC8Zx4HZWGCJyWDBadYJkQij41HekwgDOHLBdLjjsyfA78490jdpDFn003luS531miJFimRxyCGHwC233AIdHR3wqU99Cq688kr4wAc+ANdee+22PjRr1Go1+MODK+D6J32223GM0d5MXw4u+arDA184Cb71ZleCbDyTZSKDRWDzSo1ztFkpyhzoOA688aAd7N9gCc7+RnR7rN7kz+sza/rhyjuXwpf++rR2Gxp/0VtN8mDxkrqWn4/NIhIDdRWRI9N6sHhNDePtweL+NEmEjQhrTQqaGymJzULuzpthck8Z1dJaV2GwsPU5fhVkdqAXUTOgZ7D4n90M0BizU8gdNBNSXsJkcg8AcPG/ngvkfBZvcBtyXQYLMr2qgX1L6NL4ddhiaKwMR1x0Kxz8jZvFe+NHty1R/t+KBRa+bGwWS071YInBYBHulx2mdCj/HymVvbV1gMESJhEmMFgaGYt0ahu2z5lfBFExq6cdHv7SKfCTdx0CAO65pOeW5wGkIStlsDQJn/zkJ+Gtb30rrFmzBq655hqoVCpQLPqL34svvljZ/qyzzoI999wTvvjFL8K1114LZ511lnbfF198MVx44YVNO/bxAq1ET++yK7DkMg44jnoz84GKP8Bxbm6apGlEIowuVvJZB/71X8cat//Th4+Ct1x+n/I3XXHD82Ah37db03LP/Ut4EkrdNm6BJVjYoPqHlWpN9LWgEi43nH8slCpVhYlj68GCp0EKIG95dj1ceusL8OHjd6t/VoMMFkEmyWQMriuwxPVgWds3qt0Oj0Nvcm+f2K7Wggwjai7d056D3uES9DFjSdO5CINXDChXA4nkdkuJMH6fcRk5CrpYzmYcTyM0bNKnj4S0INPdr4iNgoxBIed290UJEGkxQLcw4brHnN6K8HSbDR4fnUkxWCiTyqJz7JjdZ8C/n1kHY+WKNYOFP3eOo5dtDGew6BPmEvitlqQHi43UShj2mtMDAG5nJ0AwGI+72Iz6zHNJL1tItzoyWCiksYjKxNF7HXXc1/frx1cT6HXB4ygJzxq9vzyJsPrTtktdf9+WwaJIcjbAHEyRIoWLO+64Q/z7McccA/fcc8/4HkyCeHj5Vvifvzyl/O31B8yFO1/Y6P2/WK5CsVyNZWIfBtt5a0Z3AQ7deSoAJC8RdvfiTZDPOnDEgumB10yd3aock1RgiZ8wW5CA5woHb05C6MyJkwBdo4yVKyKbAU3OAdSOdt4MA0C75u0+H9fqA6zhC0BVzNCtZ6N25icN6WvSwkO1WlOvJ2NYI/OLrsEDJvdNYGuESoRxk3vw4xa6Xu0bKUGt5n5Xk4xV0kA51uaZ3Ls/HZAl35oJvDb0tglj6pmjSMfaFwiBz3bcwsc6Eo9L9wY2WCHGix0UBQEPlmaZ3JPPiVO4sFlBDBcrMH+qLBEWtm7MCevvqGoJNrCVMjcVc9tyGShX/eMdK1c8rzBeYJHnFH0eZaKgJRkse++9N5x88snwnve8B/7xj3/A4OAgvP71rzdezE996lOQyWTglltuMe77ggsugL6+Pu/fypUrjdu3Kqg8ywxLiTDaGYrgD5D0AEcFDT4mJWQEePiu02D3WT3GbQ7deRpM7VQ/T9cx7TNY/O/b054X2Sk8oWpKakleJzaDbk7o2OWam0a5FMeBfeZOggN2nKK8Hkbf5V1xtFt/yYYBeH5dP3zw6ofh6dX98PHfPVb/LIsvZIBk9I2XSZJYSEIijN4HpgSgJxEmyhhUlWS2TWKbD1n77TDZ+x2fDb6g0XXP2YBKwnHGkS2DhU/YeO7C2EUO2Hd4hQUypvd/78ZFsHJLUIYIO32idLfQ4UFncs91j3UMFrx3vMKWME4k5cGiGMxbsCWQ1TZWrlp3wkrFFF3iKGkPFn5o9G3IKBwYLcXq1pOOLy68Aja7X6MuwG3MESW0kSRMlI4rKaDNSgwWCB4XblMs15SOLUw+xTXJpJ2KOUNBjuqitxEGC0V73p/3tgwV4ZqHVopJMXrdLNXrUqRI8TLEJTe9EPibJCt8+R0vBv6WBHRSrRK8DtkEk2WDY2V49y8egLdfeb8Yv0hJXWl6lmKI0VIl9hyoUx5oBDUWOyO6659FG6WSAi1Q6fZP1570PpPOfdSELJ5HSVaOHpsuvt5mJveGFTaVThusPwu6mFH0Qa3/5B4s4ysR5v9e4IoU9fdSk+ujLr4VPvmHx5I7vpDXkbnUrOtOm3y8BrVxYllUhTEpjMFSq+n9PB0neiGys85Oiyv3SI9XioF3nNqh/H+4VGkaCyou+NE0q8BG80RxfJZszttw0ZcI40zIcImw4NwYVS2BQne4PoOlbPxOYbkqqrRExweea5G+t9SoKSnLtDImxNG+9a1vhYceegheeCEY4CI6Ojpg+vTpsGXLFuO+CoUCTJo0Sfk3EbHDFH9QlHQVdeDJaj5Q8eJBnKQDXXQk1cllmzzi50KXz8PEDe/K//Qpe8K7j9xJ+RsvEvEu371m98A5R+8CAGZpLRPygqkv19yUknZhXW1+t4R8IfFwcdGG98dYuQonX3InnHbpXYH3xDWHRkg+FKakr1YiLEJCkSbqTAwWTyJM6MYbKVaU82jTgYLf66fvPgR+ec4r4EjS+Yf3VT9fTMVcaAKojCU/MFUXBwjdM8W7KEzFL7pPSnEvhhivhUuE6d+PWqYcnjFblOCLFli0Jvd+0QoAoKI5b/h+04KvvQEGC02sKAUWi2Q+jsljpao1QyovsBn53/xjoAyW4P5903JbBovM1ANwn+WHlm2B/b92E3zt789Y7Y+iEYYYh9dRyCXCIi7AuTmiLejYGKXgrLsMOpN7elx0rqIa5TTBwoPyrUPF0MUHZWNKkpnedvWftKDL75cCWfS//6qH4PN/fhK+LEiv0OvULA3xFClSTGys2joM9y3dHPi7JIH850dXhe7vq3/Ty0DpQAvLh+86zbgtFrtHS9WGtOQpaFy1WZBTlCXCXEgyR7p9RwUvciWR/NaxfBuV6zGBfhIWWFxWgj9v6hjEknQMdqLbriPwnpGKO3T/uhhuW5ncm+Sl2/NZL0boqxsvS/ckQFB+y903Mpnq22jivUbgs4DDJcI4WwS/S1s248VoW4dL8NfH10DS0N1H7ePFYHEcUV68qRCSvOjrY/G2ADKOX/AoV+1i/kYbl+j+hwRpwx2ndir/r9XGv0gahoAHS7OKeWS3caQObZpjR0sVrURYWFEnL4wPiYxFvEGt/pxVayH7F54PikzGb4JTFGvYHEK9aO5dsgluemadOK6PJzMvCUyIAsvIiNut3NfXp91mYGAANm3aBDNnztRusz3hFbtMhaN3mw5nHLKDNuiSwBNkAYkwlmCJo3e/15we+NJr9/H095KArXY/auIjdJ0EuD8paTy7RzX4+8rrFyr/5+f7u2ceAGcftTMA6Cqx4cfud0ITBksxnD4Y1vUVRt/lBRoM8KSJGNFoXlJksKAvRIgMFUVcDxaJAu8fh3qMFMOlisJmspnk8VN3mtYFJ+49S3kNO8b6RziDJX4CmFLIfYkw9yefnOizTccFXowzeXbQjivHUQt0JigSYeWKJy+EWNs3GrljB4OWK+5cCs+ttfPWooUenfQBlV0DAChpxhQsjhpN7hvwYKFjFV0E29yHuCgYK1fg30+vqx+neVxqY910DjhaNtmza/vhkeVbAUD2OMF5RSevxsETG4pEWLUG37txEQAA/Oq+5Vb7o0hS25UX3xDFiFrYcRvG6NgosSf1nxf8wHK1GkjUiAkyKhFGJBQKpLuIBuX/fGotHPyNm+EnIZ3d/mPlM1ikZ40G3t5czK4lZW4+vrIXAAD++rgqhQCgziGttqhMkSJFa6B3WI4Zu4UCy5TOcNb+r+5bHjlhViXxXNjaqpN4cjRijqx8PhmLNwsSrbTAolt3AciJcLfhJN4kyBkscRORFLomjO4CGk4nX2Chp6x/pAT/fGotHPbNm+HC65/1/q5rcJFUFYYjJgi7C+59K8XdNvGJx87eRo0KunBucl36rG9Ev+4DkA3sq6T4AeAzSBrpGufwWDIZX2aZgt6DvgdQWT0+J7hOToKFUKvV4Kp7lhm3afZ1pxJqHfnG5LLifrYiEZYPZ8zp1lYOOJG78Du9ZHy870wPRXq2JQWcJMbQJLFNJMJiMVjcn6a1ZVs24xUKI3uwCON8M0zuaf7LlKvwn039Fy7kgzkhXqT3it+1Grzz5w/Aeb9+BF7c6PoW0XGtXWD4tTJaqsCyYcOGwN9KpRJcffXV0NHRAQsXLoTR0VEYGBgIbPeNb3wDarUanHbaaeNxqNscuWwGfnfukXDJ2w6K9D5eHBguVWDjwBj8/K6l0DtcDCS2bDuOOT547AI4ff+5sd4rwfY4eEeZTvbHKywIA9acyX6y94bzj4G5k1UKJR/kqFSJNCjbxDnUOBgxbEEftKXo6RLetCsOwL8/TBNsox4s2AVGzd0rtWAgg9htZrfy/6765BTNg8Xf1sSGwkKMVGAZKZYDOslhME24GPiv7VPlrnTyBDagEm98kRhksAR9MwCCwYvpWYkrEUYX4GOlqsck+9OHj4IdpnTAcLECdxFtcxtQo8+zrrzf6j30TtDl/nnXmq5IgPeGVGBAdDQgo0CZMTQws1nYTKv7dBXLVfjtAysAAOCF9YPG97QJDBYdm2zLUBHecvm9sHj9gDgmoQeLLRPRJBFWqlQVSYSoMF2fqChks8o+KaIE6IkUWBr8vFK5FogPpMJ3niQZqISCjg7+0d8+CgAA360XxcKOiXqwSN3XdFzD+4DPySiHSO8bKYRIGSwpUqQIg9TglXFk1sZkS9/JpRuHIh0DZSTP6C7A2Ue6TV2fPDkoa1zIZb1kfFLJMhr7bhwIFlho4nG4VIG1fSN+kjdkqo1rcg8Q9PlMoqCkY0WYWB6NgiYR+0dL8NHfPgqlSg2uuneZ93ddM6XjOAE1hqiNJFgsHBS+m0184jFYx5vBEvI6Po/YyKa7tm1Csww/h81hsNQ/o/6QBLwPycPD7z/6XXgDXRKm83cv2QR/f2JN/TPkbcJUMhoFvQaxVAoaAG36QdisPXTPSyYTlOoOQ5cmGW8LOq5IhWF8/YPH7OoVf1rN6J4vuZtWYCFzXCOFC6ng8ON3HgJ7ze6Bi8/Y37uPecHLpNwBII//jZncu+DHm89mvPjBRm3DNMf4agJ6BktvnalJ8wMP1xs2qR1GI+v+bYGWMrn/0Ic+BP39/XDcccfBDjvsAOvWrYPf/va38Pzzz8P3v/996O7uhmXLlsHBBx8M73jHO2DvvfcGAIAbb7wR/vnPf8Jpp50Gb3zjG7fxt2ht8Ad0rFSB8379MDy2ohfuWrwJXnuAWhSJw2BpBmxp7lzDVNdJZZLWmtFT8H7nnfUAQZ8a2j0iDXZRTO6plBWfDKWACb9fWPCjm5C4RBgO/P0GlkejecmdpruU1E2DRegfLcGk9rwvQyVckI+euBtsHirCixsGoZDPwPxpnfC7B1bE9mAxvQ8LPflsxjM9RAwXK8r1sWKwGKTPjlwwHf70yCr499Pr4HOn7k3eU/8lxolWDahB+WyTRBi9Q7cMFWH+NJ82XGH7odBKhIUVWGhBp1yBnlrO29/ec3pgde9IaMcZB5WKsH0vfTZ1xdgetqjRFXvx3qAdVxySPJ4t6G1Lkwimhc05R+8Cbzp4B3hxg1tMibLo4gu9jODhxfHkqj7F+BzhM1jsKgn0XisS3xgA9zyH6SCbYOtBY4N8Tr+PsXJV1NSW4D/y0Y6JMookycRazU3Q7D6rG47dw2f3SnNSqVoNFCrwOaZ/nVaX4dw8VPQGK5SPcxyoG61WAEBNfOnYT/yY6H0merDUfzrgwIIZXfD2w+bDnnNUfzYd65EjZbCkSJEiDFJskM04ouExT/jT7en8t2TDoOLJFwa+Zvnq6xfC218xHxbOlWWuuwo56B0uJSZnVQkpsNB44at/ewb+/Ogq+PDxuwFAeLMQ9WCJCs5g2TJYVCS044CbmyOaKRGmFFhG5P0XNN3vpUoVOvNZRWoFYRtR9DB2hO7YdMDYdrQJHdUmhBXxdAyWgESYsHbx2ei4hgqyXBpFlR1/IZdREtzUFq/Hk5UOyp25DS7+dxwuVhqW1FnTG/S65MCk/J8fWQVfed1CK4+oKKAFqA7iDTEekCRybdYe+L6OfFZZ6zngBN4fdra8MSdm0SOMwYLryrZcBjrbcjBaKrZegYWNP83yYAmTLg+HPh/32gPmevlVZGfwzwgr3EpSkEkUUiW057NQqpSN94JN/0Sn8MzyeKpSrcHAWFncz15kbWe7rmsVtNTRvv3tb4dMJgOXX345fOQjH4FLLrkEdtxxR/jb3/4Gn/70pwEAYMqUKfC6170Obr75Zrjgggvg85//PCxfvhwuuugi+Pvf/w6ZTEt9pZYDT5qNlCrw2IpeAAD4zwsbAwkwKcGxLWB7HDwA1QWGpi7mmd1+gWWa4G8jMVgwIVStBZOINgsHz2CPDLCbB1WdY1OHrS5ZiANSuVozdgPjV8LJXCeJYPosW0xqz8PMehELu/h8GargvjvbcnDxGfvDNR8+Cn79gSO8jo4oXURly84EPI5sJiiHNFKsKPux6aIw1UqO3M31Y1mxZVh8T5w4VTW5V8+pyeSePid88YznRKKn0n1SibCwa0M/r1SpeVJAGceJHVDGMTulz+YRGl1z9HXaUtcd13mw4Pk0dQ7i82jbgbNi8zD8/sEVyvUEsPdgOXinKXDQ/CneuB+lS58XU9wkunl+rYF8z5s8WFZuGYatTNOd3mojRTX5Uq5WGyqwNFC/DMB0PqJ09ElFKRvQ+U4qHD+5qg8uvP5ZOPsXD8Li9T7zV6pzlSq1QPc1Psf0XM2qj90b+kcVE1jH8Vks0nffYao56UX1znGsKQlsMerV4jgOfOetB8AHjtlV2cY2EKfPw3h1RaZIkWJiQWrUymYcLxal0MUHXI7Y5AUoga9ZctkM7LfDZG1CEyVTNw0WE2HnhTFYKNCH5qf/MctCIkaVJGQ0dBfUuO/1P7o74h704OuR7iYWWGiMo2sQ0sU9pUoVpgtSP1GADBaJnWOz+m6PGNsmDVuJMJ1HolRg4XGZbQNZFAQb4YLSvIieds5g8WMmnvtI4h6lBRpdHgO3GRgrwzlXPZS4QTqV6cL7f/wkwqD+2f41oKxF3ZoT37c/K6A7jpxTMgGVGeIWlejlkO4JVGTIZhwxGb6tUKnW4LEVW2Gs7K//cL5tls8TzTPiMz5cLMOTq3qt7mvbW79TaMwACF8z5oT8diNsOtPxdlqca5tmYMyf0HwmxhKn7TvHK9D2DZcCTW6Ooza57zlbbaRrdbQUg+Wss86Cs846y7jNlClT4Ne//vU4HdH2hzAPFp4AK8dxuW8CpESLBFsjbxODZb8dJsOnTt4T5k1pFzuKeRU546jmdMWyKmFj0/2TEzp2n2U+EiZ2jG54owHSWLkaYN/wJDxO5lHZA1Gx64wu2DgwBss3D8FB86dE6ir3/WriMVhMExJW1rMZN5imnRIj3IPFYtFqus9wsVaq1KBYrnr3UNg1NYGa3PO7bjoL7HQSYZuYvjZuJ7GLaBEq4zhGJhdFoCOlPg65BZZ6kBdxgcDNTm2AQdNxe86Ej524u7gNBsRbh90AQcdg8UzuDfey95xbMjlOuuQOKFVqMDBaUu5hOjaYdoXXzPekiMBg4QUW0EuEIWq1GrmX/O+Px8GLvFuGinDs/94OAK6u/Kn7zoGMA7Bss1907B8tKffLN/7xHBy/V3yvtSRN7nMZn7XBESWpFbfoc8zuM+GfT7meOlKBhY7ji9YPwB71AFX0YKlUA8+4H/D7f59VD3iHihU/GYPdl3l3zMTvTo/JxGAZLVXgijuX1nflEJN7iZVT/0jDuXIcN/kZVqRVGCypRFiKFCkESPN1lpguU+i8L7IZB4C8NDgWLcaOyrzEOOqsK++HuZPb4d7/eVVkhiQFnbsHhQScKQEV9rmNsAdtJdmiQO/BUk9wN5nBsrp3WNxG19BRrtRg/rROJW7yYHnNfX+P4H1ps4Ztb3LyU4ewI5uiY7Cw05IXmsMqrLmsLUYcHQbKQqGfwY8BQCqw4HudgD9BEj5BNH+gK2rQbe58YSPct3QzHL3bjIY/G0Fl0GySvknCl8D1Qb/vJ161Oxy44xTYOlyCD//mEe/veMwL502ChfMmeTJ/juN4DUoeQp7Phj1YNNLSiAqZV8b7/JpwxZ0vwv/+exG8+eAdvObH6d0FGNoy7LLnE8Bv7l8Ov7l/Ofzq/YfD7EntyjiHa4N3/fwBeGxFL1x21kHwxoN2MO6PP8s6cGnRjGNhKA+yB9dYAgVtk1+sqWBuk8WYWS/8byIFFtrIPLWzDdb2jcLW4WLAQzufySixw9fesC/kMg6cedh8i0/e9kjpHi8z8ACNB7YV9oDbauY3G7bSMjw40Zu7uz91gf9/nbyH9iHm5zDDOru/9c9nldejMFhoQYsbdRtN7kMYLADyueCLNhuN4SRIYuiVgxO5yYOFg/qM2MKWwVIhTAp+Lw0zBotNh7qUbEbQ7kca+IRdUxOoIbvvneK+1p7Pwn8+d4K3bamsFgQQvDvRW2QIkzvtmqIJ+MgFlvq96XbRxGOwcP8lG+BRvO/oXbR0epz0kcGiKzrjWGkaqvIRpbJwn/cs2azQapdsMPunILBrthBDJznPtaAdCDVorIFMq2/TPLPLN/s69B/97aPwh4dWwB2LVO+dvpESSz6MKJ2cvLvYZLALENS8bgSK0TpDpEW4sJCzwVmvmA871yUXpbmaHoPKWAvuq1SpBpJ3+H46LncXct7Ytb5/tP66u0G7p7frvo+Oa9L4gfjnU2th1VZXjmLDwKi3rTTG246P0yw6esdSibAUKVKEQMdgkYrGusYQXryWvC5MwJjBNiykXbJr+0YbllWhsa+UqLNJwuswUqrElslsz2fhzs+dGPuzJegUDjrr6yPuj5kE6C2m8+fRneNipQo7Tu0UX7MFJu8leTIrDxac+8dZIgyhu28m8QKL5rtIaxe/4c7RbtMoeLzM18A06Tqp3kR2/RNr4C2X3+sV+hxHYrA0fo9S1QJdQZivm1ZukYuDcUEvVyMSy/E+XF1DA6jJ8UIuC0csmK749gKoBdqPnLCb93cHAGYLsvMmdLU1xpqj48qgcE/g7UUlL5PwsWoUl92yGAAArntstfcdkM3QN1JKhCn3pb8+Dc+vG4Bv3fAc9A2rTYzYJIYKP7+re5eaYLs24Y0Z+Az1Dpfgy399Wvs+0YOlSTYOeC+YJcLCm4Fn1BWBaF7Jy7NlHK9BYkP/WKApka8Zp3W1wSVvPwiOqqu/tDrSAsvLDF2MmsYHqbim9s2GtUQY6+LQTcR+Ij36sXCpJDfJ5v/tN/evgHV9o/C1vz8DL24c1FKSKSRWBu+4kZKjYZ3PGbIIFD1c2EKiqxCepE4iMcmNr3BiklgSHJ7PSNn+XrX1YKGVdc6GGilWrPeDkJLNiFw2432G2m3UOIPF9WAJdjzuPL0LXr1wtrtNvVDAH3nOYCl7XVzB6aJAJnxqgh4uEab+v+Kdd7/wFJWmzOnaNgwCrn8swWOwDJWUY+XwGCz1/0udpllSYNF1fF56ywvwvRsXKa/XILxwIMHXjo4uERZMHjnh2uY1uYtHtzDl4/UdizZ6+rSI3uFSwOSQFlhox3D/aAmO/vZt8OlrHpcPj5zTpKSidcyMKAsAz7cnYnIpk3HgrFfsBADyeETPNx0vpXuvWKkFiue+RJh6XOhThmMFvoqLfLzPaKHedPvSuW5N76g31kjxiC0DaXpXwbwB8ALLtl9UpkiRovWg82CRxmtdQoLHJ1GN0k0+hRK4dJakvx8Fih+hkKgzJeHDxupGx170dUTYenbqoCtkdObNCd5n1vTB7x9cEUsmqWrRQKObQ8uVGuyokeC0jSim1BuJeoeD3eE23weThOPOYAk5tKBEmAvJ2BlAbVThzWUFsr5JSgqLF/P4mEJjODqGPLJ8K/yKMCMCDJYEWFYlC89RLluXtPoFbRQcb4kwn8HiXxP6fXEo5owEugakBahKtRa9wFLwxxzbxjzlWDTS0gia84i79ubYMDAKP79rqTiW2ILG5rg+mtKZ99aSYTKVUfD3J9bAgV+/CZaT4mC1ps4jNoUMW6lnnoel98iv71+uHVsoW3OX+pzXmMm9/ng76ms5UzEzLP8I4BdYaF6JMgMP3HEKAADctmhDYIyxjXVaFWmB5WUGHKwR/OGJM4CPB2ylynhSXOclUmOdKVEgMVh4UPTx3z0KV927DN7843usFkZSQgmLSvi+YkXPQDF9C0x6iQwWktgGCA78EpIY87xjqk8OfneeRYElDoOFdW/rFmCULssZLMVKVTmHNhObyesHwC9o0YDRRgJHh7ac3/mtqx10FTjNXH3meSEOnz2pA52eI8cxF/ModAtYx3G8LsGoHVhcIsyGQRB2fQB8BgvSknXFXixYhRXVEFLyeGisDJfeshh+dPsSuO6x1eQ4a7HGZi4RFmXxGzS5d6/P/7xmb+P7pC4eKl1HYdP12jtSVO7RjnxWGYPpouH25zfAuv5R+Mujq8UglZ7CRuRSKHSyaVHYnzZmgTrkDWwPWlAbExgsVDawXKl6xRoOflzec15SGS6cwXLf0s3isXDQe3vz0Jg/jkmsTe+YzGdrhhWDhZyfbdR5myJFitaGNPdmNVRuXXIK48Vzjt4FAKLJTLnSm8GGGRP4Wq/RjnaFwSJ8R1N4EnbEY+VqrAYS0/4agZcgZZe4I0RC520/vQ8u+MtT8Jv7l0f/TOqDOCgnD3WJt572HMyfJjNYbMOcaZ0ohRtcM9tcmY626E08ycDccKE1uWfb+8UT//gx1sdnTpECT6hznCc5+XGpBRZ1jYPfyYEggyUJHw2bNTZntSddYKGMc2TljVcRryZQyyn7AMdELm2E+QUH1PMzVq4EJMJCk/GkUB6HuUOH1fGSCPvobx6Fb97wHHzi949Ffu9oqQKre0eUv9FGYM8DciCah5kN/v74auX/1CctUiEj5KLygpyttQGOQ19+3UI4ZOep0Y8rAmyeNZt16wxPIowUWMg9d9p+cwAA4K7FGwNzR5jna6tjYh99isjoZhP0aKmiBA3bG4NFF6iGSYSZwAsl0oLnyVV9AADQP1r2koh8UKXAhBIdLDGxjV0FIoMFJx5D1aPAkl4UOg8WE5JITLYzyaKqV/AKfy8mFMciBLh8gaz15iF0WakznXYBWnU01H/qzhjeE3S/tglECTSRzdlJiJnYfV7vAOGPPD83aNoqmdwrBRawp9Dr8upZx++iwWBwpFiB6x5bBfe9uBmeX9fvJYWndqpjWYDBYiH5I2nsckzqwIJUCarVGvzpkVXidjhGmYIOeg6lMY3+bRExJXeP1TwGSvqseAvjdeknXbN///grjfvj9z+Oex86boH2PVUlEUT25d0XagDFv1KtFnxWtw6XlHt0pFRRCu60E3gS6fDZIHQ4NYPBIp13gGhdtDadQDp4jD6xwEIZLLTAEixolypVeN0Bc+FPHz4q8Gzx48p544zKcOEMls9f+6R/LIbnkV7z0VLV7yY1MFjCrp+NmSgdp5LQMk6RIsX2B2nuxenxjENcXfZ9500CAH13NY41OC4NjNolIn98+xI48uJbYeVWt7vWdo7gzVKNdrRT/0GpWNOIRBiA32yVxLTcaNLJ70RWjwaTq8Ml+VyitM4v7n4p8mcqUj6M3YRzu255/uETdoP5GgaLLaZ0uXP+SKkSaMazKX61M1WC8YbuvgkwWDRfBePd7934AtxfbwzBe9rzYMnSZHkyic2qv+ADgOB6jd5rXFrIS+Q7wdyHJAdli0q1Bu+/6iE4/w/hCXJ+PpP3b/ULaPj9F60fUOSFmwWpAY8mw3G9NrOnABe+YV/v7zgOZFgeYaxche6IUtaFXMaLdeON4f4FkliMtMnWRhbKBg8v3woAAHct3hT5va+57C545bdvU/7mrSkzfv4iSQYLgg9zdy/xj183p6zcMgyX3/EiDIyWrD1Y+HM8KdAcKp9/LPi1Ze39bk0wTdntIWxNClNOEE3uabM7VSw5dJep4DgAK7eMeDLRiJTBkmJCoVtgsEgTRqvBlq3Au4k3D46J3We2SRoJksk9h9L5VP94U4EFgyNF0qV+LbCDQfZgCWewtLOkFwWeVhwgbRgsSTR++3q97jHhJG9lcu9JhMXzYAHQT0q04MS7CgDUZG6pUgtdeITJ2XQLms4121laAJUI0332TNTEHMQCCyuoMLZYyZsMgweUD0iEBe9jCbrzls043v2OXZIX/fM5+NQfn4B3/Ox+OO3Su6C/npg445AdlfcGGSzhgYFNVyg+E2PlKlx6ywva7fC8YRAkFT3p2HHDU2sDr9NrUeGFrpB7TSoI4vfC8YUG2PvNm2zcX5Cp50sYcFkARLFSFQuEfhEgnMHCn9W+4WJgO/o96IKe3lfLBcPXZjBYdF02UTocTV5Ntp9fFCQTadGAzqH+wtHftlipgeM48IpdpsFOrBuWPx9YVMLnHF/mDBYK0/ngEjySZKZ/8KB8pg7Tu6NJhI2X7ESKFCkmFnDookVb9Df71pv2h8vfdQj871sPAABDgaWiFljuX7rFqgj/3RsXwfr+MfjuvxcBQBQGS7ISYXTujmqgzefat9Rjt9cdMNf7W6OJ+es+erT3e6PsAml+BPDlgcI6vFfE8KGgsQuPgfDcSPHSV163ECa157UeLLaNWj2FnFdI4MoPNn2X7ePtj1GHrURYf0jiH+/R1b0j8JlrngAA/zogW43G2El1jgckwtjrtJjJ4+4SYdhwBksj12HFlmG47fkNVt47PC/RJ3j4NALaBEdzKF8yeFU047MRSlMSWSu/56idA4UQh22fz2YC0o1hcByyJo4xhocxWOg93ulJsCV7DaPgpU3BwhmOjY7jeMWIqBKbNuDjK11D6uaUt/70XvjOv5+Hr/ztGavnBUD1RwNw18dfPH0f7/+64q13uxG1kCSYdFJI0enJxZnGkfD8oyc9OVKCn9yxBC695QVS1MvApPY87DmrBwAA7l2yWXlvPi2wpJhICHqwVJVEMk+utgps5XF4UrxaA9gq6EBy5kYU5BlvXJQCItv4DBb9xCp5V+B3xslVCuj8zmcTgwUlwvQMFowbMxnHWAgCSKbDjMuW6dgWEuKY3PP7RzcpVUinhCT9wyf1sMktTIIKzzVdsHoJ+ga62UeKFa3hWlgHCF/c4bmTEskqg8X3Igo7L5KmuXus/nOCE/vfGG0XFxWcsdLZloXDd5nm/T+KhJvptqOJih/f8aJ2O8/kHouWwjZ0XPjsn54IvE4DvMB1CBkCC0LRg0uEIdqyGSPrDUCQCCPbS2wmAJelIJ3TNk3CXEoY8Gd181AxsMCnHZ46o/JlQocb9cNKqL6ilQiL0qxQC5G5MME0HtLnsCgwWDKOA6fu63oynXvsrt7rUzrN7A+8/iVPCsH9P3ZbfvMfzwYKnCaGCC+4mlg5tnP39BAGy39e2AiXk+c5Cc3yFClSbH/AdRGVHcT5uaMtC6/Zf67XuDJcLAeknGq1mjcW03HpX0+vsz4GnOds48JAgaXBhFSYB4uJwcIP+Vtv3g9+8d7D4LtvPdCLGb0CS8x5+eCdpnoJaBv2sgk6hQNbCZ04QhCm94x6TP/ga3iIOklM25jCcRyYUmeu8jWzjY+oqbmimQhbA0/u5B4s8nd5bm2/9/uaPreTmnZaA6iMhMQKLCESYTQuCTBYqkSKijFYRhtoGInCQuFM4WZJhGVYY9fi9bJPUbKfbY7LaYzvOL6EmVdgqb/x3GN3hSN2nQZfOH1vhZFi2jdFVwPMEjosiyb3mANyADoLyXjcRC0ihQGZDRnH8fbdjHidj682kvDr+908yu2LNlh7aXKP34wDcC5RhtAVWOhYgWukZkkb47NmanywKShNqRe4Nw2Owf/+exFcestiWFL3WcVx9ZCdpwAAwD0vqoynrEYdYqIgLbC8zCCZmFPZmFaVCNMlsTh4FwcAwIZ+SSrG/RmnwBJgsAgrHvonPKVGiTAhaMPkkicRVk9Y0YWOrtOKAql+o0JHv9TBbyoE8W3jAoNBnBwqEQpeBU03vA61Wi3IYBESd67Otft7VvBgAQh2AYYVecIWJlJnimSsZ4uZxFBMx9LiBRa+MOaJYeyylBgstKMr44A1bVUrEUYKfHhOdGeQB3EZx4E/fuhIb6Fp5cFikdhuy2W872kq9JYZg0XaaVhyhO6eFvNqtXCZBolxhV22fFyUxkkOLn2VJd9H8uMBQAZL8DilAjKAlJSpKQZ4AK7hK09Y0XNTVAos/hgnSQjQ3SQxjgHoTe6jFIARcY4Ir5PkU0YTTRKDxXEAfvKuQ+HOz50Irztgnvd6VIkwvK+fXu0mKdb0jQa6YE3PIx2ff3fuEcaikW2EMj3Eg+W9//egovXcaId3ihQptk/gMERNZnmzDXrHVWuSj50fW86b4ks5PbGy1/oY0APOmsHC1htRWScc4R4s9mvH9nwWTtpnNnS0Zb21QBK+ChjXSH6VUaBLrHZEkE2J/JmGmc1rRBNiwHV1nwDHceDe/3kV/ODtB8Y+himeDwsrsFhc2jB/mmbDViLM255dXBoL1GruOfcLLH6Ml3Rikzck8XUfTXZzvxNcq7nyWckxWKIUSY5cMA0+fcqecOahO0Z+rw282J8UAADs5MyTgm7M5QxELvmNb/viaxfCHz90FOw+q8dlpFgohSj7Lahr4iig43KYyb0dayEcdJ5MAj+vSy5mHH/dP9SEcYY3mEfx3B0tVXx2vcVn0XwgjkWT6k2jumY0mre0lWO3gZRr8uQwDXGDX9zW7xuL9rShd9E6V/4ccwoH1I3uuURYTuNzN1EwsY8+RWTwrm8A9QFtlmFSXFx59qEwf1oH/Py9r7DanuuQAsgDBAZOYV3cErrackqiVNoFNbPGwHnn6TKFG0AO2nBB00kkin73wArY96v/hnvrlV5/8gyXOJK6zireQsJ/v5SopUhEIowxWDCIsvNgiTaxSHlpSV6MJs/dDoPwAC5UCgsnRM191tUWLLCEdc2YgMWTsXLVS3Dy4BAnvF6NJjEvRuH/OXMLQG9yH35e5BVb1nF8f56QffCxzHHcYyjk7N7vHkf9vSEhUadFMM89WKRLzhd1fMFMCwl0oXL3kk2hkmfSc5vxGCzcVC/8+/D90cuvM/gdK1VEBouXMA8wWIL7wOdwvx0mA4DbWcjvl4Ex/9zQog295rJEGOk4E79BdHBm19zJ7QAQ0+S+EQaLJBFG53ZyPJQFks04sBObmziDhT8fWNTBz8Tjfu9RO3vb8CTNWLmqNenF5+DsI3eGo3ebAW1MgozCtjlieldQIuyhZVu02zeagEyRIsX2Ca/Ll0zqPIFJu6t5goqOY3vM7vYSUDmbgJfBVtoyaYkw1YMluC9TEt50yCgtlYR3B8afjSa/dd587flkEpASTOcPYz8pbqb34bwpHQHp1yghBSYvOdvJpsBikqJuJsKOjUsK6bb/3Kl7Kf/vHy15ax/K2E4ysekej9pcGGCwkLgkKBHme+Dx5328CiyO48D5J+0BZx42HwDCpdiigmY4ZvW0w2v3d2UFtw4n7fUShCezrXl9Eisk+M2BFeP76LWyaaTsZrLZUUDvd+n9NBfmq0c0NldM6Uy2wILIkPu8GRJhfNwbiVRgqVoVHBC0kRmHl0JI7qNK1oltWfs8Rxz4BXP9/v3ap/4LS2oIz2OBpZ5HmKIpyOmUMiYK0gLLywwSg4Wi1ZIMr953Dtz1+VfBoTtPtdpeYh1IbIVGPFgyGQemkkEjw6rPAOpCDNcl5xy9K5xxyA7wo3ceHNhnIacGp7VaLSARNlauwheuewpGS1V4588eqG+Hx6A/3i5D9wMO2LQ7Pay7PREGC6Py43e1WTzmI2pP0s5uLzEovJfKVnFzOh1CjyGko8FflAT3E+c0t+ezXnCzrn9U3KbA5HcCDBbWxeFptAqshYD0lIapwKErsDiOEyi+6U4Dn7g9vxE8pxYLDNtilk3nEJ6nKAwkvgiiBQe+UHlo2VbjvtoFiTDfg4UxWCwYgToPFgCDRBj1YHGCi9IxzmAJFJj887jPXFeXddNgMRBM2zBYJB30pjBY2LnEBX0UBou/iIx+TKbxkCY7FAYLfp7m46byZ4vdLthZhPvHc/n+Y3YFALd7eku943pWj1/oCJNmxHnT9J3CfK0Qksm9qcDSiClsihQptl/QLl8dshk/duHxAp2j2rIZ+GB9nOwV5IvDYLtm4QzfRiVVyooHiyQRFm+/eM5GSr7cUVwklfz2ZXrVo+ls85NaYYxiXTOBDiYGkE4ibFJ7Ds4j0jIAQRmpKMCmJZ4HsGEndeaxWWycCywhLHSMdctVd02ta0n8yPG7wW2fOR56SAIXi4r0uU/CXFo5ftZcw+85eup5jD9C1kg9vMAyThJhCB1TqFH48Z57Xr76+oUA4I6dUZ+xqND1r17ytgPhNfvNgXcfubPydzSJx+dHKw0ekX3DCzdRQJ9d0eTekwhLjsFCCyxJXiPHAehub0wirFarwef+9AT8v1sXB17j60z6DPG1q/E4LWYxicHiy/nrzr+ft/TYmg2Z3OuvjQ1bs2ZB2ekp5LQxC6YY2jVzVmpyn2JCIazAMtGTDFLiUOokbkQiDABgKkne4C6u/sARAAAwb3K7mIAs5DJwydsOUqRYEHxhQI+5u6CvVNskm/Ca4+Q6MFqCax5eCX3DJWIuT4/TPPknMejxgpJX6LHYt6lIIoEyU0zsCFpX4BJhPHhFSJObKg9nvj4Sc8mmK8CE2T1uB/3KeoKZ3+PY+YBsAv50cBksLtmk7IvqiGbsF7i6tambpLDrzNh9Vrfyf68LpH7/YnK2b7gE7/r5/XDNwysD+7AdB2zYCD7zx754a1rIRl2oSMVlDGB4sZBLDdjsTycRRqXExkpVsahIn1ka1MkMFve60QQRnlv8HgOKB4s/Z1EZRKnDSWGwJBS7cSk1DHwjSYQ1wFozjYcKg0XjwSKByy/oGCy4EMOCCC2wIoNu9qR28Xgo8NBx/Pc9WIS52zsmM2YIJvem5zz1YEmRIoUEr8s3ZIDGrlSelCgRKcVcNuOziGN0YduuWXgSr9HEJ2U2F8vVwHxjTqTpjzlJ2a2CEE/HgS4upMWLsOONegymeg1tvKO49TMnBMztucRzlJgCGfUBBgv5/Z7/eZX4XmTPj5Qq0D9qd689umIrXHLzC7HkVIOQvyiNY2kMxM9LJuPAgpndHivBLbC4r2UlBkuDMnQI/7rLDBYKnt8oEYkwnttphBEWh4VCCyyJFj5YE2lPvYGpWmuOTJTw0YFx4IxDdoTL331ooODVxeStddcyqkRYV0LMEinGVRksycj80TEoSYaFA46XD4vLyFyyYRD+9Mgq+P7NLwRe6w9hsNhKn9sxWPx7x89dmOcv2rzZbJN7LLabmkBqwlqfI5NxtJJxqLDRKTSHAsi+vxMJE/voU0QGTRR/78wDYe85PcrrEz3JQB90NJOU5KAaYbAAAEwTGCw44JWqNZXBYuEvwhPTlEXQ6TFYKlqZMVMynpuCfeVvz8Dnr30SPnvtE/6xCR06OsSRNeDwfGGwM0so9OhgMkCWQBeGOKmFMViyGbXAMqMnmKzT7Yde53LIwlySs2rE8BrA79y+6t5l4n7yOfcPODHX2FegnYqUSSUWWMi94E76dsURXQCedRxilqkP8hwHYOdpnUpyG7+nV7Sq31s/uOUFuGfJZvj8tU8Gj4O9txGgHm+UIIvL9tECwIDlIhUhSoTVD4IzsmwkwgIMlkzwXAMAzJmsJtCl+7dQvy8oQ8X9f/A+8CTpspnAPYfdS/TcqAwWmc3ifR75PbkCi8wOimZyH/+Y2gS/kkq1Bks2DBo8WEK6PlnAG/BgyWDXMSuwZP3CCBZfaDebboHCO0V1knL02MPkPad1tQWKX1wzm2J4gsc+KVKkaA4wNsxlHKOBLxYL+DoK4yGMTSbX1w+9I81jsPCEKzIK44JLx/LYJbZEGDPTtZVAk9CGzTUJFVj4oVAjcanLm843/SMleGZNH6zXMMk57Bgs6jZ8fgNw5VaySqxmfz79Zjw5Lt1/h8mwA/EQouho89nza3vtvvMZP7kXfnjrYvjZXUutj5EjLJdfYAWWsOQ/Jhb7R0peXKJIhGXV9UWj4PGyKU+gu5Zu4nnbSIQhMIlaqdYSLXxwdnd73l8XRF0jRUWYRBhHB5cIs2hgskrGa55LGygm90LTGZXB6/AKOY1dP1p4StLb0PVgyTe0X1P+anBMvZ/4GpKbsHOEee5SdIgMFnP+hK7b/Jxhc4qMKHWtU0KhCLuHZ/W0i3/H51jHukwZLCkmFGjQ3dOeg4XzJimvT3Sj11EyMC2Y2QUAchLc1zKM9wBPJkkjDIgw2K1oCixGI21WjaaLGQyciuWqEuAD2EqE1SfnevfDdY+tBgCAm59d73uERPBgSUIXkctA2RShELY+H4gKSXTiAlh6792L/ckz4zhKx/4MjWGyNBFKiT/dt5IYH402/3DmQZDB4idBa7WaUSKM3oeS4ZjqwWLPYNGZxTsZnwEwWqpoF0Nt2QzkshmYP80vOOLx8S6QFzcOao+j0UIrBSbU/aA8fKecwaIEwxHHYqloUlNe96+VtDDnCN5H/u+9Q34gSpkCxXJVHFN0XYT8NqiBX2zNsSIngC/DSBeAdH9UFk4ssJDbMimJsKD8msqgskEjrLW8wPb48t+ehpMv+Q/8kbC2/vDQSthaT7JJ14iiwBYhfCtkMGGnGxZt8+RcjNTv7bZsxhtzdEVTPFW8WUE6hzZdUwDuPffqfecofzMx0SZ67JMiRYrmwDe7drSxIICfOOMdwDiOYeEYNcfjMFhsw0OecN002FiBhRsAh8lI2U6vNg01tkhKIozLEiEyGcdbQ5i8PQEADr/oVnjtD++Gk77/H8XgVwdT4t9fJ6l/l5KFmYyjyHJGQbdGTtpWSnfuZLf4sqZ3xLwhwyMh8rc20B1bLpvxYlfKdtZtTz1byqS7H6GTu40LvoaPE5ZmMsHnvZHnKU7hoj3vx3lxCjRX37cMrnlIrzLgeOfH8YpgzfDhUD/c/0wbeFJe9bFB966oDBZ8LuM0ASkm98VKIB/mSYRlHI9J0ChThn7vJJu2XQ+WOoMl5rU3j7PqueGy3FtDmhSi5G4kD5b2EHlzmreU1E+iwtQMimP5uj59gYUXP3WgTZgUmGPj3lIImzxFKyMtsLzMQCvnWccJVBbjDlqtglP2mQ0n7DUTvvr6hUY/CKo7GQfUlAkHRyyqlCpVpcBi09FeYJ4kZaEoMFZW91uuVLULAYouxmChECXCNIMdIhGJMOxaqwe8lZCEH0U+G0womkCLBNhZIb33w795xPs9m3GgRBaUkmEygLyQE+8pzdfyJ0l/Qm1Uvi7oncFep8lu4pmBoOeL3oc5YbKjCfC2bCaCB4v8d8pgqdbZDtK93cYSFQB+cOtpJNcp/JsNiQU/IIp/T2Owj+ctChuBdwrRYDhqF5FUGKU64dRbyYaFxmXF6HM/QMYSer8PjZX9xTh5Lw2UaIDPkzK1Ws33/MlkAt8JO3/p80vvNbqoNEkq8uNrBLwI5DNYohRYLKsGAvICg+V3D6wQt/3Vfcvqn1f/OC2DhRVY2Ib4mVy6jd4z2MWYyzre9dexevC6YPHexFK0mfMQO01TGZ/cX4piqKgv6KZIkeLlCyoRJnk7IXQdwBgn4twwb4q77lq2echYDJDGI9s1WifrCm2YwcLGbp6EC/qD+LGZaaRuZ7I0jczL2BjQsERY/ad0LDp5t2q1Jsa1g2Nl+P2D8nysvl//Gmf6I3TNblSWMwq4nDTCjxfMV2dePZG2KmKBZWsMLyKEzZRNO8PDNkeJsN6RotLs4+8rYQ+W+k9MUtIzfPgu0+D35x4Zug8HHI/djRhpgGHDE802cBzHO3d9EQvHGwZGXWWNPz8ZOK9SvNfjFcGay2DBa2Ob8sCkedgaftYkP59gs+tOz9slBoOF/Z8Xv+jchrKSjTJYqBpIogyWjN4nyhY2XmG6xH5YsagSYW2ieLCAJYOl/jPjJD8OcSCDZcPAmHYta7temqOZj7BwLfnHAqQMlhQTDLTLIZtxYFIHM0JsMZP7qOhoy8JV7zsc3vfKXY2JeF8aK97nUCYQDqbYQV+p1pSALKxbGEBgsBDNZqTPjZWqysA/Wq5aJXP97gfJmNLvXkCMC4Mlpy6qpOPQIarJPU3eUf3cFzcOwtuuuA/uWrwx8J6Mo3aj6TQkpclNoonqJcKCk+TiDS7jIm6Dfdj1o0nQUkVgsJDnhSYkpWtD9zVncrs1bVUnh5DNOEpyV9eFhZ9Du0BwkvaClPoiwdRN5ZuZGg8X/vGJY7Sv4XnBZzYKO44HbDT445IcYZCCFLoLynCJ8pwhdPcw/fOyzUP+3U/+TrsIJS8QBBqRuu8JMlik55AW0LhEmOL3Uq3BT+5YEvp9ooIzh3wPFvvr10haP0cK+2HgLCvdOeDFtaBEmFxwoe/Dbrt8NuMVdXUFjgrrFPXGeFEiTD4mCfweNsm2Vaq1RPWiU6RIsX2Axqd7zZmk3a6LdTAjcBzD8XG3md0wo7sNRktVeHxlr3Z/Uoxr62/BO9o3D4azKEzgrGMuV4OxVCGXgY+csBvM00hJcbTnVLnJRuAZ/zboj2FaH06tN3lsYUUBU7z23Np+68+UwJn+CJ1G/WyawI0Q5uia8XztfzN2q/siLl4/YP+hEI/JhfAktgzbKN3eIWzhaV1+Ac1v9gkyWJIzuWfsIHLBrvnwUXDUbtND9yF6sDSQJI/LfpncEWSY24DmJnjhVip24tjGPTOSwG3Pr4f//ffz9YKpHXMLwb0tde87eZ/ZkY6Je7tEAR8z+LXBkDybcbz19OINg/DfgqS2Lei6q9FiDYXjOFqfKFuYxlmEzqtaKnDRNeqHrnabdO2KZsSDpb4LnL+sJMIiKrmI+/N+Cx7x9O6ClwcLa84Iez5maxgsuI7kzSCI1IMlxYQCD7p72tWE1URnsFCYBiDsTIkrEUaTmRh75UiXLk1c2dCreaK95CUZM6Qjv6oc70ixYhUA4KQ5SLrLvX0IusdhCfokqsrYBYaT/Xh4sGQzDknc1eD83z8GD760Bc7+xYOB9ziOo7KI2ASAAY+0AJbkr3RfSwrWf/qfFwEAYNG6aIsUvk8ED0LppFUqVwMdYHShSL9LmMn9nEntXgehrRkch+Oo95+ukwq/A30OOYNljHWNun9jjJEqfq75xttvh8la7XU8Lx6DJYJur4nBEhWSyT29fvR1myJpmNQc4pSF/mJh2eYhrdyVVBjlX3esVFV8i/gxTBEKLJfduthbeFCT+2rNL3LUajU44/J74Wd3veS9npQHi04irGRqSWVogMBiNITnwDkqTFs6wGAJ7CfD/u9ukcn4bBVMwLleOv64K8Ebo5ncpigR5h2TxT3MOtHwHPFOYESj5p4pUqTY/kALwP9z2t5w8j6z4CfvOiSwnc4kGGNVHKsdx4F95rqFmhVbhrWfK8VRtklFniTaTJIkSzYMwo3PrLPaDyLowSKzHD776r3gv0/bGzrIHBLFg6URJJF0AgBjEh4ZTFwuxsSONMnUIkz9NBjX8G10azEq2xoFnl9nQLrWbn22sH5PP7smvKBE0QiDBRFlfW3C1Pr13TJUFP0n20K6zKOCsx3iLK8dx1H8dQEaK1jGfRa76/mk4WIZvn79s3DOLx/UykErn0fi9iB7KpjjaKZE2Puvehh+cseL8LcnVkdWOODNVrprucuMrkjH1KV5Lm3A11i8mFkhzVZdJM/xx4dXworN+rmJg15nOhQm7sHSrrLsHl2xFW55dr31PqwKLBoJN0mibSaVyK7P83Ym91QiDBksQUUTCjpW2KqFxAUtuOmKZLbNbtM6zSb3qQdLiu0CNOgeK1c8TXvE9qRDnjck4m1YJSbQTgXch59orSpySjW2nQQuFYXd8HnCuhgrVZQg3u3Qdn+3MrkvlgMBOtKIFYmwEAPsJBgslGZPfUDCjIsB4nuw5IjRd7FShfX95o4+et9QaT0AXwpCurekTrYoJveItQbtSxM4vZV3H2Qzjjdx9Y6UAkU3qrVNk7Yig4Ukl+dO6SD+KWESYcGFi/v/DDiOExpo4OfSt2MwwN9LJ29dQG5zS9P9UOmhLHnulX1azK46reuoxwagkQgj+6Ov2zFY1G101/99r9wVLjvrIABQrzu/5aViIg92x8oVZVHLmRRTNIHa8+vcBT1PbOE9IHUKN2KmSxEssNTnHU0xQYLPRIx+TCZDeA583sIkDNqy3OSeF8vU/9PrhMeDnYj5rOMVOnRJqKpXBK/vzzB32yZ7AIKFIBzbKppF1nACSb4UKVJsX6iQAvDkzjz8/L2vgNP3nxvYTifl4jFYyFyBElqDBkaKFOPaxr08STQwWvbmwzN+cg986NePRCqycJkQ/h15sxdNIJnWJyiB7Dd7WR9SACg31ggjAsDszTeNJOApTAyWZZuGQyVDbbwBbBtwaDNQFF83zA/wONmWlb3XnB4AAFhiUVCi2NoIg8ViDYzP3V2LNwZM5TmmdQYLLIoHS1JFvDq44sFhO081bv/uI3cKxJwO+EboiEYKLHHfi0XVkVIF/u+el+CORRvh/qWbQ983RBgsQwFmnAu1wIJjZ/R8VZ+w5pWwYvOItcIBgqsI6J4XRR7KJhlfv7bDYxUolqvWLEaA4LjSr5EIy2YcmNKpyl8+smKL1Wdc8Jen4IiLbiUej/5nRmHd6BqfEA44fj6rvt8zfnIvfPDqh2HVVrtikE3fW0+7PYNFUlWwK7DoTe51jV7qel7vJ2yLsMfA80rWFXw89qD5C3dqClbYUMe9pRFJ5Bq3JdICy8sMdGIeLlYCA8n2JJHhm3nrddzjPr/UlAkTj5jMqdbUxJXNZ/EOm7LCYPGT8DRp53aZhO+7g3TV8QQXmmkpJvd587CQjaurRoA0+3K1BgNj5YDJsQloqGzPYHG3y2Ycv+hWrirnTOrYoQumqSzwwMmRT26Vak2ctHRfK2m6Od0nQqJrY1D1qu/fESi6UeYOTXZLwSIdT+ZNbveeC92EjMDPpAHp/771AO9Z8rsa5fMisTUwGPBkIoRzGlw42gUIAGpA9H/nHAZH7DoNOvJZeNXeswAgnsk9X5RL8SVnGeogFVhoV1HUAovJ5B4xqT0H+WwG3njQDrB7XR4CwTcvCEwL/n0HRstKwM+LvZM05wKT+jzpgfePLqGeBLhnVcFQHNAhCuuJw8T24BhhUiO2Hiz82ufYHEBZcXjf+B4sGW9u1J0TvD44t3hzt1CkakQiDJmhuq7KlMGSIkUKDqmTXYLPYFHjDDTEpuNRD+vEldBId2pHWxa+cPre8LlT9/Lm+61DJahUax4L5jf3L7feX4DBEmA5uD8xTtTpqnO0Wzbl2OCgHacAAMA9L4YndU3wwgVhktEWWAwM0mKlCqu2mn1JjAyW+rxtG8boElphQIZwsEBlt15G75fe4VKk+KcR+Gtl/cHhub/4X897f9NtPS2EweKvL5KJFaosnvnUKXvCZ1+9J9z8qePE7b/xxv3gkS+fArvN9FkQjuNL7SEaiWXiPov4zNPP5gl9CTQJr2Ow0NzAJI/BEq0wd++Lm+DAC2+CC69/NnTbUqVqrXCAsJUI68z7z6cN85xKT77u/90FB3ztJui1ZH3xves8WHIZB6Z2xlO0+f2DK2DT4Bj8ru41RceyKAWWsHVaxqENwxXlXrH1GGtEIozPeQD6tUQYVA8WF3j+v3nDc6J0KJ1jk8wdadeBOXMexnYt1qEpKHqNshkn8OwABNeZEw0T++hTRAadKNwCi13ybiICE0/fvOG5QLDXqJE4XTzgLiRje/X38A4br8BCWBe0+EJlZ0ZKFavOIsra4NV7DNxpcBrWaZWIB0s+6w2ovUN+R4loEM9AvXVsOlH+Xe/SK+SzStGNXntpcqb3DO/swEICL0jqOrR1yfYwpkYc8O5zE2q1YAeVYnJf/z66xQs9/UcsmK4URorlKtyzZJNYvMJOlVfsMhXyWQfedNA8OPPQHb3X8byMliri5C1pc+IzgNcYrw2Nf3jAGCVZSxet2UwGfn/ukfD4V0/x5Bj4Ithmn3xckoI/7pOlA0/0d7Zl4VDSDUeLFVYSYeQcZxx5jKHzxwJGe9cZo5sYLMu3DHtBrOTBoktGYQC4kenM4zWJYjgfFbyw5Y1PESTCEHGmI1MjAQfe/+EMFt4haWawKAWW+u+4sGrLZrztdYtJzmAxs0+xOGRzD6vb+D5J8nEkIVOTIkWK7QuejErIvNnhJcLCGSzdGrYAxViDRYfzjtsNPnbi7l7SeNPgGJx39cPe64vX2zMNgh4scrMKnqLugl2XdtDkPv764vBdpwGAneeJCaamOGTRclkrk0QYQLhMmCnxN6bxYNGhy/Lcc8zscWPZTSyOsmWwTOnIe+tg6o0XBZ/70xPwid8/Zm2gjKxU23Vp2G49CbjhIpGX9p9blEEebZJEWGdbDj7+qj1gj9k94vaO43bxf/DYBd7fMo4TkNlpJJaJ+94OQe7PxoODJq6DrH73J726cSXCvnvjIgAAuOreZaHb0uK27SMUYLBo3tneRmWww88PJvwHx8rwQn3MtmEGAQRZIbwwQ1lanPE9EFHRBuN1+uxyry4TwooVjuMoxY+VRF7TVk6qkQKL9F2kcd9mDutQJMLcn/SZ/8XdLwXeQ+elTo3fW5Lwmx8aWxfRYhI1vMfmVAC1aR2RNRTNJwLSAsvLGKOlitZXYHsATfrc/vwG5bUwk98wdCgeLHUGi2aAt2GwcD1FnKhoknGsXFESTiPFilUyt41I1vDJADua6bGH0euTGvSQFbJ1uOgtYG0uB12khnV/rO0bgf/9txtU9bTnoC3nd3vTz5ISefRvaHyIwACPdwnpAgRHM9IW2HVPAsjwsQU/5BVbhr3v4Rf65C+w+6xu6Cnk4MAdJ8OuM7q8AHOsVIHv37QI3vXzB+CCvzwlfGadQbPPbHju66fBpWcdrCze2kkBSzqnEoMFwb0+aLAXMPiLcN/RICHrOJCpMyxwYYMLCS9gtdgpv3+lNbpOD5aDdrD93zmHwWNfOUUJFCkrISqDRfddKANywUwzg8Uf44hPCru2lWoNnls74B0jv87ziTQbxXDR9ZfawGT/xhgjsBngzKA8GW9t0YgHS54wJyn7RwIumMLue37eAyb3gQKL/388htvqc26OeF/pikBl9szwIun6/lE47dI74df3LxdNT3WQTO5Llar2fkjSkDNFihTbB7wCcMicjnM1jwu5yT2A35xgSmJhDJPTdHjaYjrpyr+VrIWiJGcWb1ALBMNcyoclitHLIgztuWBSNi4m1RkYo0VXSmd9fzyZXdMcg2tmfo11DJYdpnQAQGMFFkzm49z67iN3gqvff7h2+y5FIswetMBCY7MwzzZEJuPAjG73um8cMEswA6gd/8VyFZ5a1Qd/emQVXP/EmkCzjA543m3kpQFIU5zmWVY8WLzGP/91NGy2lSQKgy+zEw00UelAUGanEYmwuEommBehcZTU9c8xqEiEyQUWer28sTMig0WSc9KhWK6K7BkTAtJtuviazAM2MSeO33R9Y7ukCTJY5MK4NLdFlWArloMNTJEYLCFfKlOXD8f1BvUvs2Vy2Jy37oLcpCp5sEj7i5pPwPtrV9KkOFcwhvfnJcdTc5AUSmwRNva0M/nOwPstC++0+Dtncjtc/q5D4LcfPAJ2nu5/X6nAkk8lwlJMNLzriJ1gZk8B3nLIjspDTvHaur4wGjFORNDkyli5qgxEFYuihwntwuCo+q74o64NW8ZLKJWYRFgmA9S0mybtXAZLeHBGizc8gYuTO+3Q6Q0ZsJMa9KaQAgtOUlaJX+W6moMT6rOieLCUVQaLNEl++pS9AMB9XjiDBYNw3kGjS9zpvlXSer4AfoeVLaROsW//6zkAIObTmusypbMN7r3gVXDtR44GAH/BhBq8AADXPbZaec/yzUPwr6ddVlHGCfok0P30j5a8c3zO0bt4r+N3FNktLMFNgz3emYev2ATQSoGFPOuduKhgDBabe/kb/3hWWYBIi2yJrSOhoMgWZgLyWiqDJXyf9HP54vWTJ+8BAABfff2+3t94EZKfU5/BQhfu7s/Dd50GB+w4GQAAVve6cg5Z4sWDeONB87y5iWKkWIGhYsULBLHw4zNYmllgoXOBPz6GdbRS+Lrg0cfWvFJwdj+TB6sn7zMbAPzxKmxOkuTmKEwSYZsZGzCfy3iv664DzsdY6OcFme/duAieXzcAX/7r05H80/iz85fHVsPCr/wb/vvaJ8XtG0lKpEiRYvuEJ2Fry2BhiRhucg/gm/WaurAxLpze3RYpOcgxvZ703jykxj+2BeVqtQbXPrJK+VvACJ15W0wjMbPprIUlcaKAasaf/YsH4IiLboUlGwYi78eUWNUdL85tHfks3ETknbDAwps/gp+pf23UY7C4/3/XETvDcXvO1G6vW9eHAe+TUqWmrJejKD4go5vH2hK6C/49vXloDF7/o7u9/9tIJwHYy/chwnxmMZm9dajo+XdmSRyxe72RaMkGe/aXCVEY7xTdpLnJcYJj00ipYs0C4ohb7MS8CD3Hkm8FB10D/fC2JcprUoNqXAaLTmJYQrlaDci3hYEzWHS3JI3zbca9WT1ush3XRgD2bDa+Xe+IjsESfG9UT+aSxxD3/xaliB/WCIdKClhAXrE5eoHFRtJLtz6Wvguu8ygbw+Z2kXx4kIHpHoOwF28c9ouFo6VqogooFLRhVoLt6ELVP/LZDLxm/7nwyt1nqJ8lzFlJ2BFsS0zso08RC9968/7wwAUnwdSuNu2E86aDd4B/fOIY+PNHjhrno0sOdCD93QMr4MALb4Jf37cMABKQCFO6u92fdFCmcxp2oZk+CpOjqNXsmdxnHcXMinYAKyb3hp1TaR6e9MNAinYg94UxWBIa9DBIGhqreN1SNteDJv/COm3oPVCp1hR2A/0oKVg5fNdp8MRXXw3ffNN+ymIRwA/CudlcRbMo0CYy82qndhIwsTskSHHaz+5yiyPS/cHR0573ziuliM+eFOzAAAA4/rt3eL/rzgtO7Ms3DQGAe80/dLxPiUeWjkTF5ZJJ9B4IFFiiMKfIIosGPxg8YHdL1OLtD2/1FxTSteDnXtfJSo9P+mjaRRKdwaK+9smT94Tnv3GaIkHGZaX4QbQxZhGAunjiSf1sJlhgyWcz8KlT9gwc63CxApvqHZNdbVlP5gEDzyjFjqigzKCME87WkNAIg4Xei6u2DsO3bnhWWRg5DsDrDnCLUtiRFsaqDPjvsA3566YiYD6b8ZoPdEy9KivktjGfLTo+Rnlm88JYWKrUvAIvAj839WBJkSIFh+8RZd4OtfKfWNWrJDcx+UPnM8+DxdCFPUakxaIkBzmmdblJby7bVKnWrOQzpSQgLyJxvwLKYDGtT6gxtrtt6OEY9uWe/1KlBg+85Bo0/+3xNZH3Y0p6d3gFFlkeOJd1YE8i9bJwntukuCXEM8GUMF3fPwrr+0etO+op6znK+Szksl7ijsbKUZjeWGCxYaDQZ+SPD61UXuM+RjpIMl4mYAyk+yp43w4VK17TFI2x0GvwxY1DVp8XhqgsCQRVH5Ger1ot/roS130/ePuB8Np67HjGITuEvg+fDVr4sCni0nj1ubX9ypgkscmQwdIftcBiKbcMUGewgP19DyB4sFhE9DYx56xJhcDfrNnWbFgJeLAwBsuxe/iJ7/FmsFDW3K2fOR7efth85XVch+C9Txkstve6TdFRtz6WzjnmfJTnw6phM/j85rMZ+PiJu2s/i47DtMDaPxLtOiHCTkUHkXyX32/HvqPFJF0uSWoKSE3uU0xI4EA1tasNLnjN3oHXO9uysN8Ok2Ob5bUCaFX3vrpe5Zf/9gwA+AN53FqBatrknstsxvHGVaXAUh/4bRgsSEvF7h0qkzPGCiy0Q8UoP0YSm7x6P+IxWPwdnLLQ7XbeYUqHV0igSGrQ6yCdYF7Cz2LfDulsD+u0oYFbpVpT2A1KgUXT1TC5Iw+O4wTkDvD/3MBPy2DRUoX94llSiFpgMS3s/usPjwEAwCZLPWXqwTJHU2Ch0F1uXCDiImbO5HatLioH9zOiX4/LFkQptCqMDrJ9IxJhAAAvrPc7LKVrwRk+07uCwTaAe4/hsyl9dmc+WoGFfl+pPsG7tbgHDD8E/9mTCixBOTDJg0UqxAC47CHsLuoq5IjsSLDIljQKOVZg8fxD7D/T2zLG0Eqv03lXP+IVRxHdbTnvHsU5Mawwz9lPfCs+B5gKsHkiEaZjsHgSYfX94r01VHTnOGnOsSqwWM5VU7xusLTAkiJFChW2EmG4Xnph/SDcsWij9/ei1zBFCiwWHizYwNNdyMMZh7gedQtmdmm31wHjeM4uBADYGtJQBSAnr3hnOi/aS2sHCe2Cb0Nc8JgEQK+nb4LJcwTn0lHy/cfKFfjkHx8HAP8a//3jr4Sr3384LKyrQISZMJtClBufWQ9HXHSrdz+EFvoakP72PUiC94VNTIsybTbJWbpeuvSWxcprI8VoHem261I8h7qv0lPIefvC9QJ97mfUZdQakeah8CWwor2v20IGLu4zhXHzoTtNgx+/8xBY9M3T4PtnHhj6PlzT03W3TaGMJ+HXEWk/KVbtiWlyT4vUYQ1QpUrNHwcsLw6XabOJUW0KLO35LExqV59pW/YOH1d4Ay1vbrri7EM9P9SoHiy+LLf/t6EIHix0PFgwoytQEMNnHe/9lVujF1ikcfarr1/oNUcA6NfHEqMHj5muy0sWx6JKhPl/9/MJwc/yhgrHgWzG8Z4D3uhbq9XgvKsfFuXZJeju0zAPFv94zPunigq6ZjxJIiyOj2krIS2wpIAPHb8bnHfcAuVvUqA60WAacG1N+3TQnZ+4xQfuK4ITST6bUYzQadJupFhVNBnD9l0sV71uBQRq+9Lj/virdocfvP1A+NvHXwmdghZlUh4stMDiJ6Xt3tseUllH0ACsXK2RYlNFKxF2/kl7BPbDg5upnbL+pdaDRWdy3wQGi62kFMKUfI7apVUg3YiUwaILZnXPHy4QkYY/e1K7UiBA+a+T9nFpuWg8CuAne326sv/9eFedrbY0gHrfqwwW/z5esXnYMz+1Nd0LlwhT94Ma1xy0SCF2XkZksNDCAR83wrYHCJ7TgsBgoQUuzoDJZjKBv2UcR2GMeJJ0xbI3FrTns+S5cgNDXuz49hn7h34fW3CmD94bYQu43uEiXPyv5+CF9QOEwRJ9bM1mHO96Lt0UfF47C1lFZhKgcQ8WnlyTmCL0Nf5MclRZkmRWTztkHHfO2jRYVO7XKP5ptmMhziepB0uKFCk4bLvkabx8xZ0vAoArY/KVemMXHVeRKWBiNqzrcxONcye3w7nH7go/ffchcM2HoqsKeB4sQqPMGiI7o4OUYOF69HwtYu3BYhnL26CQywTmqjjNFSZt+g5BIuyGJ9fCk6v6AMCPrQ7YcQoct+dMr2ARXmBRE50SMI4JW7cqJvcRYwp875AQl9osl7uJIXcYdI1tAHbeHQDhvnMcf3rYlbrTFUtpQ91za/sD+8Z1SLFctWJ/hSFqEh9BCyy6JrnHVvRGLkLUajXv3kYz9kIua5UrwXh8MCKDZYw9+2t6qXdS8FmMKxFGu/7DCmSlSjWyfFvA5N7ijbbSiFwRgjd36lBjFBb+vXlzU2dbDo6tyw9GZ7C4+6JjbhSZMfosO44T+M54L82p+5MsT0AibN95k+B9r9zVY0UB6JtUue8Y3d9UIpFtU3yVPFgAfBasJK3H8xU6H5YlGwbhpmfXw+8fXNFQc2FBmOsUWCovcP9aCVJO1cbHq5WRFlhSAEDw5paqiRMNpgHXZOxlgwUz5C4yDMSkgMfEzlBlrype5TaX9c0tuURYsWxpck8ka3gHcUVYOLbns/Dmg3eEGd0F0WA7MQYL6QTzfCssr0dYZR1BA4RqteZNnKVKjRVY3AOY2VOATwsSRDxQwsUxpyjrCwny8TXDgyUqg0Un2xNVfxVAHTdoIlwXqIWZpyMFeEZ3m8LkwOfjLYfsCD97z2Fw4yd9zWtuck/jC87EoR0hYaD3Ji224H384oZBOO67t3tBn63pJu1gkmKhalWV35pGEhd04ec4YCyw0DHe5hmmyWmbIC3AemAH4T97QQYLPXZ6jHyfrsmh/zeaGEed2PZ8JpTBMreui54EFA8WwjgMK7BceP2zcMV/lsKrf3BnZCkCDhODpJDLBlhdYT4mwWKZut0WpuWfNyQew0zuf3jrYs942TO5z2U8BtyqrcOqv1mE9YKp8IPIZhzYa44r6ZJ6sKRIkYLDT36bt6OJBGy+/Oy1T3h/o/P4/GmdAACwasuIdn5dWy+wzJncDrlsBk7bb64nwRQF0+pNGX98eGXgtUeWbw19P20AQqnWwYDJvdokRZteTEiymc9xnEAX+daQwoYE0/woebDQdRVfw+C55/JsHHj+aCPRrpp1ZqhEWCGeRBgAlbz1v5+tmTEAkb6zWD+UWUc6he1cXGbNGRL228H3kkUfixOJZwIHZ1/R+IMWUYcTiBcw9ou6rKbXWMcSeN9VD8FHf/to6L6q1Rrcs2QT9A2XlGc96rPZLjBYbCSi+PC3unc48Bq9570Cy1i04hGNY3uFwjYt+LmxcjQ1ggKTCLO5prb3OZcJ6x8tGQuUiACDZURmsNDnpydCkZRCamqMZHLPisxve8V8RQkD2VA7TnXXby+RhjJbHxIuEYbXljYE6NiXsgeL3wyNsCuwyGN0Z0GVHKfgihteHop9Hv2G77vqIa9RI7A//HxNiYSvo4Pvtyv40+9a0tyzUs7ZpvmjlZEWWFIAQFA7siOmSV4rwcQKsJHWMmF6dwH+/clj4T+fO0H5OyaapKS1jYwXAHbG4KSX8WSkRktVhULpUljDBziFwaIZ3HKaBJ1ENbftFAoDLZJULL4HBSY1wyZV3uFCCxr0k8I8CTh0E5uWwRLSKZ6oBwvLApxkWEgA6CfPl2JoDNOAnH4nXaCmS1hgFx2yQXiiHQO5TMaBUxbOVjpdeILbFOxhcGlz29H7ni6isQjJO05si4U0wJb0YSvVmvLZ0wgVmQYlDvjXXgqY6LY2z3DU5zyMwYJFgDFFIsz9Sb1LEJJsmOOon4PvGSlWYLSMBRafwYIFWJ7Yt5WOsgGXCEMvrjCJsKdX93m/N+LBAmBmariyajheIoXfPN4FmUPq67wblxZ4TthLNd9ty2WM5+SSm1/wfqf33I5T6wnIrSMNMFjCt7nvglfBzHrSMpUIS5EiBUeFdfnqQDuxsQmEjvM0Ppo3pQPashkoVqraRMK6Pvfvcy3kVk3QyYoCADy5qjf0/f/vVle+aUZ3myd5xRkGPBHambdL8us85eKCr13DvE8kmHy+vMYwMlfQ5ByXa/FM00M9WNT9AwC8YpepngcGRVj4QqWQonYwY7GDxsr+tbV/vw27ANd9XYJSgq0fmg2D5ar3HR7426n7ztZuP5V5btJ9t2Uz1p5t1zy8Ek747u0eE59jaMxnXkcthNHY2MT2uWvxptBE+XWPrYZ3/fwBeNsV9yljGC9WhgHvXSotZXMf8IbUtX1BiTAaHCPbYOWWEfj2v563Pj76Ob3DQVml2+qNPgAANz273ru3YjNYLN5j21yJRveIX96zDN7443tCiyw81u/VeLDQeLo7QpGUoiRKhEUosHh5L/dYJrXn4dbPHO+9jgwWXBtQxJUIwzl9GmGgTGMFFhzThosVKFeqcDd5piSJQqkQw9Ep2AwA6PMJAMF5CSXUeKMvvZZ3vrAR/vvPT4YejwTbRuaw+5zO8Tr5NGkNqzLZJh7SAksKAAhOpNsDg8WUfI+a0Jew95xJsPN0tcMIO9ulSdNEAc5kHC8ZVKxUVZN7ZgKJeGjZFiuJIwzEytWa1uxZ1/3TTOMp2glmQ49X34sDf4hEGJncv/+2g7Qm91F9MyZ5JnuWHiw6iTAi/wZgZ8AWBhp4n7jXTPjp2Ycat9dNnrc8tz7yZ+fJ4oN2YPDzhNCd7+6Ce34xoOKJUpQI0x0DgOzBwoM9fMnmutNNFMkATTHaXiIsyGCZSro/K7WasrCdTiTCaODikIKE9NEdbf62zTCP491b/JRyFgWAWtiUGCx7z+1R/pZxVON7LAQMFyu+RFguGygo8CSDDbPBFrT4lyXjeBiDhZ8vgPgMFl4QCXwWG2fCJDIDiUT2391nqdeFns8rzj4U9iImv7lMxjOt180/CLXA4naprdo64hVoAMwGxBxh5wXAXbiadI9TpEjx8oaXxA0ZdGiiHZkTNPFDGQnZjAM7TXcTRVTqhGJ9v8sU5FIpUSHNNQibJNpfHlsNAC4D2EvAF2UGC84Vtk16cWR1jPtjcztPpNrA5M3nG//6359uxSWRMFnnxij6NSnGQqohcAYue/tBgW3D4lWaIIxaYOr0JGoEiTCL90eRCOOeChRhnf0PLN0Mb/jR3R4DS9ckCAAwo7sAr2KNZjN79M8UZ1/R595xHI9lFCZ/9flrn4Rlm4fhM396IvDaWLkCh3/rFvj9gyvc/cZurwkvYjwawlLDtd6i9QNeo1LGsWtQocBnY8hi7UfB4/NNA/49K8n19RCpr5/+50Vr9gItRnCPof+8sBE+ePXDyt9wG9uzwJvMTAX5L56+D0zpzMMXX7uP1b4lo/unVvfBmj5zl3/NW1O6Y0LfSEnJM+AyhcbeUYqkFKLJfQTZXY/BQgsOZGzAMWGeoEBgLRHGciw71ZmktHGRjp8ZB7xG6kq1Bj+6fQm8+xcPwId+7d4ruKbJZhw4uS5Z/sXTw68pnR8LZJ2CDDmTB4vXxFAvxlCfo97hIlxZlydFLN+saZYNyTd5c53m+bJNV9E5XXcsNE46bd85AADwriN2svuAFkVaYEkBAIJE2PbAYNEk3wdGS6ESKXHhd+pGY7AAqOwKHGzachnR1BnA7bC4/om17r4NTzINkj53rVzJ1iWDJYpwmA61LRST+9geLGEMFjdAOvfYXeGo3aZ7SdyVW4YVfxE836b74ZyjdwEAgI+csJtH4+TU7LsXb+Rvq+9X3qdOuqcR0KTigpndYmfAf5+2t/c7fnd+D1x2q286+bsPHmH9+V6QTQIrnUSYbjHdzTraePLdZH7mS+K5J5MGe3xBFIU5QIM+WqDQjZW6e+kKVvBSJcLcA6IBXrmqytkhewpAfT4dBzz5kCmdQYpzB6HpJvUMUwSN0dXvL8lE1Uj3FB/nslkHXru/2r2ZcdR7BgtMA6Mlbywo5DOBzhte+EyywESTV+6itF7QDmGwSMn/uIvsMFnAAhtnTBrziF+89zDtcX24LhPjfT75LoVcFj7zal9mMZ/1WT1hiyA6Bu3gFViGlb9H8avJWRRYAPxn2NZYN0WKFC8f2DYAHbHrNDjjkB0AwE8w07fsMkPtvEX5kw0DfqfmZbcshh/UWX0Yv07qsJPb0uHg+VO0r0WVRcSkToANzBksJC4ydRdLMsSNoJ3FY5IUUBhMniPeuoXEbbrGKgA3WYlrsM0GuTKfweKfj3w2A7lsBg7eaYqybdiyld6nNFltA7weSqwcYb3sdb+HJNZrtZqxwBJWvDj7Fw/Ck6v64P/ueQkAwmNamqhty2UCvpoUgQILe+4xCWrbnb9ekOhZ2zuqrJEaCUnDJIleWD9gfH0XUvjFpHp73s53hQLHBvrMRWGw4DWhXplSQw31ywAAz/8o/HP83/m48OBLW7Tvsz0PcyeriX/Tu849bgE8+qVTYM/ZPYatfHAGCyIsyY2xPt7TxXJVaUyV5ja/SBqtOF1sVCIMixWawh6OuVMF+UnrIhs5tpP2ngVffp1bDJlG9jmdFVvoevpndy4FAIB7lmyuH7N//v73rQfCdR89Gj54rLo+kkDnPTq/i+MvP3bWxEC3/cw1T8A1dZ8phGl+AjCZ3Psy/hI8clmEYWKNRq6MXr8fvP0g+OX7XgGfO20v+x23INICSwoAECTCtgMGyxc0nQH/8+enIktC2QITd2IiKazAQuSikHnRU8gbk2d/fnRVfdf6ndP3P7aiV9wmpwlOpQJL1K4WHWgnmLc4s2WwsA51HTDBiowTPPa7Fm9StsMJyhSjX3D63vCH846ET528p2JsjihXqvC1658V36sL0GinPV1wAAD8z2v2Ft8TBnq9dQmBj5ywm/cd8Bzpruur9p4FR+8+w/rzcSyhHRi6bjbd5eYLLpTJQ5iS10EPFlpgYQyWCHJDikSYolcrJz905/7UfefAF073r63M6PDfW6lW2eLCPzeKRJjjwPfOPBAuf9chnqcEhSoRJh5aQ+AFEj6nyAwW96cjmNznMk6geMWvE94nfSMlxeSeG+dyM1Jb83Mb8GtA7797X9wEp/7gTnhkeXDxRp9TkySJDXQsKgRn9Ng0GNBFLN+ssy0HX3v9Qu///HxicQSgLhFWH1u+ecNzRpYeLWKqDBZSYImgWW47v0vGxSlSpEgBYG+k7TgOfObVblIAZTto48Fhu0xTtp9RZ6NuqicU+0ZK8INbXoDLbl0MGwZGvbipx5AMtsGUzja4/bMnKH/DJg5bKSYEyjlxjXi+pqLzoukzeKzS6OqCr12jdmEDmD1H0Ph7pFTx5jKTDJfjOL7RvcGHBffVpTBY3M/n3ymKfOumwWhGwV0CAyWKyb3Ov2HZpiH47J+e8OSy6CnrFu7vsOY5LsMdtiylTVuzegrGpDmPZzg7xusct4wXUB7ujkUb4JxfPgh3Ld4YvIYNNHuGFVieX2cusFBfp8X1Ykwcb6SZPe5+qNeljRk73l/I1NtICs7SmqiLxbth3w9B2Quc2WbKedlemmldbao/b8gbbfMdAP5cwRF2D2IvYnd73rvn6P0iqXfgfDNaqoYy8Wk8LzWKbh0uWitzeGwazXnDPM1koeFA11DNgcdywI6T4RfnvMIrXFH2KW1wrNbc8RbvD+4hUiaxwbSuNjh4p6lWx0HXx7Sgi2u5YcFXiTeESky6W4nMHSKu0T3OBQOa/I1/WcPv4x++42AAALjozfuLr9O8QEdbFk7ca1agaXOiIS2wpACA4GSaVBJ9W+KQnabCl4Qiyw1PrfVN1ROusGAgJlWfw5K4OJgUy1Wvc627PWclc2Lr76KD1oNFSNwldc4wefr7B1fCU3Wd6qhmcmFBOE66uL2uWDXsdRvqP7+Qy8KRC1wWTIc3sfkTj6lLIIzBAqB66gDEp0fSxYHpWuEzj0lXXdI56uIe72MaIOgWubrzzb1/8jl1O1PQF/Rg8V/jjCM/wa/dnQe6IKO/T9aYuZoeO22CnyS+999hMgAAvPngHZXt6UKAFiAcANh9Vje8Zv+gZjd/X1MYLCRg/PLrFgZN7uvf4eJ/Pe89t9Q8mJ+TrFB04dcJF+a9Iz6DpT2fDUhiBSTCEiyw0OA44/hjablShXf+7AFYtH4A3nHlA4H3tZHgMYrslQSpAxThOL7MZMCDxXAauLcMx4GkK5oPMzPJgj3jOMo4fd/SzfDdG58XO4vpghN1llfqGCxWBRa7EyrJvqRIkSIFgL1EGIAfL7lM9IoXh/zjE8co3hgAfmITDdBpMnzllhGP+dtogQXAl0JBYKJjJCQxxTX+pQQ8BY65dCw3JQHbchl4x+HzjccQBXwtG6fAYmrAw7miWvOT/GHSlyg/Y5LrwvPcIWjz8+RvFOWF6AWWYAHN71S2Z7Dw837u1Q/DtY+s8qR1aExGu7nxmcA19KJ1A3DlnS8GYv5g0SmEwUI+Q0rQUvBvyc93h5DYNAHjrnN++RDcsWgj/ODmFwIFokZW1bj2PG7PmeLra0NlpPxrgf4nXGrPBnMmB1kWVgyW+qnwCyzBe5ZeAn4fLttk5xdKv2fviPosmgpKUa4NLRgnmV7q1DD9wu5BX1YKYEr9vqffXWoeoOvvc69+GO7SKHMAqOtr34PF/+NoqQrr+u28NKjclgScR6Z0BItNth4s+NjxZ3qXutx/TyEHC2Z2eTLHp9blqnBcpM161WrNW4/ompR1UHIIHcECi+TjomOJhjVJ6HJT3riueV+PZiz3329feH/DgfPg2a+fCu/U5LWS9CFuFaQFlhQAEEzCN6qD2yrYhXmkIHxz62S/59x6gCENFmFBscJgIQurXDYTLmlj2LfNd9TtX0rcJe3BQmFrDM471HXA64BJf12xCRchtgsXn/1R9QKUsC42CTSJWaxUFbpv3EKWwmAxfB88F560kiagNiVvJXQIAYKuA0L3FTkFvMCum6nAkmc+SDTYo3J0AH6AYANTTl4q5JqeO919Rgs+vz33CPj1Bw6Hc47eRbmmNNDmEmEmNN2DhRQMpAUs/Q5oJkkDRl78zGacwDnk/8fuo76Rkm9yn8sExgfedWTS644KSh8vlqsBiTqAYLclgDoW+VvGOy6pA5QCn+1KtQblStXKKJ5eD2mrA3ac4v3OTSFpN9jgWFkJ0N/5swfgx7e/CF/869OBfdL7Er2G+oZLyt9LEeZu6wJL6sGSIkUKDWxN7gEAutty3lw8MFr2khvY3U0xvZ5MRkmcTSSxuGLLkDduRo3BJGQzjtI1O8nrUjYnZ7hmvcTeBjCzHMI6aD99ii8F0qhKLk+8r+sfhZcsE7D8GKSr3S4wc+j3++5bDwi8B43utwzpix24C8pGxf1y2TObae30/d3E4PteuWv4xgR+AS0oXWszm+oKcIvrzBWUZqbnjN7fuIbGxPGpl94JF/3zebj8DtVXgMccYTEtTRrr1joIHlvw+xeTrSMx44VHV/QG1jBJpCKuPPtQuO6jR8MpC2crfw8rctAE7Po6e4TfczaYJYxxA2Pl0Ocfx5h5U9xrv6Z31Fun2UjC2j7ftIGRe7Bwxj1FlIImLaI34qvDoWPYhMWs9NnFdVnfcJDBQp+ffNaXWb5j0UY4+xcPavdPr60vy61u8+IGu+sTxhTF7yqtL6U1lgRd8fx1B8yF/zvnMLj9cydAez4Lv/ngEfDtM/b3JMRw/KDfjT43jTQeYzMl/ZzhYiXA/OFKBx0GOTEKruBgC5Quu/nZ9Z5s6fPr+uHKO1+EYrnq5Vhsv7muSAiQFlhSbMfYTuopAUgdFQAAj6/sBYDkJcIWzOjWvhb2UVRCx+9cyyuvAfi6zVH2HQbd5MAT3e62yXqwUCTtwUK9bAD0nevYtWP7+XSiGNH4PNiAJlnHShVlMRvXH8hGIoxuN1Y//mzGgY+esFtgO+keMAEDM8oW0Xmw6L4jp0Pz64bd7RL8BLfsa0MTA1Gk6UzFKkkj3bS9jjJNE9+T2vNw7B4z68bptMBCGCy0wBIyCnTkqQdL8gM+ve8kfWt6rXHxTSXaAib3hiLIF0/fB47dY4bni9Q3zCXC1OJhhXWY2rD6bEFZfgOjZdFrRgJl/NiaBeqPwcBgAfXa0EKuqUhBkxDSZtmMA7d95ni47qNHe4lCBL1f+0ZKotHww8uCsmn0OaQykHTOiRLU297nvkTY9hfkp0iRojF45rsW40km40B3fTzuHymJCSyELxFWVH4CACzbNAyD9YRSWAHdFtNIMwDGdWHdrzw5irFvqVJT5T7rv8ZpWqMMnSia/RIkT7wTv3dHaBc/hUk6Np/NePEDJrYw9j9xr5lw5mFBNg4WAzYbJMIw9qONKnjuO2MwWC4762C45dPHwVvqnkC2wHhmSJEIs/9cWzYoXevQ+xuZVlz26vZFqvRNwCclpGmGFnHC5K9mszU2T8Z3eD5E8RmvpbL6XMVZ7/HxqD2fhYN3mhooyOrWXwj6jG/sd4uA7THkefLZjChlFfb5eO/vMqMLCrkMjJQqsHzLMADYdcmv0/g6cNCQnBedjAyWCJeGjmVJLrNogxxF2PhdI8/uJI/B4t7Pw8Wy15jGx81ujfQ1By1acZN7bHZcvqWxAguuXxbOnQQA7jnm12TMkn2uG9tz2Qy8au/ZHoNuZk8Bzjp8J2++k9ZYdI0Xp2nxTx8+Cr771gMU6VBc31eqNW3RIcBgKdkXUCnC1p30Xr7s1sXw2IqtcNqld8FF/3werrr3JbiwLom/MSJLUsKnT3F9O5Nks25rpAWWFAG8P2LHSyuDB0qIh5dvBYDkTe53nSkzZmw+C4P2sXLFkwhDPVs6QL7+wKAEUKMTuY7eKEkTJNX9Li2EbDVJMfk3GmJshhJBuL1OImydV2CxZdBkvAkeuyri6FxmMo7PuCCd5QDxi540eWxTYMHEdMZx4HUHzAtsF1U2BwPzIcWDRdbh1Z1vbuiHx/qXjx4Nr144Gy476yDt5+c9iTDsplGvi0K9ZZqmJpgSB1z6A8B87nV3ildgYbepymDxnxvadRXOYPHf1xwGi38sUlGO3kd+4cNfPAUZLPrw5NzjFsCvP3CEN773jpS8ALs9nyGeI/UECPPsSZLBQu+LcrXm7Tu0wKIwWOyp1hLCEnBqIbfqM6VM71EYLPKWC2Z2h2oOz53cLmqEr+8fC8jP0KKkL2tWUa4XXlM736TQTQDAfzZ0Zo4pUqR4+QLHKVuGNY7HNDGbEwajqfWCB46PmwnDYdnmIS8BovN5iwo6L3domCgcPH6i8Qftno7ijcVBYwed9FicfVE8s7rfeh9hMpRdzOTcTwzKn42mzFKjAf9MGjfifsO86CTksxnYfVZP5IIXJmGVOdtCUhQhydZIDUUVEpPRI1w4z02icglRLhs1tTM+gyWswHLO0bt4DCCAYByB6/KtBsk3gKDENr0UXC4uTuh3xK5uYlbyL6ToD2OwkGuxoX6eTYwOE6hBOEKSO6LA8bUtm/FM359f219/zd3GdB+H5QEQ9D7khVyT120UJgqNxZNML+nu2VCJMMJ6wObcu+setM+tHYBazS0mzGBNUraylCqDRW1qxGfUVqZRV2D55/nHwPtfuSt8p84OzGQc7xlEhKmZIKL6/SKmC4XDLUP+MxynafEVu0wLFOSV5l12bTmT0PNridgkwaF7tnij5N3Euxib1AH03s5RcMrC2XD/BSfBt94ke7RMRKQFlhQBfIWY1050TO9qMwZeSecZd5jSoX8x5LMwoVQsVwPmlpTiN3dy8DMalTrTJRylSTap7vcpQtd/lAIHQHSJMB2DZU29u8328x3H8brKJJmAKPCSwaUq1MjXaTqDhUmEOaB21SOi+jHhYpCuqQZHy/Cx3z0KV93zkrKtbsE2a5LcEX/ITlPhyvccBjtrpP8A/O/lddOw60K9YfykgE2yVr+NRFk27ZMeEu3ko91GFG0Kg0Vjcq/9tOC2Yd1+cUATG9LijCZysJNTkQgTPFgAzPcfdjFWqjWv+5cyWNCDiXfwJOnBwuEzWMzjgeq/FI1qzWGUkHFAkZksKhJhdsfHZWJs8KcPHwWfO3UveN0B87QmrL99YLnyf/qM4bjIzyNeU5vhcY4wV0rwNNVDOsFSpEjx8kMlYlIG4+atJAEjzWN+MtoddyjDAWVvckzaqxHQ/dgWWCT/Mpwbhkhixy/aR5/F6Pql0QKLjp0qNXTp4Eu1yt/F8xmpHyvGF7q1JsqImhLyksQazrsBv5EmSk5M8+TM/GONcm39udSXuOHX9L4XNyuSPpvJZ82vM1jo5wMECywBBktogcU/h2ESYR1tWfjJuw6F/33LAfCGA+fBa/dXG8+wCPDMGnPRjifF6eeu2jqsvBbnkl561kHwjsN3gus+drTyd76ex4ZNHSjDewNKhMUwuQcAmNQRjEXDWGl0HbDzdPf6r+lzZcLueMH1/+Cn59VEBs3W4LxqKLCYJb6tdg8AahE7SQl6nURYKIOFHMubDnbvY/RUea5exNqvXtSksJWlpGurMbbmxnnQlpWoK7DsPqsHvvL6hUrj5VQmEThoKdfnyX1GvDQzu4OFQ8rcSKppkUp58sIkVx7oYAUWnTJGHHUVgGCjJD3HIbZjsTBncnvkwlcrIy2wpAAAl5q5PSKTcYyV+KQ9WCQNUu9YQj7KSwxXql7HCQbydHiUOi0aZ7DoCizBxHFS3d+7zwrKqdnmPTH5VgzRbSwyibBOzSJrQ50WHWVw5/qXcQssnjQcY7DEXURFZbBgUOQ4jrjwOPfYBZE+vyBQy//y6Gq44cm18LU6pRShe/7a81nluTV1F3HkyXMEEKTBDgrSBzan2nQupfvKyGARaNXu8eAiW31vPhdMjPDfpQ5ZCqXA0oQFOr3u0vWiCwHskquRRD9/Dxb7TMWQQi7jnWfUN3cLLHVGAjJYeJIoIZlDCXlicm8C/b44hjTD5J5/3lipapRAkfYZtzvrYyfuDtmMAyftPUvc5pqHVyn/Vwss/vmh7Cd/vAo/hu5CDu747Anwx/OONG7XIXTdpkiRIgUAQD7jxkZtlrEvxs20S11iifMECR3nXqp7VXS35xJbpxRIDIDxQLFcNcauUiIFO/MVI3SLor0NwmL6MOjiBT62j5Ur8Plrn4Abnlwb2NZjlGo+o6tNTRxW6nO9rnHFhsEiyXBhopInu50mZm68Agu5d7n2vwm0wQrnat7B/o6f3Q9/edSf+2lhEWXsHnhpCzywdLP3dy6Xw9esYQnOKBJhiLe9Yj788B0HB2LTA+a7nglPruo1vp/GMK7/HZHiYgWjOM/4rJ52uPiM/WHfeZOVv/N4bYz4JUhQPFj6/Tg6DiQ2/1BYhz0ZO9CvaOtQEf7w0Eq4/ok1ABC89378rkPgirMPBQCf1RwGGpLz5LUpCR1XIizJVZauQBzFg2WnaW6eD68HvpezwQDsCyy0gbHoMViwwOLeC7ZFc6/AYnHCd5up5o9sizg2/pMSZgi5PeqZlqTsdqfGW4UX4TlbUHcL6+b3MA9anjuVmlNT6JEWWFIAgDtY/d85h8H1Hz9mWx9K4jAl6JL2IpilkSQDsDe5L5ar3mSBkxxNEkvJy0bN1HTngXcJmbaNCsn00zbItPU58Bks7va0iwkA4MAd3cAUO9GifDVOzyzHLOl70nClqtIpHlsizNLk3pNZqy/qM5ngPbrn7G7jPS1B6rbUm9zrj4/eH1E8M9pyqkQT14Oli70oC0fTNvJzot+ePs/las0LgPxFtrp9QWGwUIkw2Y9FAg3Qm+HBks86XiKBB78AAKNkgYfyDzTY5dcYpeaM1H3Hgfb668iSaMtmyL1dZ7CwcSKfS/b7z5/mMyX8Ap85AKXXABfbccfxLovFUMErqFZCO3QB3CD/u289AL59xv4iQysKvvqGfcW/c/kZXYGFJsdwMW07V+wyowuOWDAd/v3JY7Xb+LrxqQdLihQpVFzy9oNg0TdfA2cftYvV9jhH9xPmnsxgURMpNIk8wNYASaBDEy+YZGBpTPr/3nEwAPjHPaTIQLk/6bj8ziN2AgCAb7xpvwaOOhp0c/sw+45/e3wNXPPwKvjY7x4NbBvmOYKJJ/SWCGOwYLe1DYOF7gL3y9ctSUtbU0wjCW6Mj23iBUS7cF/1CwyK39TZq7mMA+cd7zZxvfGgeUos/a1/Pqf9HJ4zDPMGVSXCGkt9za97QG4yeOq4n6PK6dEkPi+wcBnbRiAVc01JbpqAxTg67jmS/CiHwxgshLmAz8rmoSL8+5l13jb8ns9nM7BXnUlkLw9FGSwsec1uqBP3mun9HqX4RaWrknxOtSb3IQxEKneI48jGgTH49f3L/XFLmJu47DA/P4iK0CzoF1giMlgieJ3tPadH+X+Yzw9CkmK0geQthM9/NuMk2qyN8QM/b3im8b5CX9Uwmfq4zb+8WDosMFZT6JEWWFJ4eNXes2H/HSeHbzjBwJM4FEnnGU0MlrDxt0AYBRhsScUhcdIO2TfXq+TQFaEO23kqHL7rNOVvSVEhHceB9x61s/I32876NkufgyLzYOGJSFxMYLAbJSDi3QOxJcJQGq5SUToU4k7Y9FqaGDmeBwsmLMEJJFKjMEcQYYl+CtOtRI8lynG0ZevSQl6w5/7d1zuPJ31gujd3nt4FF71Z1Q413Uu8+4MHpoHFBEka0MQzLUqELYhogcWWMhzlFnQcB+79n5Pg6QtPFbvfqL8FLvbowl3HYAk7BPxeyPpry2W8zx/TMFh0nlNxQSUkPAZLSMGVLlj+Ue+ijRujG1ma9Z8FYhofpjGPOPOw+XDW4TvFOyiCyR15bzFMwW9Det/nsj47aVhisEQ8hr3nBGUQELZyOSlSpEgRhk42J+kSMH6TjrudZGqbZIGFxghKAdtUYFH8H915DhN1wwobONis8oXT94HrP34MnH2kGuc3EzT+vep9r/B+50leeq4DycOQxhtcRwwGPFjCJMJMHizB2I93giOaqaKCa6JytQb9I+738xN74e/PZzNeDIQJOdwPxR6z3Hggk3HgxL1mwd3/fSJc8raDlAKLZCyN4LKlYetSGiNJLPsoQG+CgdGSVpYHQL0XOYuHF1iSlCc9gORxcIwxyYRJ64E4JvcAQd8GgHAGC2XuI4Pl2kdWKtdUuroeUz2iwTmAK8FIC3/8fvrQ8bt5v0d53lSJMPv3hUHHKLKVCMs4jiIv/eW/Pu3lmaTiJM8ZXXj9M4FtHnxpC6zeOuL9H9dbeCqx2BZ2/RGmgg/HAtbEF5UlEzW/IjUEb6pLhCWtCIHjHr+2fN2Gcnw4r0TNQYUpP/N82bAiEZZWWMKQFlhSbPcwa2smPDAWcgFjO0RY8p7KXpkq+VLBKCwA+PLrVF8dnkjXLQxy2Qxc86Gj4JMn7+H/LcHk5IVv3A/u/NyJ3v9tCxyRGSz14IQH7LxpKA6DhS+yosJjsJDEZyOdLzRRbQr+C0QyyP1M9/793Kl7edvE8aqIUgwxFTZooBrlOLAYMcaKFrhwxA4tem5srntYx8s7j9gJ9iCyd6bt+a2CBRadzMZB86d4v9OgJ4pxZzu5LiVLGY6oxdSOtqw2IXTEAr9Qi4kn2rXJrzEu8HT+HQgcN7FbuC3nm9xjZ1tQRz7Zcf+TJ+8BZxyyA/zwHQf7Y1PIOZZ8TeIe1RSB4s/RQbqibDxYkoY0LvDxid9vHhOJLDTwWWlGd2CY3EKKFClShAETWZjU1M2jGEOOlqpQrdZEGR9JcicuaIyQIVrvI8UK9I+W4OZn1wfkdqrCWkRisEisj+5CzrppLylWLW06OWGvWXBCvROdJ/lmEA1/qqUPEM5g6WYFllAGS71osKF/FF7cOChuI7FEcJ3GY6pGFQtMKOT8GG7zkCrlavupOJ9i4a5fiOGw4xzP2Y5TOyGbcTwjbgCAuZP17HkeO4TdPzRGkrwmowATx9WaOXlMYzwex/J7bjRBedI3HbQDfPX1C+H6jx/jjR9Skcs7TqnAEsGziEJiO4cxGHAZTxkspUoN7n3RN9WWHkWMD8vVWqgkL0Aw5v7CX57yfucJY/rMRXneaIEwyfSSzjcozECeqjRwJpxp3OIMll/dt1x55h5f2Qtvu+I+eOOP7/H+NlqXH8Y5Y1JUBgsWfCxO3LQu5g8SWSLManMPr9prduBva+vevVH8vWzQWb9OfGzh+QEsUi/bPARDY+VYXpkA5vv07v8+0St60uMpWjxvL3ekBZYU2z1Mie9mUK11ciphH4UJqF/fv9zryJCCRilpHhYAnHnYjvDnjxyl/A3N5ADCE6l5S1+POOATuQ3ynpyaeULBJDsuurhXxmn7zlH+H8WDBRkRKHfUKIPl6dV9/mK2gfuSBmImpoLPYPE9WAAADibJ/CjSXAjbYArAXCCbFNODpbNOmy3XExb4uGDg+/cn1sDgWFnp3rAptNpso7CHDNvzheNYRdVQ5Z/1iVftAZ941e5w/cePgfZ8Fn74joPhe2ceCDOI8V5YgYV6tIQVJhFJPusfO3F3eM1+7vOGiSdaUOTBPz4XYY+Vz2Bx95nPZrz3egyW+vc9aP4UeOiLJydeWG/PZ+GStx0EbzhwnrXJvXQJ4h7X9C59gQX3OXuSe6+s6x+18mBJGtIzbJIIA/DHMq5FDJDs4rWDJTpTpEhhxjPPPANnnnkmLFiwADo7O2HGjBlw3HHHwfXXXx/Y9rnnnoPTTjsNuru7Ydq0aXD22WfDxo0bt8FRjw9wPPnlPcsAQN8gQjuKR0oVL2lBu2XjxMc68K70KR2+oflHfvMInHv1w7DXl/4NS0kRQNLF58wbgGgsBwlJMXX4PIMJe85gocP86t4R5TVvjaX5LnisQwEGi3yd8TxvHirCSd//D9z+/IbANjTxd9lZB8Gxe8yA81/lNrZxhmozJF4pPIaSp+0fLV7gnmaSRFhvnUnO1zq5bAYurEuKrukbCbwPwddboQUWui5vcIov5HyWjlQ8QkjSWwj0/URIMU5cZDIOvO+Vu8L+O0721j0meTqxwBKXwSIVWEIaV2jimDZBUukvKTZW5Ogsmsb41/wH8V/ia+VuReordNceFsz0/Yy3DJmbw6KAfv+T9/E9DXsN1xVAXWNxdQlcB0rPjjQev/aHd3trqUeWbxU/b6xc9c4zNklGlQizycPwpjLbAosnERZxATG5Mw83nH+MstZaVWfv6Lx940KaXwHo/ese+8yeAszqKUCtBvD8un6vQJUkdpzaCd+sS3zS60gZoD9658GJf+72gLTAkmK7hylf0ow4tVOzUAgrgmAye8mGQW/glgJa6fuEkUocx4FDd/Y7yIvlaqSiCe341nVSxAWdnEYtzepsGSxFj8ESlAg75+hdYMepHcr2URKOVCsWIBig2S6Cnl7dDwAAF/3zeUJftT6MAOh1NRV98H7b0D+qfCbt7oojEdYbwjigkCQxECqDxf6E0G6SkWIlwGC5Z8lmOO/qh5U1ls2lmib4rHAo/jeGnb7ugHnwobruNIDPItJ117Tns/CZV+/ldYO+4cB58NZDd1Q+L4pm8phlgSVJtlp7PgsfO3F3AHDNXsfKFS+ZnckAzJuiPou24wx+b1yM5bOOtzj0PFjqnzN/WqdI9U4SSG8vRZAIaxSSSSXHvMnu+V3TOxraodsMSMVaPj7xRR0ykSQJmyS7eCd35OEX7z0MfvfBIxLbZ4oU2zOWL18OAwMD8N73vhcuu+wy+PKXvwwAAG94wxvgyiuv9LZbtWoVHHfccbBkyRK46KKL4LOf/SzccMMNcMopp0CxaE4OTVR0skSWTvKkPZ/x4q7hYsWTtF0415czTNSDhSWCcC7cODAG9yzxDcX/h3R2V8gcjcDC0KBgch93Sknqe3LPQM/nhs0hVMKTJ7ttGSwDlgwWXiD51X3LAtvQz3zjQTvArz9whLfGoLHw50/bK1ZcHgWYuL7izqUAIPvrmIDnnDNYaNPUC+vdIp7kz4hFgfuXblH+Ttd7PHwKaxKk68xGpUAdx/GuSf9oCUZLFfjdAytg1dZhZTtTgSUoEdYcedJpFv4/UiOeiT1kgsS4Gx4zf7cKKeAdtdt0cRvp6tI1go1MmEnRgceiNr6GEmjRfPnmoVj7CMPxe82Cb5/hSlJvMcgOAqhNTPz53VL3EJHW11Jh/9m1/bBss3uP69ZndM3tM/3s7m28BnmLdSdf8wyNlY3X1/sMIkcXFfvOmwyPfPkUT9FlTW9zCiy+twpjsEBwjt1lRlf9WEaNstTSehP/EraWwrhh65A/hlC27Wv2m2t8/8sVyUVuKVK0KExJ5mZ0Aukm5rCPkoJmKWiUJcKifY9iparsO0yCib6eNB2STtS2XTzowcIDWo4x5sFCP6ujLRuYGKPcDtOJGSRA8D5ry2ZgpBotaPYWsw0kPuk9bUri4v32wEtblM9EDxOAeMW03pCAj8JEM0V9UYCIHiy5DLRlM1CsVGGoWA4UWAAA7n1xsxp4WiRrzzp8J7h/6RZPckL32QjTNcxmHLjgNfvA7x9YAf2jZe88RE1808A4jMFCIUmRSEh6eMTF15ahIhzzndvhHa+YX/8cB3ZgBRYeAOv8rXhXViHnM1iWbBiEt11xHxy/p3vNkvKPMgELCWGxvigRFvPwphkYLAgsYK3pHYHdsMtuG0uE8eGJJ6LwOkoJkSQvZT6bgZP2CUoApEiRQsbpp58Op59+uvK3j3/843DooYfCJZdcAueddx4AAFx00UUwNDQEjzzyCOy0k+vndPjhh///9u47TIoq+xv4t7sn5zwMM0Mc4pCjIBlUkLAiEsxiVhTDqhhWXQMouoq6CqK7yuq6+xN1d30Vw4KL6KorKJhBMBBE8jA5z9z3j56qvlVd3V3V02mY7+d5fGR6arqrq7ur695zzzk45ZRTsGbNGnW7E4l+kZWnhQq2llXF1fVNqK5vVL+X+3ZMwaadzgwffyf6jFwxvhv+sfUXnDmkAICrce9RXbmikiq5T517BotybSaXHWpuxcQV4L2PmBXzhxViy88lGNsjC4BxvxhAew3kqZmwp2eiTq7XKLXvPa8Ed26vfW5Gk8GeysMC2sDEqX07uG8QYMoClTe+/BWLJxVJmdUm/z5am8GiBOKm9cvD1H4dsHDNFq9/7+m9UF3fhNT4lsxmiwva5Pelr74VZqTERaGkqh4VtY3404c/4Q//3onkuCh8/fvT1G3kMaE+00U/9gnEPhlRJqLlyVG9JoOJ2aLcJIMtfZPHbQpfGSzKYXLYbYiLduCi0V2w5uPdmm2M3nt2u7N3Y31js9fFegr9GD1dWjSnn1eRA75Ws4suGt0Ff9+8F+eMbH3/QiODCtJwuMK5MNJKBouech9merDoeRqT1zY2qY9ptcm9t4wavXTdgseGJoG6xmaf4+BAlEdWPlP71QBLYKfS9RmACuVjKr+Wynf4PW98i5xkz0HR8toGU6WkjSjXICXSe03thWkLfkZlW8UMFjrhhbIHCwAkxRqf4H09ltFktnGJMPe/NbOCWdbULEyvtge0AZZAf5nIxyXNQ3k1T/uzdW8p1n62z3AbIYSrRFjLc5Ufy25zfy7+ZLCUeAiw+NPn4UBZrbpvgWCmRJjCZnC7PyvlumYl+t6ohbeJfnkllNVSZQmxrhRbfZN7haZEmIm7j4t24Onzh3pt+i1/hs0kf8RIfZec+2QtwBaryWAxH2AxWyIsyo8Scd7IA+cjFXX4VX2/29wauSqeu2gYendIxnMXDTf8vf55RzvsmuOy+ecSfLmvFEBoLgTNHjOj4Ke/WRlpXrKrlkztDQDo0LIi8WB5eDJYjIL4+kGt/j2gvI6Gkw9+7PrJRcarI4mo9RwOBwoLC1FaWqre9tprr2HGjBlqcAUApkyZgp49e2Lt2rVh2Mvg01/Le7sWdJUDcZUIK5Ia+JotfWJGXmo8tt55Cn7fUoJJyWDRB1hkrgwW13NQyiDLpZ9a2z8wkCXCnjh7MOYOcy7eMOoXA2ivjfXH2FuwAwDSW+r/H28pAeQrgyXKYdf05pRLHym8Bajk78VAVxAwIl8nHSyvVVdOm718kt/TgOv5xsc4TAXSkmKNr2fkwJTVJvea+zG5wMgb5TX5cl8pPv7Rmf2l74fhLYNFL1j935T3qrdMB6NxYlG2nwEWowwWX03udQsLjcqMebo2VnpLmslg0T/NIqlnpn5IJFcEyE2xls3z+1nF+PLuU9G7Q4rvjS348JaJ+NtlI1tKv7nmH7wtpGz2kll4qCVzz0wPFoVynM1ksFguEWahyb3R+8zM4wRi7KOMt5TzWsBLhEV7ztwHtEMfZXHd0cp6fHeg3ON9lhgEWM22bFGen7x4Vjlf+dOnt73gkaETnrdVBEEpEeYhAOFPBovRl8DIrhlut8m9GMySv1R91aOM0QRYAvtlAgB/vnAYfje9DwZK/T+8kU/qS9dtN9ymsVmoXyCxBvVkbXDv+2DlSzfDR4mwGJM1bOXeOHtLnBk5VnrBeGOU7aSQM1UA13OXL5z86cFy++l9TG8bjB4sgKuOr5yarP9cajNYAsPKZwpwTWw821KKwdvFsBF55VGchWPU4KN3kev+A3uC1F+0uyZlPP/NpN65eOf6ceiXn2r4e6MAi/42ZYAX6Ob2Rsw+RiAzWDwF196+bixO6evMzHA1VG4KyCouq4wGZPrzk/5z7q1EmD8DpDULR6BHjn8TB0TkrqqqCkePHsWPP/6IFStW4O2338bkyZMBAPv378fhw4cxbNgwt78bMWIEtm3bFurdDYk63fnK24RRvBxgaXSfsDnUUsI1UOQFAMq4QV+uSC61YtTkPkWXweHczvl/f79SAtlrRuapnr187ekeYHH+39OiOGVyUym7pDZn9vI6y5PGRpPB3ib+5KCEt2v6QJEfoa7B1cfQ7AIQJatYeZ5yJQFPPUplnoJt8kS9fk65wULJ1fhWNrkHXGO0P/7nB8PJXkB7jeetVwsQvAyWDFMZLO7HLifFv1K6RsERX0Fi9Xq05ZimGJwLPJU/itW918w8zuiWMmTy+0mfxWOz2fDl3afi899N8atqh5UFb2YVZiRgdHdnZp4y//DL8RoMvPffHnuiKK+s0XlF6XFkNM4rTE9wuw1wfZY9zQ2U1zZKARYluG0uwNLY5D1QLTOaIzGzGEEJRrVmbKvPBAlklikg94T01OTete+ZieY+p95KBPoaShnNaSrnM3/miNoLHhk64d06rTd+N9140jcYK3g9XRz6ymAxLBFmcMHeIzcZby0eq7ktM8l66p880PI1oS/vR6BLhAHA5D65uHRsN98btojWlGIy3kb+QjGa3OucmeCewWLhjKg2uVfLBGgvUs2uNBvaOQMndXMGzbz13vGH1x4s+gyWloeULwz9WZ2QnRyLuUMLTG0r1xrX69aygiojMQadM81nxQCuQXWltKLMW4+SQB1vOeBh5QLuH9v2AzBOAfZGHmxb+Vzqew95EuiSWvr3k3KxrpwbEwMwkImJsrt99pQL71BksJipHwwYfzYDvXfy94Lyea9vbG71amN/GJYI87GQ1FsGiz97Hu2wozDDNXDM8uN7k4hcfvvb3yI7OxtFRUW46aabMHv2bDz55JMAgAMHnE2E8/Lca3Tn5eWhpKQEdXWesyfq6upQXl6u+a8t0AeEvfUyS5dWIssZ18o1zOBOacHZSbgm6bytblfiENoSYc5JVHlVvtXsW71A9pqR6bMpFHL2tH5iztdCF6U8jbKi11cGC6BdcW1UzsjbYpOEGAeSYqMQZbepmajBJAfYqupdvQ3Mjo/idcdceb6xUXZ0N5EZ4el7Wb4O0K/a95UhAgB/mDsQAwvTcOMpvXxu68usgR0BOF8bOQCmCU7KJcJqfUz+BulaTB8MNGKUwWK0KNEM4x4s3p+7qzR2y30YBGk8LbLT92D0Rnk9lHNNjSbA4tpOWYSTGh+NTD8Wr4aC/BmpqG3ELa9+abid2hur5edO0vWvcv4yWhQ2tHM6lkztjTMGddTcru9rqffL8WqpyX2U+jeNJqomqOdRk/MOq84dghum9FQzMU0FWFrZKwxwL08W6DkxZUyr/84yKtVo9ntz8d+/8Ht/jMblx1veO2ayjdorBljohBcX7cB5J3U2/F0w5tv0WRFmmc1gAZw1mjtKF9rZflwEWMlEiQ5yBotVMdJJ/Xh1A7brUiOFEBix9D0AzkGPPOH64iUjsGhid5w5pMCgB4v5N4RyYaesVtSvsLGyWl65iFMyGgL1vrQWYHE+qLzCzFuPFG/MrEZ8dN5ArxlLJxdl4d83jMMHt0w0tepNlqA213MNuvQT8drmf5bu3iN5gO1PFpLVzAJ5ABdnYkD098tOwsKTu+CyceaCmcGegFdW6CiP489KIP1qRKMMFiV1PBTpzHa7zTCQox9gGK1EDfThlifFlJVGDU3NrmaJgX04r4xWOvlqShnnJVXe3yw/+c/0CxWIyJrrr78e69evx1/+8hdMmzYNTU1NavP6mhrngpHYWPfr07i4OM02Rh544AGkpqaq/xUWFgbhGQSefrLP28R7x1RXb6x6KcDy1uKxWDK1N66d1CNo+6kuEtJNvspnZe8lwuQm987/+3vtqvRJCzTlmkLfaFueIPTcg8X4ySjH7ftDFahtaFKPkVEvA4Xcm8JrDxaDA2iz2fDZ76bgi7tP9Xvi2wr52uR4Vb2ULWItg0X53lbLCkU7YLfbcPWE7l7/PiclDt0MSg3XNLj3/FGYCbCcNbQAry86OSBBKqUXY1Vdo+a6Ve5LJGewKPuXGh+tGXslxUahMCNebVoeaGaa3CsZWIFg3IPFR4kwXZ8noyCNp5X6yrhHnzVo/DjO/yvj05+OVqnlg5XXqn9+Kl67erTP+wq35LhoU9nY+my81xed7Ba0Nzpv2Ww2XDWhOx5bMBhDpO2VoJSnjKJ9JTXquFR+HX29BwBXFpHZhX3T+ufhuik91H4xlb6CmAhMiTB9uXF/FgZ6oz9/Koya3BuVh06Ji3I7nyj9Ygzvz8f+6HvKyVgizDMeGWoX4qId2HzHZDygO+kEqhSTLNHPHiVGF87KRN1pxc4yLxOlBtvyJGJWsvWVuAMK0kxvK5/Q9U2lw0G/InDa4x9qfq6QBkyNzUKTPTS2RzZuPq03HHYbEmOjMKVPjvo7K1+60dKEJeC+GttKinBWy0Xwf7Yftrwf3ngLsOhX+SsfBXk1RlWdf2nrvhrkAeYG1D1zk/1a2ahc8FR4yWCRx2cBy2CRgmpmSoRN6p2j2TermQXyAM7MuWxU90zcPbPY9Hsz2KtTlIkoZdf9ea3dMlgc7hksyvsgVOnMRsFV/apVwwyWAEdY5ECPkvVX39QsrYQKbwaLrwCu8toaDZz83XP5s5VjsbY2EWn17t0bU6ZMwQUXXIA333wTlZWVmDlzJoQQiI93Bg+MslRqa52lr5RtjNx2220oKytT/9u3z7jfXqS5cLR2QZe3Fbkd05zP/8tfSrHjYAUA5/dUl6xEXDWhe9AyOwDX5Iy3yWnDJvctE5Qf7DyCFet3arbz98Q8Z0gBHps/CJtunuDfHXigLKLSl6lpkDNYao0zWDxdUsmTWqs3/YT3dzqv271NDMp9VIwWDPhaWR0X7Qjqe0G7L65/H69usLzwR50gbDnmcgYLYG6R3oWju7jdVlPves3010++SnAFmvJaVNU3aRaKHJH6GcmBC+UzFu2wacbQ84cX4sNbJqGPl2z+1nD1CvWSpRbAsnNG71Ff/WX016NGk8ZKoEjPtZjOfPaCvI+zV36E5mahBgWGdk73WPIt0gzplK7+29NEtz7rIT0xBmcMytds4yug8bfLTkLPXGcwp7al6kCjh6DcvuPV6nGOjbKrYy5v/VGamgWWvbUdb37lzHi12vszyUIpssCUCNO+PwLdq1Qt5+wpg0X6kj1jcD6uHN9dW568ZW5Lz9t8kDfe5vxYIswzHhlqN3KS49BBN6ESjBXa/tZjNJqAUgY1f5g7EI/MHYjHFgxWfxcrnfTM1mGUnTnY+SVrpn+L/GUajBJhVkX7KL9V5qXkgd7S2a6gm5W3gyvA4jw2+hUdVjJ9Mlpev4Mt9bYDFfjzduGs/2I0eu5mm9PpxUtBxs6ZxrVcg5kdkRDjftGtz/AIRi1r/UWOL0oDciUo663RqRE/r5dMC3ZJLWWiQXm/+5fBYlQiTHtbZQgzWDw9jnuAxf3vAn205fNIrMNVIkxfkiEUjI6Jr+anympIo0CMv6ePUJZFI2pvzjrrLGzZsgU7d+5US4MppcJkBw4cQEZGhmF2iyI2NhYpKSma/9qCopxkLJ3dT/3ZWzZzxzTnmOQfW/ert8WGaBGTp/JB8qVRk8GElFzC5/H3dkEIIU3C+5lZaLfhjMH5lsvB+qJcC+q/a+SeHRUeerB4ei7ymGnFhp3YV+K5l4FCLiNlFAz457ZfvT5mKMnXxqXV9ZYX/ihjROX6Tlmopbyv5WuB/DTjAGuuQQ+Q0hrX+1R/+W4mgyWQlPFdU7PQPLY8ZjLKYHHYbZqxYbAXMbnK2VnrweIvebJZmYiu9LFQT3+OMSoRJ5d2laUalCv0xCjA0iyA6oYmNaMtFGWEAyUvzTWf5amEmpKlID+tnGTtZ8vXc46LdqBDS6alrxJhxyrrNAEzpaKLt7mE/+w4jGc++Amf/lwCwHppamX8XGEqg6X1JcL0QcRdhyr8vzMDcR7KWqrnYemljnbYceu03poFqw67XXPNoRzOY5W6hS4mP/by+yMrKVbTI4klwjxjgIXaFf0kTzC+S/1dZRRrMAGlrIhPjovGnKEFmlJJclpiVrK5AIv8fLtkJWLDjeOxbvEYn38nT3BFQsTaaMAqDC5mAWBE1wyv92W2V4qnv1PKOugvUq0EojJ0F5SBel/26eB5QiJWl9FhtCLF18ojj/cd5XsAFcyBpHJRp81g0b4e8rMNXA8W+aLG932qF58tx9mVvmzu8Ua2vLeNmkIGQqB7sOgp6ebKoepqUBbCF/1kVLTD5nZ+CHWART+AAVxlMkqr63HR85uxYfsh9z8MZokw6Xz18LvfAzB9fR0Q+vMNoB1A/PuGcW6/97aS0N/sGyt9tojIGqXkV1lZGfLz85GdnY3PPvvMbbvNmzdj0KBBId670JFr3XstEWZwfRSqa+w0XS8RRaXBJLF83szUrSbfW1LttZlyOKkZLLoJPrnJvVuJMBPZJKf2zXW73dvrLC8EaRbOcsDKaurtB8rV8sChaGLvi7wLlXVNPo+HnhpgqW/G53uOq9c6cS3XIPJk8LsG3/sAMKWP+/E9XC5lh+iO07kjO5nbuQCRK1UckxrIy9lJ8phQCapF2e2asWGSnxUvzJJ7PHkqyeppstxfY4qykBwbhdumOReQ+erBouyXctozWjCq9LzRMypXKKtrbFI/Z8oaSH0J66o6V2P2thRgyUl2BVj0555XPtuHR9fvNMx6SI7TZ2D4fs7KZ1cZx3jqqVJd36TJeEs0kWFUUav9/rH6GqgZLCYqbgSiRJjNZsMV411lti8ZY75/sBkeS4Sp/XTc912e34iy2zRl35QeNYfKjfvdWTkUdhuQl+q6ZmGJMM94ZKhd0U+8BaNEitV+EQpvGSxG5NXe+gGP2ccoyklCrokyKfLkeyjLynhiNACV617LK8Qemz/I633JK26srOTRlwjTX6TGR5u/cM5K1AdYWneM1y0eg7tn9sUcL83m9cfQqC60mbRrw/uW3mfyl7HMFsRvH+UzWCINfPQTvE2a93RgHlf+vJq5SFQGaUoTQKurQHNT4vDp7ZPxv9sn+7G3villGsb2yArK/Svp5srzvXNGX0zslY1nLxhm+j70GSzRDrvHc5SnVV6BZrQKV8lgWf7ODrz//RHDv/NU891f8ntQee5yUOPno1UBfTxvvPUIKu6Ygp65yW63GzU7Vfh7pCLh+4uorTt8+LDbbQ0NDXjhhRcQHx+Pvn37AgDmzJmDN998U1Pe67333sPOnTsxd+7ckO1vqMnjADMlwmSh+p5Ka9lH/cpfuWSWWlJFLq2YrB0z7DpUKdX6D8ae+i/RoKE1oJ0g1F/n6vsWGBnWJd3tNm/XfPrXdNj9G3DLa18BAP6766h6u5lV2MEmB3mq6xstB88S1AnCRtz+j6/V25XFMMO7uBa9eVqQGOWwu/UROFwhBVha3pdPnjMYb147BvOGhbY/k13KRDlW6RpnyGMOeTy563Cl+m/5mjXN5NjdX0pprbrGZsPSdICr90WgPHfRcPz31kno1bLAT77mdC7w2YHNLdkKgCtYJvcBlQMGv5vex+M5MbUly9kog+VwRS1GLH0PV7+0FYDrfZ0SF62prFBZ1yhldUfYCcwLuWyafqL75le/whPv7cKnPx0DoA2QJ+sCTPqS60aUCXxlnqDBQ4mwqrpG9fzpsNvUMa6n4EdTs1AzAF3PxdprkGzQc9UTo5KX/vjtKb3w5wuHYfPtk9US/oHiuQeLk9HXjBxgcdhtalAFcH1f//E/u7DnmGvM509Y1W6z4fT+eerPDLB4FpqCnkQRQl9aKhhfpf4GWIx4+96Te0qY7anw+ILBuOLFz3HnjL6W9iPQF2CtZXRSr6pvVFcGKRdbQzunGw5gZfKFnJXVYzFSTwNA23AcsJbBol9R0tqLvOKOqSjumOp1G/0Fq74xKwB0zfLdRM+INoPFOIAXzMtYZdWWvLJMXzZKrtcaqIvqKIO0XG8SYl37VF7bqE4CWFllbyZA6q9zRnTCwII0FJlopugPpcascqyyk2Px/MIRlu5D31vHW0aa1Qt3f3UyKGdQ1xJMUursh4KmB0vLOVO+aDcKqgaL/nWSeZqA9JaZ5e9ntjDduNQEEZl3xRVXoLy8HOPGjUN+fj4OHjyIl156CTt27MAjjzyCpCTnd8btt9+OV155BRMnTsR1112HyspKPPzww+jfvz8WLlwY5mcRPPI4wEyJMJm/WdVWeRqr1DQ0oaGpGdEOu7pwSC43qW9kXSmtAI+0BeCJUg8WIVz9GOUJQn2ARd+3wEi8QeaBtwCL0Wv66ue/4NpJRdgplZgJdakrI/I4qEpakW6WK4OlSTPOUI5Bv/xUvHz5ST7HZmcOKcAHu47gq1/K8MvxGhyuqFV/p6zmjo92oF++97FOsCTERKG6vgnHqlyBn6tf2opls/vjnJGdDEs07y+t0Xzm0w36jQR2Hx2IcdhR39SM49UNask8mad+Gv6KibIjJsqOJF2GPgD835a9eGrjj3hq44/Y/eB0AK7MEmXS2263ISMxRg2oeQs4qxksBp+bP334M8pqGvDOtwedj9PyekTZbXj7urEYs3wjSqrqUSUFWIKdtR9I8jW1p2OknFu0GSz6AIvv56xM+isLxTw1uddmsNjcqjTo3fHPr/F/W7S91axmsChB9PKaRuw6VIGinCSPwfFm9fvM0kO4iYmyY7JBll0gxMe0jNXcerB4ziSU3wsOuw2DCtNw3eQe6JSRgLe/OYCv9wP//u4QNu08gu/vn6b5WyuLzmw2YGq/Dlixwdl7rS19XkKNoSdqV/Sr9uUVMYGS6ucFkzCIJ3tbWWClibritOIO2H7vVFwypqulvzulbwcAQL/8yKiBbRhgkQZJyiDFTLBLvi8rcSRl0Fzf6J7BsvDkLuoqLjP0k4+hWESjT9ZRsgkA4I1rxmDu0AJNHXEr5LJNngZRwVwppAxa5Jqj+mMsr6oK1J7IF4ZmLlpiHHb1AmXa4x9g6VvbTf9tKNhsNvTLT/XrXGNGbaPS5N7/52uUweJJqFYG56W6T5rVtQQw5dWOeoF+2Y1KhNWGLcDi+T3k6SLdawaLn8fqmklFOHNIPp6/aLh/d0BEmD9/Pux2O1atWoWrrroKjz76KAoKCvD666/jxhtvVLcrLCzEpk2b0L17d9x666146KGHcPrpp2P9+vVe+6+0dfK1p7f56azE2JAF/vWiHHZ08dAjT8liMcpg0V+fVEqrliPl2kWhNMFuFto+aHLZY32Te6O+BW73a/B95q2nmKdrj4NltdhbUq3+bKV/ZLDI46Dquka1X5zVHizV9U2ahWbyNcDIbpke+2ooYqLsWHnuUNwwpScA4xJhgepX6Q8lgKAvvXP7P7+GEMLj514+Dmnxwc1gsdlsSE90nouOVxlfeyrBhVun9cZpxbl4fdHJAXnsBDV7wfX52n+8xm07o8z9HKkHj7d5EKWMrFFgUu6N4ewT5fy3M/soSq38oclgaUMTxn07uuZj9D0eFQdKnUFJ+aOrX9BpJqChjJ+VSX9PZeWq6hs1gQDlGt7Te08fXAHMZdTIlGyNJzf+gFNWfIB3vjnocdvmCP2ekinv6QNltZqyfq5/uu97vC6DBQBuOKUn5gwtQI60CNPT+8Qsu82mKeXt1teFVAywULuin3zzt4m3N2nSwKq45Qtw3jDPpZoURhdj3tIYFwx31pwd3CnN0v7506S+Q2ocvrzrVPzr6sBceLVWTJT7cZFTUK0EWORrC29N4d33QVsiTLlAS4mLwh2n97F0nPWTj6GoA3uovFbzszzZ2r8gFQ/PHeh3doQcyMwLR4Al0VV3WKE/xvJnP1C7YvXC0GZzlRmQB2ltKU3dKjmdWs3YacXz1b+u+ixFze9ClM5sFExQLmy9XZAG+lWXB4sxaklD1znOKGstWLxlsHg633ntweLn0UqKjcKj8wZhYu8cv/6eiIAFCxZg/fr1OHjwIBoaGlBSUoL169dj1qxZbtsWFxfj3XffRVVVFY4fP46//vWvyM0NzurPSCFPYlV5mXi3222akluJMQ6fE8+BdOlYbf145av4za+cTdeVa2Jv16RyD4NIu3KRJ57ka75GLz1YjPoW6CUYXN+XeJhEBNwzqBVP/GeX2twZiIwMlisndFf//dme43h6048ALPRgkUrcyMff38wsZbJdzmDRZz2EQ6KH8mYxUXav5abl905akDNYAG0fFiPKZHn37CSsPn8YBhamBeRxlfJQDU1CXYgoZ0+s3bIPB8pqXAEW6e0xsmum+m9vPUK8NbmXM9NqG9xLMCvB16q6Jtd5rg2NvXKS49Q+N3K2gzwpX9FyDOSAglsGi5keLLoSYZ6ynqrrmjR9Trq0lEv+8Uil4fZGrGZF6PvzvNHy3WWkLbzO/fJTkRDjwNHKOnz7a7l6u7csUX2JMFlusvE8jqeeTN7YbNrFAr+W1XrZun1jgIXaFf0kz0UtPQYCSZ7UXz5nAP549mDc+xvfmQBG5zpv87Wjumfi7evG4sVLRvqzm5alJkR7rSUdWgYBFikFVVlJlhjrO8ghX3joy3x5o0xYNgvnYE25SB3cKR1RDnurAiyhmGCfNbCjpv5xICdb5X4nnvoDBfMpKrVpj1Z6DrBoMliC0OTeLKMa1G1oEZVlD80ZqP5b34PFH/rXVflcGq0KDlWAxWi1amVdA/aVVHudbAvUZ2LGgDxcOKqz5jajyY26xsjIYPE02NGXopFF8PiIiNo5+VogO8n7KnV5wmv5WQOCtk++Httmc41D7nz9WwDw2JvgyXMGq/+W6+5H2uIQh9QrQ26ELS80qKpv0l77myh3ZnR97y3AIl8T3HF6H2S1vCc++uGYZrvSGs/3ESrnjeyE+89wH7OavS5NkEqEycEEvwMsLROEcsUJq/0KgyHRQ4P6zhkJXhvHy0Gn9CD3YAFc46Hj1d4zWAJd7kcugVzdMj6XA8+3vPYVZj/1seE5ZnR3V4DFW4aftxJh8pxKWU2D9DjO29QSZnWN6uffTLAhkgwoSAOgLf1r1B9Ffmnjoh2aRZBWerBU+2hyr5RidD6mTS0v/cNhCwEWi+O0LlmJGCH1dfIW3BQmzu3hFhftQP+Wsoc/yX0yvWTfyN9H+s9xbor3TGErh0L5jOorR5C7SJktJQoJuf7o2B5ZmtS5QJHLmthtNswc2NFUiR2jrwRfX3x98lI8Ngk8kRl9gcqr0JT0/xiHtS8BK7WG5cnahibhukBr+XKL9BJhhRkJ2HrnKUG5b3kg5emCNbglwpQAi3NAZrO5lwesUlf2BO5x/RmgJBn0mYi0SYpASk2IxowBziZ5rkkZ/+9P/9lRBmMf3TrJoHxYaI6r0UTCnf/6FmMf2uj17wLV5P7Jc4bgHl1Q3yi45K2kSaB5WsELeD5HDOmUbrhSGGCAhYgiW8eWUpEXjfZeklfO1PM0aRsscoDFaNKk2UMGy4wBHXHleGemQ1V9k2ZSLdIoZWp/LXWVJ2rQTRDKC7TMlJEx6mXhLfNoYi9nxmRKXBQuG9dNs0Jf1s3PvoeBZLPZMKRTutvtZl9bJbOjrKZBM/Hnb2Z+TksJoNLqBnVRiFHWQ6h5WsCXGh+tGUt2y07U/F5eZJOREPwAizIe8lUiLNCVE6IddjWwuHXvcTQ3C7fr9YPlternTX78zCRzJcLMZrCU1zZomq8DrnNtRV2jq9dUBJ6/vJH7HSmM+qPon5V83jfzuivbK+UUGzwEMWobmtUAj90GdGspJ7VHKoPoiz/j6EfmDUT3ls/ZLwZl6BSu8mWR/TorQdFSKSjqrcm9PObUv4f1VUSUbDIrCSznneSsmHPzab0AALdMdf5/Yq9s83fSzjDAQu2KmYyG1pKDKTk+IseyAQXujfrCefEYyTINVgTKJcIaWr5Aog1KiXljIYFFsyKtXspgUS5WCjK8N3CUhSODBQheTwr5y97T6vRgriDRBx3tNpvbc1UG1IE81v4MUK6b3NPttgi/9ms1/WvRmrrH+s+OcuGckxynrgJSHzdEGSxGwYT9pcYX/fJTD+brbvRZD2WAxVuJME+fwbhoB4ZJK9PM/A0RUSR4+YpReOXKURjTI8vrdvJkl6eAcrDIK8r1j93ULFz9Nwy+ozUrwE00hg+XgnTntfgvx12TfPoAizwZq/Rg8fZc5GM1oCAVV4zvhivGdfO4fa8Oydhw4zh8eMskANrszNyUWLxw8QicPaITls8JbQaTJ4ZjZZOvrVIWaE9JNaKlQay/WfJpCdHqtduRliwWT5lVoeSpRFh9U7NmEaB+PPKdVPbHn5LdVik9WEo89PcJZoP3xJbnd/Gaz7Dm492G2RVGpY/SpdJp3hZGpZgNsNQ0uE2uJ8W6esSovaba2JxLgtrvyPlchRCG1/X6z0mWJoDl+3VXjnN5rfM4e8pgkTn7/zjnaowyjDzxJ4uoMCMBT507BIA2kC6rbWjChu8OA4j88UOaGhR1HTdXGU6j72LXOUZ//PRtBNw+KyYOxX2/6YdPbpuEmS3l2C4a3QV/vWQkHlsw2Mdftl9t7FRC1Dpx0sSXlWwFqzbeNAFvXDNG8yXmS8/cZKy9YpTmtkiuExlOWUmxuH5KD81tR6T6vEoGS6zFqyUr7wn5oqS+sRlNLatGlC+3WQPzcd5JnfDY/EE+78utB0sbf93lCWa73YZhnf1fDecP94CVe1aBEpAL5F74E2AxmlCJ9Iu/1tIHIFrzdOVVtw+e2V/zO30JrHCWCPNEvjBuzaoqX2+9YAVTzfJaIszLznvKBDzBPyJE1MYVZiRguIcAsUwOsHiatA0W+fsnPsahOa/KZXWM5ryUfa2sa1TLfUbiedkVYHFOvAkh3HoIyI3uzfRgkSfGx/fMxm3T+vh87YpykpHaMnEsB7ZGds3EuJ7ZeODM/uiQGviqCv4wytAxe12anxaPuGg76hub8bNU4kZuym2FzWZTG1krZcL02Qjh4Kl6RHV9E+QkAv3YY1q/DgCAEV19nxsCQcmSUVbD1zY0YcfBclTVNeLqlz7H9y3N4INxLOX30b1vfucW2ASMg2Vy6TRvc/neMljKpIBSea17iTBloeaRijq1N0dbG3sp45/q+ibUNTbh3D99imH3b3DfUPe0Turmeu85TAQ0Ulq+oypazpPKgtIumQnq//XvH7tNCszUNJru+eFvoE/JBK300Fv5shc+k97rfj1EyCgBRrmsn/CyiEHu5aR/D6fERWOstMhj084j2Pj9YUv7Y7PZkJcar/l5TI8sU32O26sIf4sRBZa8CssgizJgumYlor9BRoov+guucF48RroJvbRNir874FoVpFzEWZ1Q9Va7U88mZUU0SBksypebw27D/Wf0xxmD833eV5zuAjyYwb9Q0Kerrrl4hFuQJZjXsfoBjc1m81giLNwZLEYTzyf6x17/+gSqB8vJRdqVwjee2kvzc3SIggxWao3LEy0xrShh5uu9F2W3uX3mlIF+KPgdYJEmsuQgUaDKqRERhVNSWDNYpMeOjsLb141Vfz5eXe+xRBjgCrC8+dUBlLZMZkbiBGXnDGdGxa5Dlaiub8TEP7yP93ZoJ5gq5AwWE6VL5eNW7EfgIEX6+/QQNDq3yiiDxewra7fb0LWl1NmOg85x2fVTerSqnLUaYClvyWCJgF4KRkEoAKiua9SUaZKvW84eUYjrT+mJR+YOxLMXDAv6PgKu1fBKj6DfvvIlpj72IeY/8wne+vqgul0w+o/o30dGzdGNgmXJ0nulysOEOQA1YFnX2Kw2YAeAv3y8W/OZ3l9a63qclnNUQbozOPDL8eqgZvEEkxLorWtsxn93HcXHPx4z3E5/Xh4kZTVEmyiVogQvlEwU5XWcNSgfr1w5Cq8vGqP2lZIfUznP1Tc1m85g87fXr1LyraFJqGWwFJV1jfhw11HNvkWy9AT3EmGuDCz37dOkUoNG7+FnLximfqZueuVLLHx+C/YdN1+2jaxjgIXaraY2MIkd6XUiw0k/Yb79QIX677qWL1erq7atlAiT98GZweL/BZr+gsJbg8RAC8b1ZIyuRFhSbBTG9nDV6rTZgvveNsoI0pe4UOsgh7kHS/vMYNEHWPy/L7n0lP5+x/fMxurzh6o/h7MHiyfyRE1rskx8fZ5sNptbwPmhEDZU9lYizFvGXpz0+eiR46pP38bGwUREhiqk7All0i9UkmNdk/tRDht6d0hB55ZVycer6r2WYko2mDCPxGuXfi2lQr/eX4b3th/G7mPuE0vf7i9T/y28TGQpcpLj8NtTeuJ30/vgtGLrCxU0pdkisI+mUT8eK69tfpozE6e85b2d3speI0ofFqVSQSSUCEuSggcPS9dS1Q1N6vyCzaZd6Ldsdn8kxUZhztCCkK3+1je5X/fVAQDAN/vLNduZaXZulT4IVW8yg0W+nq3wEmBJiolSP6dK+SoAuPv/favZ7vPdJW4lwuTMtmD1oQk2efz40qd7PW6nf1by59FcDxbne9WVwdKyiNVuw/AuGUhNiEZxR+2iYnvL2N9u8Poo9GWcAf+DXAnS57G6Xvue0fcfivS5tTQ1g8V1zFw9WNz3XZPBYnD84qId6NUhWXObktHJxWrBwQALtVvNIZzEtqKNfb+HjX4yskT6AlXqvFrNYLH6nlD24bWtv2DTziMAAEcALlKNmtQFi7eV5f7Slghz/j8+Rl59HlxmJvCfeG+Xx9/5y5/X3qgGc6Rf/LWWWw+WVjxfeXAQa/Bezpca/IWsB4uFz5RcVqQ1+2emrKBcMjEtIVozyRNscnlO/evvbYAnT/RkSGUjTvCPCBG1E3JT3lCXcpQD/MqqX7X+e3WD1wyWk7q5N2qPxPNyv3xnhsn+0hq3XmijWp7DGy2Tzg+8tR2rP/gJgO/rkmsn98ClY7v5db0mH/fWZHYEi81mw4Ybx6mBDedt5v8+N0Vb6qy15VmVfqb6EmHhDLDI13kTe+fgo1ud/XXkEmEOm00TuAjHtb1SbuujH47hh8MVHrcLRnlC/Xv7s90lbtso4139a6mccoxKTKvb2G1u2RVGvv213C3rqTBDyWCpwfrvDqn315bI19X/2eG57JP+2MoBFjOZS0rPKCVIosyxyItD++ky+Wx25/vdVSbM/fVRxuqLJnZ37Y+fr0G0w65+f+48VKn53Ze/lGp+rqwz3xMmHJTv4FLpmHkL/GsCZh7OMfqe0BE6BXrCYICF2q1ILcNk1CCZ3Okn0eUVC/Ut9aCtDlatZjUpK+L/+J8f1PTTH45UevsTU4zSqIPFaKVaaxmt4JcfJ9iDIrtdWxLM2+MFcvWGP2NI45WCAdiZCKYPJLRmdaMcJDDKkvBUYiqYrARKtPvn/2fRzCq0WOn4hLoUghzILcpO0gwSzAZY5PfJiR6EJKL24eoJzsmlM4f4LicbaPKEYk1LiZ0Mqf67t5Xd6YkxatNb9f4i8LScHBetluH64bD2+lw55lt2l2DR37aqwRUAQV0JlCJnsIS4LJxZRTnJmh6SVr5z83S9ZFp77ZWT7Lw/tURYBGQc1EklqdITYtR+cfWNzWr/P7vdFrLMaU/kEnRTHv3A43ZGZeFaS//e3vj9EbdtymtayjXr3iL/u30y/nH1aAwsTPP6GEar/fXKahrUCWXlPZPd0iO3rKZBrRrR1vqf2u02U2N4/dOSFytZyWCprm9CY5NxxY5+umwU5Vh665OjzLmkxUv704pgrLJIYN7qT9Tb3vr6AK752zbNdkdaArWRSvksVhuWrnR/veRsuJqGJrffA673u6IugvumnQgYYKF2K4Rz2JbEeimlQi76C3a15BNcqyusrgi3GnQzWpW1XeoF46+GEL45g5HBIr82yoVYXAgDLID2c6Q83FuLx6pN+RSBHPwEKoMlEstsBJL+HDdYqgdsVWp8NJ69YBiev2i4YXBaPr6hanJv5RwuD45aMwlx54w+AIBLx3T1uI28mjDUExNyn4Foh02z8s5rgCXGQwZLgPePiCgcJvfJxfs3TcDyOaEr2WhEqZGvBLJ9lQgDtBmiAFBTH7rsayuUjIpvpFJgANAtOwndshMhhKt0kiKY12FyBkuih14ekUAuX2blkqFDqvZ90drr7A4tr5/SpLo5ApqSyxOZDrtNc62ilFKKstv87ikRKGYXMHnqKdManrJifjPIFZhVyobpgxs5yXEY0slz9oprO+fE8aFyZ/k4uRSVUsawotbVZF15z6TER7tNLre1DBbAeAypp3+eckkpMws6U+Ki1PHJnpJqtc+tnP2i7zusHmclw8igRJjy/SIHCAId5PpyX6nbbUcr6903jCDKd0K1NK+llrgz2F6eX6kwOM4AkKPLKqys9Vx6j1qPM7nUboV5UYlHVur3t2f64El9YzMaW7706/3swWI1qcno/v8wd6C1OzEQyhJhwXi/yfeprBqSLwBCMSbSBHRaLpr7dkzB1H55mu0COek+Z0g+0hKiMXuw+ZWoRquP2kJ/qNaQP7uxUXZ0zUps1f2d0jcXE3vnGP4uPsTvO8D7Z0oeWALa4EJrJiHmD++E/902GXdM7+NxGznbJ9Qr9ZJio5DZEiAZ0TVDE4TyFmCJ85DBcqIHIYmo/eiSlRiyBQCeKE2izZYIA4D8dO1EeqQuEFMCLDsOakskxUXbkZscZ/QnQQ3ip8TLPVgiM4MF0GYgWMn27q2r99/a8qzje2Uj2mHDF/tKsftolSvAEsa3W0aidkV4bJRdfZ5KOSSHzYaBuonnUJMXpngTjEwqT/fZITXObb/8zUpWPtsHy5wBFrnfxns3jQfgDIbVtQSQlYdx2G1I0/XBqfLS7yVSmctg0R5bebGVpwl5WZTDjkEFaQCAz3cfV4MycvCwg24CXwm+eM1gaZkgUEqQAVCDN4FyoOV9ITta2TYyWKqkyizKrICvz0mFh8BJpu7z5mk7CozIvBIiCqLfz+yLtIRo3HdGv3DviqFQ12Buq4wGctUtA0RlRYzVAWuTxaKU+vqyMQ47ZulKJpg1tkeWaz/aeAZLlMOOuUMLcErfXDVjJJQlwgDtJLf8eEm6wWwgJzXSEmLw2R1T8Og880E2o+P/q65O+IlGrl2dFBsV1HJP8vENVek9OZNGbgTcIycJjy8YrNlWjqW1NtjZITXO67GUV806wrDC4K3rxuLGU3rimok9tBksXvZZ24NFWnUXwiA0EdGJTi0R1nKedWawOH/n6Zqtm7Q44uSiTPTMTTbcLtz0k3+K+GiHW216RcgyWCKwB4tCniC3sri/T16K5tqntePa3JQ4FKQ7xxKHK+pc5Z7CuNDiwtGd8ZtBHbHq3CEAnBOfyuuqlKuy2224cHQX3HxaL7xxzZiw7KfZwEkwArxypoQsxmF3Gz/7m1WtfLaVDJaqOud5LDs5FhnSohxlgl9+HH12z+EILx1lxMzrqz+y8jjB7DlbyVDZeahC0+Revs8JvbIBAEU5Ser7Se3fUtOIA2U1uP7/tuGLlqwSZc5FPgfWeihxZZWSsXSgzH083Skjwe22SKJkk1XXuY6FMlb0dcrzFDiRqwgAru97LlULDs7kUrtz0cldse3OU1DcMbyrSjxhDxZzjFZEKV9G/mawWA2wzBygDaa0ZiXamoUj1H83hrD72MKTuwAARnd3b1jaGg/PHYhnLximXsjF+zlQ85e2JJnrdv1g1kyDPyuiHHZLAQOjQcXnu48HcpcijvzZDUaATyYHLYx6tASDfN5Jl1YN/XPRyQCAB8/s7/PvgkETYAnDxERuShwWT+6B1IRozWvhrSyDPHiUV/2W1XD1FRFRaylB7KLsJAByBku9mk3rae5VzlS4cFSX4O1kK+kzbRRx0Q6PpZGCeZ0qf5eFuh+aFfJ+1jWaX9TgsNvQRQq+BWLyXrl+qahtUMdq4ezFlhAThccXDMa0/q6seGUffz5a2bKNA9EOOxZNLHIroRQqNpsN2+48JSyP7ak8WZTdPcDi78egQ0u/n4Mt/XmUVf+JMQ5EOexIbLmGLK2pb3kc1wPpA0BGWRaRzkyAxShY/L/bJmPd4jEoNBlsUDKOymoaDJvcA8DyOQNw4ajOWLNwuHqbWiKspgG3vPoV/vXFrzjjqY8AuOY6oqRUNKVUZWvVNzXjWGUdtrSMp8f2yMJzFw3DvGEFeDDM5Th9UUqE1Tc1o76xWQ0WAb4DIp56sERyIP9ExKNN7VIkN8gN1SRgW2dU11a5sGpQM1isvc7CYmmmkd0yND+3ZtJSnmj39AUZDGcNLUCfvBQU5SQF9XHkpp6hyGCJ0/RgkTNY3LOOIs05J3UK9y4ElZx9ZqZ+cGvYbDbccXofHK6oRVFOaFbXykGdopwk7C2pBgB1oLdgRCfc+o+vAWiff4wjuMdCUyIszJM68kICbxNMcgAuym7H4E5pOFBai+KOKUHdPyKi9uC1q0bjqY0/4MZTewJwTaQdr65Hs49m4plS49zsZONMkEjQw8P1bXy0Q32OboJ4nZokBXWsLuwKJTkLxaiHgjeZSa7J9cAGWBp9vi/DRQlI/eHfOwEAQzv77iESCumJMUiNj1YDCL07JOOnI1VqtYdgkcuA3TmjL+578zsAzoVt+hX1/o4LlffZ8Srn+Wru084G5/Etn7GU+GhU1TepE/fyw+jLlF02tptf+xBOZhapGR3aDqlxanDKjBSp1Jcyx6JfFJabEod7fqOtDiOXCPvpSJXmd0af49pG/+c/umcn4seWx6itb8Z5f94MwDkX9OTZQ5CaEI1JvXP9vv9QkceFNfVNcEifFX8/J/q5D0UET4e2aZE3s0TUzkXihG9b0eoMFosBli663hHBvlgNBpvNhn75qUHPJNCsFArBF7o8gSuPwZLjgpvB0lrPXzQcN0zpGe7dCCr5HGemfnBrXTauG+6Y3jfoj6OQAyxT+3VQ/y0H+q6f0gPje2bjtGLX71vbCNYX+b0fFc7i5dAGQL1NksiDAocdeO3K0fjglolBP18REbUHfTum4Klzh6B7SwZLbkvJrD3HqvH3zXsBeJ/UefXKUXjgzP4YbKIhdbj08FAGJy7agWsmFanfvVdP6K7+Lphz93LWZufM1vWgCyb5msXq6v5MqUdJILJzlWuBirpGqcl9q+82oPTjixFdMzxsGXpywGvp7P747t7TMLxLcD+z8qKeSVKfRLvNFrASYcmxzseoqG3A0SpXia+6lol6/Wvi0GSwuI7JguGFre4HGQ6eMlg8lcn2lxwoUedYTIxZlMBMeW2D23mg0SjA0ooFpi9fMUr9d1V9I74/WA4AuHxcN6R6KFcXiWKkfk5V9Y3aDBY/X8pED5maFBw82kQRhiXC/Fety2CxGqyyGh+RszIAoLINNsgLFXmlkJVSA/7SlCDSZLBoX7NwN5bV89Ss/UQi92AJRYAl1Gw2G6b164AjFXWYPTgfvTskq4MTxfUtQbT/7jqq3hb8EmFSFlm4M1ik193bwDor2XXesNlssNttiIm0WRUiohNEodTrQulJ4O06aViXDAzrEjkTyUYKPJQIi42yozAjAbuWng4A2H6gHCvf/xGAtabu/njz2jE4UlnXZiZ1S6utBViypAn9QCwcVK5fKmob1MVwociGt0I/JuyWFdzKAFZkJcaqGQQpcVGIctiDvlBF00NPCmY0NjUblAjz77V0TeA3ujqBw5UZlhavzVKRr33lcWlbLaGU4GG/MxJj1AbvzRYXjxqRAyxK8MbM+Fl9fWoa3bLVm6QAS+8OydhxsAIz/exjCwBZSbFIjo1CRV0j9pfWoFk4AxLXt8FFiwmxDtRXN6O6vhHNwhWs9vS9FGW3eS0v7ymDhYIjsmaWiIglwlpBKRHmbwaL1RJhAPDY/EHS31v+c43EIJdLCid5lU19KAIsmgwW1wVJoq5PjlGpuVAbGKbazOGi6cFygr7nV503FK9eNRrRDjsGFKR5XKUqn6OCHWBJ0WSwhHdiQh5sewuw5CS7Shh4LOVCREQBYVTqKyeCy3+ZEevhu1W/0EDuOVLfFNxSvf3yUzGxV9tZUGO5P4V0aD01O7dCyUR4b/thV5P7CFtsoc+W6JIVOc205QwW5X2uZFjrS2UFirywSD42DU3N7iXC/Lz8lXvzyFUk6lpKgsmLdABt1pP8vmyr4+84D4ty5YBRVV3rz2Wp8a5eKnUW5liUcceRyjq3gEyT2oPFhn8tOhmbbp6AIa3MhFTGlN/sLwPg/O6KtIWUZigZJ8erG1BarfQPcm9Wr/j9rGIAwGVjuxrfn4cewcFeSNBetb13HNEJLtiTbCeybXtLAbhKdVn9UrVaIgwAzhicH7CybhlJwbnIjQSh7nsUq+nB4rpdPwAyk+IcbCvPG4rJvXPwt8tGhntXQkLTg6WdB5TliR9Pk0CBItf1DffEhFz72dvKxTRpgH6sqj6o+0RE1N7ZbDa3a1ortfojkdnrz1wpkOSpQXd7VW4xwDK6exYAoF9+iulG2t4oY+PP9xxXF2lFWgaLPlO5Y6px5lQ4yCvYlXHQ2cM74clzBmPd4jFBecx++Sk4vX8HXDS6iyaYWd8kNP19gABksNQ0qs3XAVcvj6wkbXBYbqIuL/SJb6MllORFuRN7Zav/PlbpKpdWFYDqGqkGPVjMzLF0aVlc9vme4/jleLXmd8qci8NuQ1y0IyDlEo+0ZF3e84az309eBH0GrVAyAP/84c84VF7Xclusx7HbeSd1xn+XTMTtp/cx/H1bzdBqq9r3zAZRBGKJMP99sPMIAP8zWPxdIb36/KEAgNum9fbr7xXDO0d2mYW2xFMGi75EWLh7UQBAflo8/nzRcHVAeqILdQ+WSCYHm4Ld5D7eZFmuUJAn7Lxl08iD8mOVDLAQEQXbTadpS6oEa4V7pIly2LHp5gn47Sk9MWdIQbh3JyKcPaIQAHDdlB6W/m5cjyy8dtUovHLF6IDshzJxKouAy3eN4o6ubPRH5g4MeylW2bzhztcxKylGvRa0222YMaBj0CahbTYbVp47VF1dr2gwKBHm8DPAogSL6puaUVnrCiSoGSy6AMtRKfAg92DxtMI/0sll3p5fOEL993GppF8gypcrAZaq+ibU1DuDV2bmWAYWpqF3B2cPrPJa7X40GfRgCbTMNvrdtWhiEQDgP98fxo9HKgEAuSneFzoUpCd4XEzgaQFfhMWoTxgMZxFFmGCvYj6Rldc2oqlZqCtUrGaW+FuBZmLvHHxzz2mtrnF598xixEY7cNbQ/FbdT6RKio0KWZ8auceDfO0Wr0sDj+bnLeTkc5z+9Whv5IB6dFRwr3QjKcCSJ2ew+NiXThkJ2FtSrWmSSkREwTFrYD6WvbVD/Vm/Mr+t690hGWN7GC9o6ZyZiGsnWwsmnMiWntEf10zqgfw0a5PwNpsNQwO4aOyysd3wj637NbdFWgbLMKlp/IyBeWHcE3fDu2TgjWvGIC7aHvKKAnoNTc2acnyA/69lUkwUbDZniW65yb2S2aEPsEzo6bqOlEuEZSe1zTKIZsrKB2LcLZcYPtqy2MnsHEthRgJ2HKxwuz0UARZPJbUi3Sl9c5GfFo/9pTV4bMNOAK0r1Rnuz3x70zbfdUQnMP1FB/kW47A7V6/UNWL7gXLUNzUjOTYKHS0OCFJa8UUciAZiqQnReODM/q2+n0gVHcJyXPIkvnzhnhIXhZS4KHUlTXQErTBrL+SgQrCbbEY6+TMRqFKDnsj9bvxdLRgo8qDXVz+Yt68bi0PlteiWHTkNY4mITlT6Pixje2R72LJteuf6ceHehTbDbrdZDq4EQ588Z7mpt74+qN4W7usYvYL0BKw6dwgcdltEVqPoHyH9Husbm93OMf4utrLbbUiKjUJFbSOOSllOT5/nrCyRJZXeXjy5B1KloEq37ETERNkRbbdhUp+2uYDHUw8WWSACLFEOu7pI0moZdn2QS6EGWIL4OW6rpbFsNhtyUmKxv7QGu485S6vl+Mhg8eWmU3viza8OGAa7KLC4dJcowiyaWISinCTcMrVXuHelzVBWcFTVNeKLfaUAgMGd002vivjLxSPQNy8Fz1wwLFi7SLDeE6c15Il7+drNZrPhhUtcvU7aYvO7tk5OK2/vJcLk4F9UkN+L8rGOCnPvIXnVna/zdGJsFIMrREQhIp+Tnzl/aNgzHokA9yyDSMtgAYBp/fNwanGHcO9GROqf7wzwzB6crwmwxEc7WtV/Vnlf7C+tAeAMnIzslgkAyJIeR5+Jl5Mch39fPw4f3DIxIgNiZgwoTNP8nGgQqApEDxbA/fiZfc2yDPrLNjQ1o7HZGagJ5PeLfpGqvtdPW5Kh6wN2xbhurbq/ayb1wN8uO0lzW+SdQU8METWz9O2332Lu3Lno1q0bEhISkJWVhXHjxuGNN95w23b79u2YOnUqkpKSkJGRgfPPPx9HjhwJw14TBVZGYgw23DgeV08oCveutBnKypfq+iYcKHNeYHXJNN9UcXzPbLx13Vj0y4+M1T0nqtAGWIwzWJz7IU9q8/Ii1OSVap0C0Py0LZMHLGZS/VsjLoJKhMV66JFERETh96cLhmHRxO6Y0ic33LtCBMB9BXek9WAh7165chTev2kCRnbL1ATLUuJbNwmuVKvY27LSX84Glx8nwSD40CUrEZlttDwY4Ox19Ie5A/HmtWMAOMtx6VXWBibAoq+wYrYqhVEflJqGJrTEVwI6Hjl7RCdcNaG7+nNbzWABgHTpuHVMjUOXrMRW32cgqq2QbxF1lPfs2YOKigpceOGF6NixI6qrq/Haa69h1qxZWL16NS6//HIAwC+//IJx48YhNTUVy5YtQ2VlJf7whz/g66+/xubNmxET0zYbGhGRf+SV2ftKnAGW9tKUsy0JbYkwz2Wo5PJhwS7LRO5S46Nx82m90NDUjDlD23cj2cTYKLy+6GTYbcEvKaHpwRLmoIb8GfRVIoyIiEJrSt9cTOl74gRXRnTNwOafS3Dm4BOzx2F7oF8Ex8UZbUtctEOdJJYzWKJaGSlTevrtPlYFQLuYTy5P1Sz8bLQawWw2G86SxlF/PHswrn5pKxZP7oFr/74NAFBZH5gAy/YD5ZqfzY6fjQJYxyrr1QyWQI8BuksZ7205oCDPY+WnB6ZMY0yUHddN7oHH39sFAGj0t/kweRVR77rTTz8dp59+uua2a665BkOHDsWjjz6qBliWLVuGqqoqfP755+jUqRMAYMSIETjllFOwZs0adTsiah+iHHY47DY0NQvsLXGuYGnLK1JOVOHKYNGvjopxRE6ppPZq0URm6CkG6lL8gyWSmtxrMlgYYCEioiBafd5Q/Pu7g5g+oGO4d4X8NEh3rWSUkUBtg5xZ0NoeIUoGyx4lg0UuQyy9R6rrmlr1OG1Bj9xkrL9xPADgy32l+NN/f8aSqb2D8ljmS4S5z8f8Y+svUOb2Az0G6J7tyvRoq03uASBdKhEWyD5YcoDlYHltwO6XXCJ+6a7D4UBhYSFKS0vV21577TXMmDFDDa4AwJQpU9CzZ0+sXbs2DHtJROFw82nOPjVLz+in1h1VAyzMYIk4we4xIZOzVpJjdWnNUa6LOfZgofYiLsZ835Ngi5V7sDC+QkREQZSeGIP5wzu16RXN7Z2+B4SNGSwnhLKahlb9vTL5fKyqHoDnaglx7Swgd/vpffCf345vde8OxdDO6ZqfzTe5d5+P2bK7RP13oDNYND0b23CCRo6U5dU1K3B9KOWA1i8tVV8osCJyZqmqqgpHjx7Fjz/+iBUrVuDtt9/G5MmTAQD79+/H4cOHMWyYezPqESNGYNu2baHeXSIKk0UTi/D9/VMxslumOmgqabnAYoAl8sSEtESY5wwW9n+g9kjOYAl3WnhsKxqaEhERERHlpWl78+gn/h+aMwCnFedibjsrSWy329AtOylggcjHFwzS/Gw2g8Woosg3+13lxgKdwSIHYuubmgN636Ekl0TskhWcfqX7jlcH5X7bu4gc4f72t79FdnY2ioqKcNNNN2H27Nl48sknAQAHDhwAAOTl5bn9XV5eHkpKSlBXV+fxvuvq6lBeXq75j4jaLmWyXN/ILC81cOmUFBihLREmZbDEaVe9yRdfJdX1IdsnonCSPxMNYR50yEHOcAd7iIiIKPLNGeKcJJ8+wH0eiNoWpXfIqa3s9dRRVz6prlF7fTtveCFWnz/MrR8nWVOQnoAuma6JfrOZJ2nx0W5Z83JZuGD0YbxtWm8M65yO3wxquyUhi3JcWStdA9DgXlbcMQUAMKFXTkDvl5wiMk/2+uuvx1lnnYVff/0Va9euRVNTE+rrnZNgNTXOVKbYWPdoaFxcnLqN0e8B4IEHHsA999wTpD0nonBJS3BNmvfLT0GnzOBE+8l/YevBoguwyBd6R8o9B+SJTiTy56+2Iby1qOWVb00MsBAREZEP9/ymGKO6Z+KUPq2blKfwu/c3xTi5KBOTerUywKJbUFlW3bqSY+SZvEDRbGaM3W5DRmIMjlQYj7eDUbL4ivHdccX47gG/31By2G34y8Uj8GtpDQYUpAX0vl+8ZCTe/fYgZjBQHRQRmcHSu3dvTJkyBRdccAHefPNNVFZWYubMmRBCID7eeRI1ylKprXU26lG2MXLbbbehrKxM/W/fvn3BeRJEFFKZia6gaqC/iCgwokNYFkheIa8vESY7XMEGb9T+fLs/vNm78oCKGSxERETkS1JsFM4aWoDUhGjfG1NES4iJwuzBrX8t43W9VarqGz1sSa3VKdO/TApvZdsdLNXt0fie2Th7RCffG1qUkRiDs0d0cqvwQYERkQEWvbPOOgtbtmzBzp071dJgSqkw2YEDB5CRkeExewVwZr6kpKRo/iOiti9TaqLWMTXOy5YULqHsweItgwVwNUHsnh24xnFEkU5JOe+eEznv+3CXKyMiIiKitq+ilgGWYOnp59ghS+rDcsmYrprfBSODhSic2kSARSkLVlZWhvz8fGRnZ+Ozzz5z227z5s0YNGhQiPeOiCKB3ESN/VciU5Q9dF853bKSkBofjW7ZiRjbI8vt928tHovzTuqEpbP7h2yfiMLtpUtH4vyTOuMPcweEe1dULBFGRERERP6Q+7jI/T0osOYNL4TdBozunmnp7+RFsPqeO2ZLjRG1FRHVg+Xw4cPIydE222loaMALL7yA+Ph49O3bFwAwZ84c/OUvf8G+fftQWFgIAHjvvfewc+dO3HDDDSHfbyIKv5Q41+lM3/COIkMoS4SlJ8bg09snIzbKbnjx1iM3GfefweAKtS+5KXG474x+4d4NjYYmBliIiIiIyLrlcwbg39+tB8BFO8GUmxKHL+8+VVOG2wy5jHuUw47k2ChUMBBGJ6iICrBcccUVKC8vx7hx45Cfn4+DBw/ipZdewo4dO/DII48gKcmZlnb77bfjlVdewcSJE3HdddehsrISDz/8MPr374+FCxeG+VkQUTj0zE1W/z24U1r4doQ8ig5hiTAAiIu2dgFIRKHX1MwSYURERERkXXpiDHrlJuP7QxXol8/y/8HkT9+OrGRXBku0w8bei3RCi6gAy/z58/HnP/8Zq1atwrFjx5CcnIyhQ4di+fLlmDVrlrpdYWEhNm3ahBtvvBG33norYmJiMH36dDzyyCNe+68Q0YlrbI8srDp3CIZ2SefEeoRKi/fc5I6I2idmsBARERGRv55fOBxrPt6NC0Z1DveukE5BeoL6b7vNhpqGpjDuDVFwRVSAZcGCBViwYIGpbYuLi/Huu+8GeY+IqK2w2WyY1j8v3LtBXiyeXIRt+47jzCEF4d4VIooQgwrTwr0LRERERNRGdUyLx+2n9wn3bpCBU/q4+q7kpMRiSp8cbNh+GDMHdgzjXhEFh00I0a6XDpaXlyM1NRVlZWVISWFKIREREVGw/XikElv3HMecIQWw29tvk0tehxL5xs8JERFR27SvpBolVfUYWJiGo5V1eOebgzhjcD6SYiNqvT+RR2avQ/mOJiIiIqKQ6p6dhO7ZSeHeDSIiIiIiCpLCjAQUZjhLhWUlxeK8k1jKjU5M9nDvABERERERERERERERUVvDAAsREREREREREREREZFFDLAQERERERERERERERFZxAALERERERERERERERGRRQywEBERERERERERERERWcQACxERERERERERERERkUUMsBAREREREREREREREVnEAAsREREREREREREREZFFDLAQERERERGRT1u2bME111yD4uJiJCYmolOnTpg3bx527tzptu327dsxdepUJCUlISMjA+effz6OHDkShr0mIiIiIgqeqHDvABEREREREUW+5cuX46OPPsLcuXMxYMAAHDx4EE8++SSGDBmC//3vf+jXrx8A4JdffsG4ceOQmpqKZcuWobKyEn/4wx/w9ddfY/PmzYiJiQnzMyEiIiIiCgwGWIiIiIiIiMinG2+8EX/72980AZL58+ejf//+ePDBB/HXv/4VALBs2TJUVVXh888/R6dOnQAAI0aMwCmnnII1a9bg8ssvD8v+ExEREREFGkuEERERERERkU+jR492yz7p0aMHiouLsX37dvW21157DTNmzFCDKwAwZcoU9OzZE2vXrg3Z/hIRERERBRsDLEREREREROQXIQQOHTqErKwsAMD+/ftx+PBhDBs2zG3bESNGYNu2baHeRSIiIiKioGGAhYiIiIiIiPzy0ksvYf/+/Zg/fz4A4MCBAwCAvLw8t23z8vJQUlKCuro6j/dXV1eH8vJyzX9ERERERJGKARYiIiIiIiKybMeOHVi0aBFGjRqFCy+8EABQU1MDAIiNjXXbPi4uTrONkQceeACpqanqf4WFhUHYcyIiIiKiwGCAhYiIiIiIiCw5ePAgpk+fjtTUVLz66qtwOBwAgPj4eAAwzFKpra3VbGPktttuQ1lZmfrfvn37grD3RERERESBERXuHSAiIiIiIqK2o6ysDNOmTUNpaSk+/PBDdOzYUf2dUhpMKRUmO3DgADIyMgyzWxSxsbFef09EREREFEnafYBFCAEArO1LRERERCGlXH8q16NEbUFtbS1mzpyJnTt3YsOGDejbt6/m9/n5+cjOzsZnn33m9rebN2/GoEGDLD0ex2tEREREFA5mx2vtPsBSUVEBAKztS0RERERhUVFRgdTU1HDvBpFPTU1NmD9/Pj755BO8/vrrGDVqlOF2c+bMwV/+8hfs27dPHWe999572LlzJ2644QZLj8nxGhERERGFk6/xmk208yVzzc3N+PXXX5GcnAybzRayxy0vL0dhYSH27duHlJSUkD0u8diHE499+PDYhxePf/jw2IcPj71vQghUVFSgY8eOsNvZGpEi3/XXX4/HH38cM2fOxLx589x+f9555wEA9u3bh8GDByMtLQ3XXXcdKisr8fDDD6OgoABbtmyxVAKM47X2h8c+vHj8w4fHPnx47MOHxz58eOx9Mztea/cZLHa7HQUFBWF7/JSUFL6Jw4THPnx47MOHxz68ePzDh8c+fHjsvWPmCrUlX3zxBQDgjTfewBtvvOH2eyXAUlhYiE2bNuHGG2/ErbfeipiYGEyfPh2PPPKI5f4qHK+1Xzz24cXjHz489uHDYx8+PPbhw2PvnZnxWrsPsBAREREREZFv77//vulti4uL8e677wZvZ4iIiIiIIgBrERAREREREREREREREVnEAEuYxMbG4u6777acIk+tx2MfPjz24cNjH148/uHDYx8+PPZE1JbxHBY+PPbhxeMfPjz24cNjHz489uHDYx847b7JPRERERERERERERERkVXMYCEiIiIiIiIiIiIiIrKIARYiIiIiIiIiIiIiIiKLGGAhIiIiIiIiIiIiIiKyiAEWIiIiIiIiIiIiIiIiixhgCbG6ujosWbIEHTt2RHx8PEaOHIn169eHe7farC1btuCaa65BcXExEhMT0alTJ8ybNw87d+5023b79u2YOnUqkpKSkJGRgfPPPx9Hjhxx2665uRkPPfQQunbtiri4OAwYMAB///vfQ/F02rSlS5fCZrOhX79+br/7+OOPMWbMGCQkJKBDhw5YvHgxKisr3bbj58OarVu3YtasWcjIyEBCQgL69euHJ554QrMNj33g7dq1CwsWLEBBQQESEhLQu3dv3HvvvaiurtZsx2Pvv8rKStx9992YOnUqMjIyYLPZsGbNGsNtg3FuN3ufJyIzx765uRlr1qzBrFmzUFhYiMTERPTr1w/3338/amtrDe/3z3/+M/r06YO4uDj06NEDf/zjHw23279/P+bNm4e0tDSkpKTgN7/5DX766adAP00iIo/4vRxYHK9FFo7ZQovjtfDgeC34OF4LH47XIpSgkFqwYIGIiooSN910k1i9erUYNWqUiIqKEh9++GG4d61NmjNnjujQoYO49tprxbPPPivuu+8+kZubKxITE8XXX3+tbrdv3z6RlZUlunfvLh5//HGxdOlSkZ6eLgYOHCjq6uo093nrrbcKAOKyyy4TzzzzjJg+fboAIP7+97+H+um1Gfv27RMJCQkiMTFRFBcXa363bds2ERcXJwYPHixWrVol7rjjDhEbGyumTp3qdj/8fJj37rvvipiYGDFy5Ejx6KOPimeeeUYsWbJE3Hzzzeo2PPaBt3fvXpGWliY6d+4sHnjgAbF69Wpx0UUXCQBi1qxZ6nY89q3z888/CwCiU6dOYsKECQKAeP755922C8a53cp9nojMHPuKigoBQJx00kni/vvvF88884xYuHChsNvtYsKECaK5uVmz/dNPPy0AiDlz5ohnnnlGnH/++QKAePDBB93ut0ePHiInJ0csX75cPProo6KwsFAUFBSIo0ePBvupExEJIfi9HGgcr0UOjtlCi+O18OB4LTQ4XgsfjtciEwMsIfTpp58KAOLhhx9Wb6upqRHdu3cXo0aNCuOetV0fffSR2wl0586dIjY2Vpx77rnqbVdddZWIj48Xe/bsUW9bv369ACBWr16t3vbLL7+I6OhosWjRIvW25uZmMXbsWFFQUCAaGxuD+Gzarvnz54tJkyaJ8ePHu12sT5s2TeTl5YmysjL1tmeffVYAEO+++656Gz8f5pWVlYnc3Fwxe/Zs0dTU5HE7HvvAW7p0qQAgvvnmG83tF1xwgQAgSkpKhBA89q1VW1srDhw4IIQQYsuWLR4v2INxbjd7nycqM8e+rq5OfPTRR25/e8899wgAYv369ept1dXVIjMzU0yfPl2z7bnnnisSExPVz4wQQixfvlwAEJs3b1Zv2759u3A4HOK2224LxNMjIvKK38uBx/Fa5OCYLXQ4XgsfjtdCg+O18OF4LTIxwBJCN998s3A4HJoTuBBCLFu2TAAQe/fuDdOenXiGDBkihgwZov6ck5Mj5s6d67Zdz549xeTJk9Wfn3rqKQFAfPvtt5rt/va3vwkA7XqFgiebNm0SDodDfPXVV24X62VlZSIqKkqzSkcI58k+KSlJXHLJJept/HyYt2rVKgFAfPfdd0IIISorK90u3Hnsg2PJkiUCgDhy5Ijb7Xa7XVRWVvLYB5i3C/ZgnNvN3md74O3YG/nqq68EAPHEE0+ot61bt04AEOvWrdNs+/HHHwsA4sUXX1RvGz58uBg+fLjb/Z566qmie/fu/j0JIiIL+L0cOhyvhRbHbKHF8Vr4cLwWehyvhQ/Ha5GDPVhCaNu2bejZsydSUlI0t48YMQIA8MUXX4Rhr048QggcOnQIWVlZAJz1AQ8fPoxhw4a5bTtixAhs27ZN/Xnbtm1ITExEnz593LZTfk8uTU1NuPbaa3HppZeif//+br//+uuv0djY6HbsY2JiMGjQILdjz8+HORs2bEBKSgr279+PXr16ISkpCSkpKbjqqqvUepo89sExYcIEAMAll1yCL774Avv27cPLL7+MVatWYfHixUhMTOSxD5FgnNut3Ce5O3jwIACo37+A69jqj+nQoUNht9vV3zc3N+Orr77yeOx//PFHVFRUBGvXiYgA8Hs5VDheCy2O2UKP47Xw4XgtcnC8Fnk4XgseBlhC6MCBA8jLy3O7Xbnt119/DfUunZBeeukl7N+/H/PnzwfgPO4APB77kpIS1NXVqdvm5ubCZrO5bQfwNdJ7+umnsWfPHtx3332Gv/d17OXjyc+Hebt27UJjYyN+85vf4LTTTsNrr72Giy++GE8//TQWLlwIgMc+WKZOnYr77rsP69evx+DBg9GpUycsWLAA1157LVasWAGAxz5UgnFut3Kf5O6hhx5CSkoKpk2bpt524MABOBwO5OTkaLaNiYlBZmameuyVY8vPAxGFE7+XQ4PjtdDimC30OF4LH47XIgfHa5GH47XgiQr3DrQnNTU1iI2Ndbs9Li5O/T21zo4dO7Bo0SKMGjUKF154IQDXcfV17GNjY/kaWXDs2DHcdddduPPOO5GdnW24ja9jLx9PHnvzKisrUV1djSuvvBJPPPEEAODMM89EfX09Vq9ejXvvvZfHPoi6dOmCcePGYc6cOcjMzMS6deuwbNkydOjQAddccw2PfYgE49xu5T5Ja9myZdiwYQNWrlyJtLQ09faamhrExMQY/o38eTB77ImIgonfy8HH8VpoccwWHhyvhRfHa5GB47XIwvFacDHAEkLx8fGGkVQlRTQ+Pj7Uu3RCOXjwIKZPn47U1FS8+uqrcDgcAFzH1cyx52tk3u9+9ztkZGTg2muv9biNr2MvH08ee/OUY3H22Wdrbj/nnHOwevVqfPLJJ0hISADAYx9o//d//4fLL78cO3fuREFBAQDnYKm5uRlLlizB2Wefzfd9iATj3G7lPsnl5Zdfxu9+9ztccskluOqqqzS/i4+PR319veHfyZ8HHnsiigT8Xg4ujtdCj2O28OB4LXw4XoscHK9FDo7Xgo8lwkIoLy9PTWeTKbd17Ngx1Lt0wigrK8O0adNQWlqKd955R3MslVQ1T8c+IyNDjcDm5eXh4MGDEEK4bQfwNVLs2rULzzzzDBYvXoxff/0Vu3fvxu7du1FbW4uGhgbs3r0bJSUlPo+9/nXi58Mc5Vjk5uZqbldSOo8fP85jHyQrV67E4MGD1Yt1xaxZs1BdXY1t27bx2IdIMM7tVu6TnNavX48LLrgA06dPx9NPP+32+7y8PDQ1NeHw4cOa2+vr63Hs2DH12CvHlp8HIgonfi8HD8droccxW/hwvBY+HK9FDo7XIgPHa6HBAEsIDRo0CDt37kR5ebnm9k8//VT9PVlXW1uLmTNnYufOnXjzzTfRt29fze/z8/ORnZ2Nzz77zO1vN2/erDnugwYNQnV1NbZv367Zjq+R1v79+9Hc3IzFixeja9eu6n+ffvopdu7cia5du+Lee+9Fv379EBUV5Xbs6+vr8cUXX7gde34+zBk6dCgA5+sgU+pdZmdn89gHyaFDh9DU1OR2e0NDAwCgsbGRxz5EgnFut3Kf5Dx+s2fPxrBhw7B27VpERbknRivHTH9MP/vsMzQ3N6u/t9vt6N+/v+Gx//TTT9GtWzckJycH/DkQEcn4vRwcHK+FB8ds4cPxWvhwvBY5OF4LP47XQkhQyPzvf/8TAMTDDz+s3lZbWyuKiorEyJEjw7hnbVdjY6OYNWuWiIqKEuvWrfO43ZVXXini4+PF3r171ds2bNggAIhVq1apt+3bt09ER0eLRYsWqbc1NzeLsWPHivz8fNHY2BicJ9LGHDlyRPzzn/90+6+4uFh06tRJ/POf/xRfffWVEEKIqVOniry8PFFeXq7+/Z/+9CcBQLz99tvqbfx8mLd161YBQJxzzjma288++2wRFRUl9u/fL4TgsQ+GGTNmiJiYGPH9999rbj/jjDOE3W7nsQ+CLVu2CADi+eefd/tdMM7tZu+zPfB27L/77juRmZkpiouLRUlJicf7qK6uFhkZGWLGjBma28877zyRkJAgjh07pt724IMPCgBiy5Yt6m07duwQDodDLFmypPVPiIjIB34vBx7Ha+HDMVv4cLwWPhyvhR7Ha+HD8VrkYIAlxObOnSuioqLEzTffLFavXi1Gjx4toqKixKZNm8K9a23SddddJwCImTNnihdffNHtP8XevXtFZmam6N69u3jiiSfEsmXLRHp6uujfv7+ora3V3OfNN98sAIjLL79cPPvss2L69OkCgHjppZdC/fTanPHjx4vi4mLNbZ9//rmIjY0VgwcPFqtWrRJ33HGHiIuLE6eeeqrb3/PzYd7FF18sAIh58+aJp556SsydO1cAELfddpu6DY994G3atEk4HA6Rk5Mj7r33XvHUU0+JadOmCQDi0ksvVbfjsW+9P/7xj+K+++4TV111lQAgzjzzTHHfffeJ++67T5SWlgohgnNut3KfJypfx768vFwUFhYKu90uHnzwQbfv3o8//lhzf0899ZQAIM466yzx7LPPigsuuEAAEEuXLtVsV15eLrp37y5ycnLEQw89JFasWCEKCwtFx44dxeHDh0N5CIioHeP3cmBxvBZ5OGYLDY7XwoPjtdDheC18OF6LPAywhFhNTY246aabRIcOHURsbKwYPny4eOedd8K9W23W+PHjBQCP/8m++eYbceqpp4qEhASRlpYmzj33XHHw4EG3+2xqahLLli0TnTt3FjExMaK4uFj89a9/DdVTatOMLtaFEOLDDz8Uo0ePFnFxcSI7O1ssWrRIs1JEwc+HefX19eL3v/+96Ny5s4iOjhZFRUVixYoVbtvx2Afep59+KqZNmyY6dOggonGhOn4AAAz1SURBVKOjRc+ePcXSpUtFQ0ODZjse+9bp3Lmzx3P7zz//rG4XjHO72fs8Ufk69j///LPX794LL7zQ7T6feeYZ0atXLxETEyO6d+8uVqxYIZqbm92227dvnzjrrLNESkqKSEpKEjNmzBC7du0KwbMmInLi93JgcbwWeThmCw2O18KH47XQ4HgtfDheizw2IXQdhIiIiIiIiIiIiIiIiMgrNrknIiIiIiIiIiIiIiKyiAEWIiIiIiIiIiIiIiIiixhgISIiIiIiIiIiIiIisogBFiIiIiIiIiIiIiIiIosYYCEiIiIiIiIiIiIiIrKIARYiIiIiIiIiIiIiIiKLGGAhIiIiIiIiIiIiIiKyiAEWIiIiIiIiIiIiIiIiixhgISIiIiIiIiIiIiIisogBFiKiduD3v/89bDYbjh49Gu5dabX3338fNpsN77//flge32az4fe//31YHpuIiIiIiE48HK8FDsdrRBRqDLAQEVHArVy5EmvWrAn3bhAREREREZEOx2tERIETFe4dICKiE8/KlSuRlZWFiy66KOD3PW7cONTU1CAmJibg901ERERERHSi43iNiChwmMFCRERhVVVVZWl7u92OuLg42O38CiMiIiIiIgomjteIiLzj2Y6IKID279+Piy++GLm5uYiNjUVxcTGee+459fdKPdqXX34Zt99+Ozp06IDExETMmjUL+/btc7u/V155BUOHDkV8fDyysrJw3nnnYf/+/W7b7dixA/PmzUN2djbi4+PRq1cv3HHHHW7blZaW4qKLLkJaWhpSU1OxcOFCVFdXa7ZZv349xowZg7S0NCQlJaFXr164/fbbTR+DLl264Ntvv8WmTZtgs9lgs9kwYcIEAMCaNWtgs9mwadMmXH311cjJyUFBQQEAYM+ePbj66qvRq1cvxMfHIzMzE3PnzsXu3bs1929U03fChAno168fvvvuO0ycOBEJCQnIz8/HQw895LZ/dXV1uPvuu1FUVITY2FgUFhbilltuQV1dndt2N9xwA7Kzs5GcnIxZs2bhl19+MX0ciIiIiIgosnC8xvEaEVGgsUQYEVGAHDp0CCeddBJsNhuuueYaZGdn4+2338Yll1yC8vJyXH/99eq2S5cuhc1mw5IlS3D48GE89thjmDJlCr744gvEx8cDcF7cLly4EMOHD8cDDzyAQ4cO4fHHH8dHH32Ebdu2IS0tDQDw1VdfYezYsYiOjsbll1+OLl264Mcff8Qbb7yBpUuXavZx3rx56Nq1Kx544AFs3boVf/rTn5CTk4Ply5cDAL799lvMmDEDAwYMwL333ovY2Fj88MMP+Oijj0wfh8ceewzXXnstkpKS1EFDbm6uZpurr74a2dnZuOuuu9QVUVu2bMHHH3+MBQsWoKCgALt378aqVaswYcIEfPfdd0hISPD6uMePH8fUqVNx5plnYt68eXj11VexZMkS9O/fH9OmTQMANDc3Y9asWfjvf/+Lyy+/HH369MHXX3+NFStWYOfOnfjXv/6l3t+ll16Kv/71rzjnnHMwevRo/Oc//8H06dNNHwciIiIiIoocHK85cbxGRBRggoiIAuKSSy4ReXl54ujRo5rbFyxYIFJTU0V1dbXYuHGjACDy8/NFeXm5us3atWsFAPH4448LIYSor68XOTk5ol+/fqKmpkbd7s033xQAxF133aXeNm7cOJGcnCz27Nmjedzm5mb133fffbcAIC6++GLNNrNnzxaZmZnqzytWrBAAxJEjR1pxJIQoLi4W48ePd7v9+eefFwDEmDFjRGNjo+Z31dXVbtt/8sknAoB44YUX1NuUY7hx40b1tvHjx7ttV1dXJzp06CDmzJmj3vbiiy8Ku90uPvzwQ83jPP300wKA+Oijj4QQQnzxxRcCgLj66qs1251zzjkCgLj77rt9HgMiIiIiIoocHK+5cLxGRBQ4LBFGRBQAQgi89tprmDlzJoQQOHr0qPrfaaedhrKyMmzdulXd/oILLkBycrL681lnnYW8vDy89dZbAIDPPvsMhw8fxtVXX424uDh1u+nTp6N3795Yt24dAODIkSP44IMPcPHFF6NTp06afbLZbG77eeWVV2p+Hjt2LI4dO4by8nIAUFdZvf7662hubm7FEfHusssug8Ph0NymrAQDgIaGBhw7dgxFRUVIS0vTHDtPkpKScN5556k/x8TEYMSIEfjpp5/U21555RX06dMHvXv31rxGkyZNAgBs3LgRANTXYfHixZrHkFe1ERERERFR28DxmjUcrxERmccACxFRABw5cgSlpaV45plnkJ2drflv4cKFAIDDhw+r2/fo0UPz9zabDUVFRWr92j179gAAevXq5fZYvXv3Vn+vXIz269fP1H7qL+rT09MBONO1AWD+/Pk4+eSTcemllyI3NxcLFizA2rVrA37x3rVrV7fbampqcNddd6GwsBCxsbHIyspCdnY2SktLUVZW5vM+CwoK3AYp6enp6nMDgF27duHbb791e4169uwJwPUa7dmzB3a7Hd27d9fcn9HrQUREREREkY3jNWs4XiMiMo89WIiIAkC5oD3vvPNw4YUXGm4zYMAAfPfdd6HcLTf6VUgKIQQA56qkDz74ABs3bsS6devwzjvv4OWXX8akSZPw73//2+PfWyWvflJce+21eP7553H99ddj1KhRSE1Nhc1mw4IFC0wNGHw9N8D5OvXv3x+PPvqo4baFhYUmnwEREREREbUVHK9Zw/EaEZF5DLAQEQVAdnY2kpOT0dTUhClTpnjcTrlg37Vrl+Z2IQR++OEHDBgwAADQuXNnAMD333+vpkMrvv/+e/X33bp1AwB88803gXkiAOx2OyZPnozJkyfj0UcfxbJly3DHHXdg48aNXp+bzCjd3ZdXX30VF154IR555BH1ttraWpSWllq+L0+6d++OL7/8EpMnT/a6j507d0ZzczN+/PFHzSqo77//PmD7QkREREREocHxmhbHa0REgcMSYUREAeBwODBnzhy89tprhhfPR44c0fz8wgsvoKKiQv351VdfxYEDBzBt2jQAwLBhw5CTk4Onn34adXV16nZvv/02tm/fjunTpwNwDhTGjRuH5557Dnv37tU8hrwSyKySkhK32wYNGgQAmv3wJTEx0fKFtsPhcNvnP/7xj2hqarJ0P97MmzcP+/fvx7PPPuv2u5qaGlRVVQGA+jo88cQTmm0ee+yxgO0LERERERGFBsdrWhyvEREFDjNYiIgC5MEHH8TGjRsxcuRIXHbZZejbty9KSkqwdetWbNiwQXMxnJGRgTFjxmDhwoU4dOgQHnvsMRQVFeGyyy4DAERHR2P58uVYuHAhxo8fj7PPPhuHDh3C448/ji5duuCGG25Q7+uJJ57AmDFjMGTIEFx++eXo2rUrdu/ejXXr1uGLL76w9BzuvfdefPDBB5g+fTo6d+6Mw4cPY+XKlSgoKMCYMWNM38/QoUOxatUq3H///SgqKkJOTo7byi69GTNm4MUXX0Rqair69u2LTz75BBs2bEBmZqal5+DN+eefj7Vr1+LKK6/Exo0bcfLJJ6OpqQk7duzA2rVr8e6772LYsGEYNGgQzj77bKxcuRJlZWUYPXo03nvvPfzwww8B2xciIiIiIgodjtdcOF4jIgocBliIiAIkNzcXmzdvxr333ot//OMfWLlyJTIzM1FcXIzly5drtr399tvx1Vdf4YEHHkBFRQUmT56MlStXIiEhQd3moosuQkJCAh588EEsWbIEiYmJmD17NpYvX460tDR1u4EDB+J///sf7rzzTqxatQq1tbXo3Lkz5s2bZ/k5zJo1C7t378Zzzz2Ho0ePIisrC+PHj8c999yD1NRU0/dz1113Yc+ePXjooYdQUVGB8ePH+7xgf/zxx+FwOPDSSy+htrYWJ598MjZs2IDTTjvN8vPwxG6341//+hdWrFiBF154Af/85z+RkJCAbt264brrrlObJwLAc889h+zsbLz00kv417/+hUmTJmHdunWs+0tERERE1AZxvObC8RoRUeDYhD85iURE5Jf3338fEydOxCuvvIKzzjor3LtDRERERERELTheIyIiq9iDhYiIiIiIiIiIiIiIyCKWCCMiItOOHDnitYlhTEwMMjIyQrhHREREREREBHC8RkQUDgywEBGRacOHD8eePXs8/n78+PF4//33Q7dDREREREREBIDjNSKicGAPFiIiMu2jjz5CTU2Nx9+np6dj6NChIdwjIiIiIiIiAjheIyIKBwZYiIiIiIiIiIiIiIiILGKTeyIiIiIiIiIiIiIiIosYYCEiIiIiIiIiIiIiIrKIARYiIiIiIiIiIiIiIiKLGGAhIiIiIiIiIiIiIiKyiAEWIiIiIiIiIiIiIiIiixhgISIiIiIiIiIiIiIisogBFiIiIiIiIiIiIiIiIosYYCEiIiIiIiIiIiIiIrLo/wNXXU19UsDGUgAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABlgAAAIVCAYAAAC9efLsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhU9dnG8XuW7CEsgoiIgqCiLFoX3HCjaqnWqlWrb2uttbgLqKW1KuAKWG0V3Iut1q21ilLrUhGQgILgBgiyCoQt7EsWQiazvX9MzuTMzJklkyFnQr6f6+IyM3My+SUziTO/+zzP4wgGg0EBAAAAAAAAAAAgZU67FwAAAAAAAAAAANDSELAAAAAAAAAAAAA0EgELAAAAAAAAAABAIxGwAAAAAAAAAAAANBIBCwAAAAAAAAAAQCMRsAAAAAAAAAAAADQSAQsAAAAAAAAAAEAjue1egN0CgYDKy8vVpk0bORwOu5cDAACAViIYDKqqqkoHH3ywnE7OewKs8H4NAAAAdkj1/VqrD1jKy8vVrVs3u5cBAACAVmr9+vU65JBD7F4GkJV4vwYAAAA7JXu/1uoDljZt2kgK/aBKSkpsXg0AAABai8rKSnXr1i38ehRALN6vAQAAwA6pvl9r9QGLUWZeUlLCC3YAAAA0O9oeAfHxfg0AAAB2SvZ+jWbPAAAAAAAAAAAAjUTAAgAAAAAAAAAA0EgELAAAAAAAAAAAAI1EwAIAAAAAAAAAANBIBCwAAAAAAAAAAACNRMACAAAAAAAAAADQSAQsAAAAAAAAAAAAjUTAAgAAAAAAAAAA0EgELAAAAAAAAAAAAI1EwAIAAAAAAAAAANBIBCwAAAAAAAAAAACNRMACAAAAAAAAAADQSAQsAAAAAAAAAAAAjUTAAgAAAAAAAAAA0EgELAAAAAAAAAAAAI1EwAIAAAAAAAAAANBIBCwAAAAAgLSMGTNGDodDffv2jbg+EAjo+eef13HHHafi4mJ17txZP/7xjzVnzhybVgoAAABkHgGLTV78bI3umbxIizdW2L0UAAAAAGi0DRs2aOzYsSoqKoq57fe//71uvvlm9evXT48//rh+97vfacWKFTrrrLP0xRdf2LDaxvn3l+t0z+RF+nzVDruXAgAAgCzmtnsBrdXUJVv0+eodOuXwA9S3a1u7lwMAAAAAjTJixAidcsop8vv92r59e/h6n8+n5557TpdffrleffXV8PVXXHGFDj/8cL3++usaMGCAHUtO2acrt+v9bzfpiAOLdWrPA+xeDgAAALIUFSw2Kch1SZJq6/w2rwQAAAAAGmfWrFmaNGmSxo8fH3Ob1+vV3r171blz54jrDzzwQDmdThUUFDTTKtOX6w69Va7zBWxeCQAAALIZFSw2KcgJBSx7vQQsAAAAAFoOv9+voUOHasiQIerXr1/M7QUFBTr55JP1j3/8Q6eeeqrOOOMM7d69Ww899JDat2+vG264wYZVN04eAQsAAABSQMBik3wCFgAAAAAt0PPPP6+1a9dq2rRpcY957bXXdOWVV+rqq68OX3f44Ydr9uzZOvzww+N+nsfjkcfjCV+urKzMzKIbKddVH7D4CVgAAAAQHy3CbFKQG/rR76VFGAAAAIAWYseOHRo9erRGjRqlTp06xT2uTZs26tOnj2699Va98847evbZZ+Xz+XTJJZdEzGuJNm7cOLVt2zb8r1u3bvvi20gqh4AFAAAAKSBgsYnRIqzWR8ACAAAAoGUYOXKkOnTooKFDh8Y9xufz6dxzz1Xbtm319NNP69JLL9XNN9+sadOmadWqVXrsscfifu7dd9+tioqK8L/169fvi28jKWawAAAAIBW0CLOJ0SKMIfcAAAAAWoKVK1dq4sSJGj9+vMrLy8PX19bWyuv1qqysTCUlJVqwYIEWL16sxx9/POLzjzjiCB199NGaPXt23K+Rl5envLy8ffY9pIqABQAAAKkgYLFJQ8l50OaVAAAAAEByGzduVCAQ0LBhwzRs2LCY23v06KHhw4fr5JNPliT5/bEnk3m9Xvl8vn2+1qYy3q95aREGAACABAhYbOJ2OSRJPl6wAwAAAGgB+vbtq8mTJ8dcP3LkSFVVVWnChAnq2bOn6urqJElvvPGGBg8eHD7um2++0fLly3XDDTc025rTlUcFCwAAAFJAwGKTHGfoBbsvQAULAAAAgOzXsWNHXXLJJTHXjx8/XpIibjvvvPP08ssvq7KyUueff742bdqkp556SgUFBbr99tubZb1NEW4RxglxAAAASICAxSZGBQsl5wAAAAD2N++++67+/Oc/64033tBHH32k3NxcnXHGGXrooYd01FFH2b28pHJdVLAAAAAgOQIWm9DTFwAAAMD+oLS0NOa6goICjRo1SqNGjWr+BWUAMzMBAACQCqfdC2itcsIzWHjBDgAAAADZJNwizOe3eSUAAADIZgQsNnHXz2DxMoMFAAAAALJKLkPuAQAAkAICFpuEZ7Dwgh0AAAAAsooRsHjpOAAAAIAECFhsYgxN9AUIWAAAAAAgmzDkHgAAAKkgYLGJ28UZUQAAAACQjcItwvwELAAAAIiPgMUmRoswKlgAAAAAILtQwQIAAIBUELDYxHjB7vVRwQIAAAAA2YQKFgAAAKSCgMUmbmf9kHsqWAAAAAAgq+RQwQIAAIAUELDYxJjB4mMGCwAAAABklTw3AQsAAACSI2CxSU79DBYvJecAAAAAkFVoEQYAAIBUELDYxCg591LBAgAAAABZxZiZ6Q8E5Q/wng0AAADWCFhsYlSw+JjBAgAAAABZJcfd8FaZrgMAAACIh4DFJm5nfQULPX0BAAAAIKsYFSyS5OE9GwAAAOIgYLGJcUaUl3JzAAAAAMgqRscBiQoWAAAAxEfAYpMcZ32LMF6sAwAAAEBWcTgc4UH3VLAAAAAgHgIWm7jrS84DQTE0EQAAAACyzAFFuZKkrZW1Nq8EAAAA2YqAxSZuSs4BAAAAIGt1bVcgSSrfTcACAAAAawQsNjEPTfRRwQIAAAAAWaUwzy1JqvX6bV4JAAAAshUBi03czoYKFuawAAAAAEB2Md6z0dIZAAAA8RCw2MRlCljqCFgAAAAAIKsY79n8QQIWAAAAWCNgsYnD4VBO/RwWn58X7AAAAACQTYwKFlo6AwAAIB4CFhvl1M9hIWABAAAAgOziNCpY6DgAAACAOAhYbGScEeUN8IIdAAAAALIJFSwAAABIhoDFRkYFi5czogAAAAAgq7gYcg8AAIAkCFhsRIswAAAAAMhObobcAwAAIAkCFhu564fcU8ECAAAAANnF5Qy9XfZzQhwAAADiIGCxUUOLMF6wAwAAAEA2qX+7xgwWAAAAxEXAYqPw0EQqWAAAAAAgq7iNChYCFgAAAMRBwGKjcAULL9gBAAAAIKsYQ+6pYAEAAEA8BCw2ynFRwQIAAAAA2Sg85D7A+zUAAABYI2CxkTs8g4UX7AAAAACQTVzhgMXmhQAAACBrEbDYyDgjiiH3AAAAAJBdXFSwAAAAIAkCFhvlukM/fh8v2AEAAAAgqzCDBQAAAMkQsNgoXMHi4wU7AAAAAGSThhksvF8DAACANQIWG4VnsFDBAgAAAABZxeU0Og4QsAAAAMAaAYuNcusDFh8zWAAAAAAgq9S/XVOAgAUAAABxELDYyO0yhtxTwQIAAAAA2YQKFgAAACRDwGIjd/0Ldi8VLAAAAACQVZjBAgAAgGQIWGyUU1/B4qOCBQAAAACyiqs+YPExMxMAAABxZH3AMmbMGDkcDvXt2zfmtrq6Oo0dO1a9e/dWfn6+OnfurAsvvFAbNmywYaWNlxMecs8ZUQAAAACQTahgAQAAQDJuuxeQyIYNGzR27FgVFRXF3Ob1enXhhRdqzpw5uv7669W/f3/t2rVL8+bNU0VFhQ455BAbVtw4zGABAAAAgOzkDFewELAAAADAWlYHLCNGjNApp5wiv9+v7du3R9z2xBNPaObMmfrss880YMAAm1bYNEYFCy3CAAAAACC7UMECAACAZLK2RdisWbM0adIkjR8/Pua2QCCgCRMm6NJLL9WAAQPk8/lUU1PT/ItsIuMFO0PuAQAAACC7uAhYAAAAkERWBix+v19Dhw7VkCFD1K9fv5jblyxZovLycvXv31833HCDioqKVFRUpP79+2vGjBkJ79vj8aiysjLin13CFSwMTQQAAACArOJ2Gu/XCFgAAABgLSsDlueff15r167VQw89ZHn7ypUrJYXahJWWluqvf/2rXnrpJdXW1mrw4MH69ttv4973uHHj1LZt2/C/bt267ZPvIRU5xgwWHy/YAQAAACCbUMECAACAZLIuYNmxY4dGjx6tUaNGqVOnTpbHVFdXS5Kqqqo0ffp0XXvttbr22ms1bdo0BYNBPfroo3Hv/+6771ZFRUX43/r16/fJ95EKd30Fi5cKFgAAAADIKi6G3AMAACCJrBtyP3LkSHXo0EFDhw6Ne0xBQYEk6fTTT4+oQDn00EM1cOBAzZkzJ+7n5uXlKS8vL3MLboKGIfe8YAcAAACAbGLMzAwQsAAAACCOrApYVq5cqYkTJ2r8+PEqLy8PX19bWyuv16uysjKVlJTo4IMPliR17tw55j4OPPBAzZ8/v9nW3BThFmF+KlgAAAAAIJsYFSy8XwMAAEA8WRWwbNy4UYFAQMOGDdOwYcNibu/Ro4eGDx+uhx56SDk5Odq4cWPMMeXl5XFbi2UbY2iilwoWAAAAAMgqRsAS5O0aAAAA4siqgKVv376aPHlyzPUjR45UVVWVJkyYoJ49e6pNmza64IIL9P7772vZsmXq3bu3JGnp0qWaM2eObrzxxuZeelrcLqOnL2dEAQAAAEA2cYTerslPwgIAAIA4sipg6dixoy655JKY68ePHy9JEbeNHTtW06dP16BBg8LVLk8++aQ6dOige+65pxlW23S5zGABAAAAgKzkqk9YAgQsAAAAiMNp9wLSdcwxx2jmzJnq06ePHn74YY0dO1YDBgzQ7Nmz1bVrV7uXlxKjgqWOnr4AAAAAkFWctAgDAABAEllVwRJPaWmp5fXHH3+8pk6d2ryLySBjBouPgAUAAAAAsorTaBEWIGEBAACAtRZbwbI/yAnPYOEFOwAAAABkEyctwgAAAJAEAYuNcupnsNT5qGABAAAAgGwSDlg4IQ4AAABxELDYyE0FCwAAAABkJZfTqGCxeSEAAADIWgQsNjIqWJjBAgAAAADZpb6AhRZhAAAAiIuAxUZGwOL184IdAAAAALJJQwUL79cAAABgjYDFRu76F+xeKlgAAAAAIKs0DLm3eSEAAADIWgQsNgq3COMVOwAAAABkFSctwgAAAJAEAYuNjCH3VLAAAAAAQHYxKlj8nBAHAACAOAhYbJQbnsFCwAIAAACg5RkzZowcDof69u0bc1tdXZ3Gjh2r3r17Kz8/X507d9aFF16oDRs22LDSxjMCFgpYAAAAEI/b7gW0ZkYFi48h9wAAAABamA0bNmjs2LEqKiqKuc3r9erCCy/UnDlzdP3116t///7atWuX5s2bp4qKCh1yyCE2rLhxjCH3VLAAAAAgHgIWGxkv2H2BoILBoBz1Z0gBAAAAQLYbMWKETjnlFPn9fm3fvj3itieeeEIzZ87UZ599pgEDBti0wqZxMIMFAAAASdAizEY5zoYfP2dFAQAAAGgpZs2apUmTJmn8+PExtwUCAU2YMEGXXnqpBgwYIJ/Pp5qamuZfZBMZJ8SRrwAAACAeAhYbGS3CpFAVCwAAAABkO7/fr6FDh2rIkCHq169fzO1LlixReXm5+vfvrxtuuEFFRUUqKipS//79NWPGDBtWnJ7wkHsSFgAAAMRBizAb5bga8i2vP6D8HJeNqwEAAACA5J5//nmtXbtW06ZNs7x95cqVkkJtwjp06KC//vWvkqSxY8dq8ODB+vLLL9W/f3/Lz/V4PPJ4POHLlZWVGV596mgRBgAAgGQIWGzkdpoqWBh0DwAAACDL7dixQ6NHj9aoUaPUqVMny2Oqq6slSVVVVZo/f766desmSRo0aJB69eqlRx99VK+99prl544bN04PPPDAvll8I7kcDS3CmJkJAAAAK7QIs5HLFLB4AwEbVwIAAAAAyY0cOVIdOnTQ0KFD4x5TUFAgSTr99NPD4YokHXrooRo4cKDmzJkT93PvvvtuVVRUhP+tX78+c4tvJKcpUKGjMwAAAKxQwWIjh8OhHJdDXn+QChYAAAAAWW3lypWaOHGixo8fr/Ly8vD1tbW18nq9KisrU0lJiQ4++GBJUufOnWPu48ADD9T8+fPjfo28vDzl5eVlfvFpcDrNAUtQLlHBAgAAgEgELDZzO53y+v0ELAAAAACy2saNGxUIBDRs2DANGzYs5vYePXpo+PDheuihh5STk6ONGzfGHFNeXh63tVi2MeUr8geCYmQmAAAAohGw2MyYw0KLMAAAAADZrG/fvpo8eXLM9SNHjlRVVZUmTJignj17qk2bNrrgggv0/vvva9myZerdu7ckaenSpZozZ45uvPHG5l56WswtwphzDwAAACsELDZzu0Iv2v009QUAAACQxTp27KhLLrkk5vrx48dLUsRtY8eO1fTp0zVo0KBwtcuTTz6pDh066J577mmG1TadeWamn4QFAAAAFhhybzO3K/QQeP1UsAAAAADYPxxzzDGaOXOm+vTpo4cfflhjx47VgAEDNHv2bHXt2tXu5aXEbQpYfLxfAwAAgAUqWGyWU/+inRksAAAAAFqi0tJSy+uPP/54TZ06tXkXk0Eup0MOR6g9WB0BCwAAACxQwWIzo4LFxwwWAAAAAMgaDodDOcb7NU6IAwAAgAUCFpsZM1i8vGAHAAAAgKySS0tnAAAAJEDAYrMcJ2dEAQAAAEA2ygmfEEfAAgAAgFgELDYLV7DQIgwAAAAAsorRIqzOxwlxAAAAiEXAYjM3Q+4BAAAAICvl0CIMAAAACRCw2MwYcu+nggUAAAAAskqum4AFAAAA8RGw2MyoYGHIPQAAAABkF2MGSx0BCwAAACwQsNjMKDn3UcECAAAAAFklP8clSdpa6bF5JQAAAMhGBCw2Cw+5p4IFAAAAALLK0QeVSJJWbq2yeSUAAADIRgQsNnM76ytYCFgAAAAAIKsU57slSb4A79cAAAAQi4DFZkZPX1qEAQAAAEB2MWZmBghYAAAAYIGAxWbu+hkstAgDAAAAgOzidBonxPF+DQAAALEIWGyWY7xg91PBAgAAAADZhAoWAAAAJELAYjMXZ0QBAAAAQFZyOni/BgAAgPgIWGxmtAhjyD0AAAAAZJdwBUuQ92sAAACIRcBiM4bcAwAAAEB2Cs9g4YQ4AAAAWCBgsZnbyZB7AAAAAMhGRgWLnwoWAAAAWCBgsVm4goUh9wAAAACQVYyZmX5msAAAAMACAYvN3C6GJgIAAABANjICFt6vAQAAwAoBi80aWoRRwQIAAAAA2SQ85J6ABQAAABYIWGzW0CKMF+wAAAAAkE2cVLAAAAAgAQIWm7nqK1h4wQ4AAAAA2YUKFgAAACRCwGKzcAVLgBZhAAAAAJBNnA4qWAAAABAfAYvNclzMYAEAAACAbOSuPyEuECRgAQAAQCwCFps1BCy8YAcAAACAbBJu6cz7NQAAAFggYLGZ0SKMChYAAAAAyC6u+hZhfipYAAAAYIGAxWa57tBDUOcjYAEAAACAbOKqH3LvZwYLAAAALBCw2IwZLAAAAACQnYyAhSH3AAAAsELAYrPc+oCljp6+AAAAAJBV3PUBS4CABQAAABYIWGyWU98izEuLMAAAAADIKk4qWAAAAJAAAYvNGHIPAAAAANmJChYAAAAkQsBis1xmsAAAAABAVmqYwcL7NQAAAMQiYLFZw5B7zogCAAAAgGxiBCwUsAAAAMAKAYvNcsJD7jkjCgAAAACyCRUsAAAASISAxWa59UPu6xhyDwAAAABZxeUwZrDYvBAAAABkJQIWmzGDBQAAAACyExUsAAAASISAxWY57tALdgIWAAAAAMguRsDC2zUAAABYIWCxmXnIfTDI5EQAAAAAyBbucMBCwgIAAIBYBCw2MwIWKRSyAAAAAACyQ0OLMN6rAQAAIBYBi83y3OaAhbOiAAAAACBbGAFLgIAFAAAAFghYbBZZwULAAgAAAADZggoWAAAAJELAYjOX06H61+yqI2ABAAAAgKwRrmBhXiYAAAAsELBkAaOKpc5HwAIAAAAA2YIKFgAAACRCwJIF8nNckqRaLwELAAAAAGQLlyMUsASDzGEBAABALAKWLFAQDlj8Nq8EAAAAAGBwOxveMvtpEwYAAIAoBCxZID8n9DAQsAAAAABA9nC5HOGP/VSwAAAAIAoBSxYwWoTtJWABAAAAgKxhtAiTCFgAAAAQi4AlCzCDBQAAAACyjzHkXmLQPQAAAGIRsGQBo0UYFSwAAAAAkD3MAQtD7gEAABCNgCULMOQeAAAAALKPKV+hggUAAAAxCFiyQD4BCwAAAABkHYfDEa5iCQQJWAAAABAp6wOWMWPGyOFwqG/fvnGP2b17tw488EA5HA5NmjSpGVeXGVSwAAAAAEB2MgIWKlgAAAAQLasDlg0bNmjs2LEqKipKeNzo0aNVU1PTTKvKvDyG3AMAAABAVnIbFSwELAAAAIiS1QHLiBEjdMopp+jEE0+Me8zixYv13HPP6a677mrGlWWWUcHCkHsAAAAAyC4uBxUsAAAAsJa1AcusWbM0adIkjR8/PuFxw4cP16WXXqozzjijeRa2D+TnhB4GWoQBAAAAQHZxuUIBi5+ABQAAAFHcdi/Ait/v19ChQzVkyBD169cv7nFvvfWW5syZo6VLl6qsrCyl+/Z4PPJ4POHLlZWVTV1uk+XTIgwAAAAAspJRwULAAgAAgGhZWcHy/PPPa+3atXrooYfiHrN3716NGDFCd9xxh7p3757yfY8bN05t27YN/+vWrVsGVtw0ue7Qw1DnI2ABAAAAgGzSMOSe92sAAACIlHUBy44dOzR69GiNGjVKnTp1invcI488Iq/Xq3vuuadR93/33XeroqIi/G/9+vVNXXKT5bpCD4PHR4swAAAAAMgmRsBCBQsAAACiZV2LsJEjR6pDhw4aOnRo3GPKysr02GOP6ZlnnlFxcXGj7j8vL095eXlNXWZG5eVQwQIAAAAA2Sin/oQ4r5+ABQAAAJGyKmBZuXKlJk6cqPHjx6u8vDx8fW1trbxer8rKylRSUqLRo0era9euOvvss8OzVzZv3ixJ2rZtm8rKynTooYfK6cy6Ah1LRgVLnZ+ABQAAAACySZ6bjgMAAACwllUBy8aNGxUIBDRs2DANGzYs5vYePXpo+PDhWrdunb7//nsdfvjhMcfccsstkqRdu3apXbt2+3rJGWHMYPEw5B4AAAAAsorRccBDxwEAAABEyaqApW/fvpo8eXLM9SNHjlRVVZUmTJignj17qqKiQtu3b484ZvHixRo1apT+8Ic/6NRTT1VRUVFzLbvJ8twuSVSwAAAAAGhZxowZo5EjR6pPnz5avHix5TG7d+/WkUceqW3btumtt97S5Zdf3syrbJrw+zUCFgAAAETJqoClY8eOuuSSS2KuHz9+vCRZ3mYwqlVOOumkhMdlI6PknBfsAAAAAFqKDRs2aOzYsUlPbhs9erRqamqaaVWZZ7R0poIFAAAA0VrGkJL9XC49fQEAAAC0MCNGjNApp5yiE088Me4xixcv1nPPPae77rqrGVeWWeEWYV7erwEAACBSVlWwxFNaWpr0mLPPPlvBYHDfL2YfoIIFAAAAQEsya9YsTZo0SfPnz9fQoUPjHjd8+HBdeumlOuOMM5pxdZnVMOSe92sAAACI1CIClv1dLgELAAAAgH0sGAxqxowZ8ng8GjhwoNq0aZPW/fj9fg0dOlRDhgxRv3794h731ltvac6cOVq6dKnKyspSum+PxyOPxxO+XFlZmdYaM8mYwULAAgAAgGi0CMsCuZwRBQAAACCD7r33Xp1zzjnhy8FgUOeff77OO+88XXjhherXr59WrVqV1n0///zzWrt2rR566KG4x+zdu1cjRozQHXfcoe7du6d83+PGjVPbtm3D/7p165bWGjMpj5bOAAAAiIOAJQsYZ0RRwQIAAAAgE95++20NGDAgfHnSpEmaPn26Hn74Yb3//vvy+/26//77G32/O3bs0OjRozVq1Ch16tQp7nGPPPKIvF6v7rnnnkbd/913362Kiorwv/Xr1zd6jZlGxwEAAADEQ4uwLBCuYPHzgh0AAABA023cuFG9evUKX37nnXd0zDHH6O6775Yk3XzzzXruuecafb8jR45Uhw4dEs5dKSsr02OPPaZnnnlGxcXFjbr/vLw85eXlNXpd+xItwgAAABAPAUsWyHU1nBEVDAblcDhsXhEAAACAlsztdodnmQSDQU2fPl3XXHNN+PbOnTtr+/btjbrPlStXauLEiRo/frzKy8vD19fW1srr9aqsrEwlJSUaPXq0unbtqrPPPjs8e2Xz5s2SpG3btqmsrEyHHnqonM6W0VAhL6f+hDgvAQsAAAAiEbBkAeMFuyTV+QPhM6QAAAAAIB19+/bVa6+9pl/+8peaPHmyduzYoQsvvDB8+9q1a9WxY8dG3efGjRsVCAQ0bNgwDRs2LOb2Hj16aPjw4Vq3bp2+//57HX744THH3HLLLZKkXbt2qV27do37pmzCDBYAAADEQ8CSBYwKFilUxULAAgAAAKApRo8erYsuuigcopx++ukRQ+8/+OADnXTSSY26z759+2ry5Mkx148cOVJVVVWaMGGCevbsqYqKipjqmMWLF2vUqFH6wx/+oFNPPVVFRUVpfFf2oEUYAAAA4iFgyQLmgMXjC6iNjWsBAAAA0PKdd955+uabbzR16lS1a9dOV155Zfi2Xbt26cwzz9TFF1/cqPvs2LGjLrnkkpjrx48fL0mWtxmMapWTTjop4XHZKDwzk4AFAAAAUQhYsoDT6VCuy6k6f0B1vGgHAAAAkAHHHHOMjjnmmJjr27dvryeeeMKGFbVMRouwOlqEAQAAIEraUwWnT5+uxx57LOK6F198UYceeqg6d+6sO+64Q34/L0BTletuGHQPAAAAAE1RVVWl9evXR1xXXl6u0aNH66677tKXX36Zsa9VWlqqxYsXJzzm7LPPVjAY1OWXX56xr9tc8qhgAQAAQBxpV7Dcf//9Ouyww8KXFy1apBtvvFH9+/dXr1699OSTT+qggw7SXXfdlZGF7u9y3U7Jw4t2AAAAAE13ww03aM2aNZo7d64kqbKyUqeccoo2bNggp9OpCRMm6KOPPtLZZ59t70JbgLyc+hksXt6rAQAAIFLaFSxLly7ViSeeGL786quvqqSkRJ9++qn+/e9/6/rrr9crr7ySkUW2BnlUsAAAAADIkM8++0w/+clPwpdfe+01lZeXa86cOdq1a5f69++vhx9+2MYVthwNFSx0aAAAAECktAOWPXv2qKSkJHz5o48+0uDBg1VYWCgpNLxw7dq1TV9hKxFuEUZbNQAAAABNtH37dnXt2jV8+b///a8GDhyoU045RW3atNE111yjhQsX2rjCloMh9wAAAIgn7YClW7du4b6933//vRYvXqzzzz8/fPvOnTuVl5fX9BW2Ermu+hftlJ0DAAAAaKJ27dpp8+bNkqS9e/fq008/jXi/5na7VVNTY9fyWhRmsAAAACCetGew/PKXv9SDDz6ojRs36rvvvlP79u118cUXh2//+uuvdeSRR2Zkka1B+KwoPy/aAQAAADTNaaedpmeffVa9e/fWRx99pNra2oj3aytWrIiocEF8ee7QDBbaOQMAACBa2gHLvffeq7q6On344Yc69NBD9Y9//EPt2rWTFKpeKS0t1fDhwzO1zv0eM1gAAAAAZMqf/vQnnX/++brsssskSb/73e/Up08fSZLf79dbb72lwYMH27nEFoMZLAAAAIgn7YDF7XZrzJgxGjNmTMxtHTp0CJejIzX09QUAAACQKb169dLy5cu1ZMkStW3bVt27dw/fVlNTo6efflrHHnusfQtsQfJzeK8GAAAAa2kHLPGsXr1aHo9HRx99dKbver+WS9k5AAAAgAzKycmxDFHatGkT0S4MieW6Qu/VmJcJAACAaGkPuX/yySd11VVXRVz3m9/8RkcccYT69u2rE088UVu3bm3yAlsLWoQBAAAAyCS/36+XX35ZP//5z3XyySfr5JNP1s9//nO98sor8vtpd5WqvJyGFmHBYNDm1QAAACCbpB2w/O1vf1Pnzp3Dl6dMmaKXX35ZN9xwg5566imtXr1aDzzwQEYW2RrkhgMW3ugAAAAAaJqKigqdfvrpuu666/Txxx/L6/XK6/Vq6tSp+s1vfqOBAweqsrLS7mW2CMbJcIGgtHNPnc2rAQAAQDZJO2BZu3ZtRBuwN998Uz169NBzzz2nW265Rbfddps+/PDDjCyyNchz0dcXAAAAQGbce++9+vrrr/XUU09p27Zt+uabb/TNN99o69atevrpp/XVV1/p3nvvtXuZLUJefTtnSfrTR8tsXAkAAACyTdoBS3Rp9Mcff6wf//jH4cvdu3dn0H0jGGXntAgDAAAA0FSTJ0/WLbfcoltuuUU5OTnh63NycnTzzTfr5ptv1ttvv23jClsOo9uAJK3atsfGlQAAACDbpB2wHHnkkZo8ebKkUHuw8vLyiIBlw4YNateuXZMX2FoYZ0Xt9dIiDAAAAEDT7NixQ0cddVTc23v37q2dO3c244paLpfTEf7YkeA4AAAAtD5pBywjRozQ1KlT1b59e1100UU6+uij9aMf/Sh8+yeffKLjjjsuE2tsFUoKQmeVVdZ6bV4JAAAAgJauV69e+u9//xv39v/+97/q2bNnM65o/9CjY5HdSwAAAEAWcaf7iVdddZUOOOAAffjhh2rXrp1uueUWud2hu9u5c6c6dOigX/3qVxlb6P6ufWEoYNlVQ8ACAAAAoGmMuZgXXHCBbr/9dh155JGSpOXLl+vJJ5/U1KlT9fTTT9u8ypZjUO8D9cmyrTqgOM/upQAAACCLpB2wSNJ5552n8847L+b6Dh066J133mnKXbc67eoDlgoCFgAAAABNdMstt2jr1q165JFHNGXKlIjbcnJyNHr0aN188802ra7l6XNwiT5ZtlW1tHQGAACASZMCFknas2ePZs6cqbVr10qSDjvsMJ111lkqKqJ0ujHaFeRKknbvrbN5JQAAAAD2B/fff79uu+02TZs2LeL92rnnnquOHTvavLqWJT8nNDOzps5n80oAAACQTZoUsDz11FMaOXKkqqurFQwGw9e3adNGY8aM0W233dbkBbYWbY0WYXuoYAEAAACQGR07dtRVV11l9zJavIL6gGWvN2DzSgAAAJBN0g5YXnnlFQ0fPlynnnqqhg0bpqOPPlqStHTpUj311FMaPny42rZtyxyWFLUvDFWwVOwlYAEAAADQOOvWrUvr8w499NAMr2T/VJBbH7DU0SIMAAAADdIOWB5//HGdeeaZmj59ulwuV/j6/v376/LLL9cPf/hD/eUvfyFgSVG7glAFS7XHJ68/oByX0+YVAQAAAGgpunfvLofD0ejP8/sJDFJhVLAwgwUAAABmaQcsy5cv15///OeIcMXgcrl0xRVXaMSIEU1aXGtSUh+wSKEqlo7FeTauBgAAAEBL8uKLL6YVsCA1+eEWYQQsAAAAaJB2wNK2bVuVlZXFvb2srEwlJSXp3n2r43I6VJLvVmWtT7tr6ghYAAAAAKTs2muvbdLnBwIBbdiwQQcddJByc3Mzs6j9iNEirIYWYQAAADBJuw/VhRdeqKeeekpvvPFGzG3//ve/9fTTT+uiiy5q0uJaG6OKpbLWZ/NKAAAAALQm27ZtU48ePfTZZ5/ZvZSslO8OvXWu8xGwAAAAoEHaFSyPPPKIPv/8c/3yl7/U7373Ox1xxBGSpJUrV2rz5s3q3bu3HnnkkYwttDUwys493oDNKwEAAADQ2gSDQbuXkLVyjIDFz3s1AAAANEi7gqVTp0765ptv9Pjjj6tfv37asmWLtmzZon79+umJJ57Q119/rY4dO2Zyrfu9vPoX7R7OigIAAACArJHrCr1X8/oIoQAAANAg7QoWScrPz9fw4cM1fPjwTK2nVTMqWGqpYAEAAACArJFLBQsAAAAspF3BgsyjggUAAAAAsk9DBQsBCwAAABqkXMEyaNCgRt+5w+HQ9OnTG/15rRUzWAAAAAAg+xgzWDxUsAAAAMAk5YAlEAjI4XA06s4Zktg4VLAAAAAAQPYJV7D4AwoGg41+bwwAAID9U8oBS2lp6T5cBiRmsAAAAABANjIClmBQ8gWCynERsAAAAKAZZ7Ds2rVLgwYN0vz585vrS7Y4VLAAAAAAsENxcbHuu+8+HX744XYvJSsZQ+6lUBULAAAAIDWigqWp6urqVFpaql27djXXl2xxwjNYGJwIAAAAIAOqqqq0du1a7dq1y7KF85lnnilJKioq0n333dfcy2sxzBUrdb6ACnNtXAwAAACyRrMFLEjOqGCp9VLBAgAAACB9O3bs0G233aa3335bfn/s+wtjjojVbYjlcjrkcIRahNVRwQIAAIB6BCxZJI8KFgAAAAAZcP311+u9997TsGHDdMYZZ6h9+/Z2L6lFczgcynU55fEFVMf7NQAAANQjYMkiVLAAAAAAyISPP/5Yd9xxhx599FG7l7LfMAIWrz+21RoAAABap2Ybco/kmMECAAAAIBMKCwvVvXt3u5exXzEG3VPBAgAAAAMBSxYpzA0FLNW1PptXAgAAAKAlu/rqqzV58mS7l7FfyXGF3j57mcECAACAerQIyyIHFOVKknbsqbN5JQAAAABasssvv1wzZ87U4MGDdcMNN6hbt25yuVwxxx1//PE2rK5lMipY6DgAAAAAQ7MFLC6XS4cddpgKCgqa60u2OAcUGwGLx+aVAAAAAGjJBg4cGP546tSpMbcHg0E5HA75/cx/TNW6nTWSpE+WbdEJh7W3eTUAAADIBs0WsHTs2FFr1qxpri/XIpXk50iiRRgAAACApnnppZfsXsJ+65kZq/T7H/W2exkAAADIAmkHLIMGDUp4u8PhUH5+vg455BCdc845uvzyy+V205EskYL6GSw1dZxFBgAAACB9v/71r+1ewn7r4Lb5di8BAAAAWSLtIfeBQEDr169XaWmpFi5cqIqKClVUVGjhwoUqLS3V+vXrtXXrVr399tv6xS9+oRNPPFHbt2/P5Nr3O4W5oQDK4wvIHwjavBoAAAAA+4Pq6motXbpUS5cuVXV1td3LabGGDeolSRrQo4PNKwEAAEC2SDtgefjhh7Vr1y69/PLL2rp1q77++mt9/fXX2rp1q1566SXt2rVLTz31lLZt26YXX3xR3333ne6+++5Mrn2/U5DTMHSy1ksVCwAAAID0ffnllzrnnHPUvn179e3bV3379lX79u01aNAgffXVV3Yvr8U5qG1onugeOg4AAACgXto9u0aMGKHf/OY3+tWvfhVxvcvl0q9//WstXrxYd9xxhz7//HNde+21+vzzz/Xee+81ecH7s/ychryrps6vojxaqgEAAABovHnz5unss89Wbm6uhgwZoqOPPlqStHTpUv3rX//SmWeeqdLSUg0YMMDmlbYcRXmhE+L2eJiZCQAAgJC0K1i+/fZbde/ePe7t3bt318KFC8OXTzjhBO3cuTPdL9cqOByOcBULFSwAAAAA0nXvvfeqa9euWr58uZ577jkNGzZMw4YN03PPPafly5fr4IMP1r333mv3MluUdoW5kqSde+psXgkAAACyRdoBS5cuXTRp0iQFAoGY2wKBgN58800ddNBB4et27NihDh3oVZtMIYPuAQAAADTRvHnzdOONN0a8JzN07txZN9xwg+bOnWvDylquTsV5kqRtVR6bVwIAAIBskXYPqjvvvFNDhw7V6aefruuvv149e/aUJH3//fd64YUX9OWXX+rJJ58MH//WW29Rfp6CglyXtEeqqaPsHAAAAEB6nE6nfL747yn8fr+czrTPt2uVOhbXV7DU1CkYDMrhcNi8IgAAANgt7YDl1ltvldPp1OjRozVkyJDwi8tgMKgDDjhATz75pG699VZJksfj0RNPPJGwpRhCjBZhe2kRBgAAACBNp512mp555hn94he/0GGHHRZx27p16/Tss8/q9NNPt2l1LVOeO/ReLRiUvP6gct0ELAAAAK1dk6ao33zzzRoyZIi++uorrV27VpJ02GGH6cQTT1ROTk74uLy8PJ111llNW2krYbQI20uLMAAAAABpGjt2rM4880z17t1bl156qY488khJ0vLly/Xuu+/K7XZr3LhxNq+yZcnLaaj4qfMHlOumAggAAKC1a1LAIkk5OTk69dRTdeqpp2ZiPa1ePhUsAAAAAJroBz/4gebNm6d7771X//3vf1VTUyNJKiws1ODBg/Xwww/rmGOOsXmVLUuuqyFQ8Xj9Ks5r8ttpAAAAtHBNfkW4ZMkSrV69Wrt27VIwGIy5/Zprrmnql2hVGHIPAAAAIBOOOeYYTZ48WYFAQNu2bZMkderUidkraXI6HcpxOeT1B1XnD9i9HAAAAGSBtAOWVatW6eqrr9YXX3xhGaxIksPhIGBppMLc0ENCizAAAAAAmeB0OtW5c2e7l7FfyHO75PX75PESsAAAAKAJAcuNN96oRYsWafz48TrjjDPUvn37TK6r1aJFGAAAAIDGevDBB+VwOHTvvffK6XTqwQcfTPo5DodDo0aNaobV7T9y3U7JIypYAAAAIKkJAcvs2bN1zz33aOjQoZlcT6tHizAAAAAAjXX//ffL4XDorrvuUm5uru6///6kn0PA0njVtT5J0ldlu3Rk5zY2rwYAAAB2Sztg6dixo9q2bZvJtUBSQX3AUksFCwAAAIAUBQKBhJeRGUblyvZqj80rAQAAQDZIe7rhTTfdpNdee01+P0FAJhXkGBUsPptXAgAAAAAwu6DfQZIkl9Nh80oAAACQDdKuYDnyyCPl9/t17LHH6rrrrlO3bt3kcrlijvvZz37WpAW2NrQIAwAAANBULpdLr776qn7xi19Y3v7vf/9bv/jFLzhhrpHaFuRKkvyBoM0rAQAAQDZIO2C58sorwx+PGDHC8hiHw8EL9kaiRRgAAACApgoGEwcAfr9fDgdVGI3lqu8B4SNgAQAAgJoQsMyYMSOT60C9hhZhBCwAAAAA0hcvQKmsrNSUKVPUsWPHZl5Ry+d2hhKWAAELAAAA1ISA5ayzzsrkOlDPqGDZS8ACAAAAoBEeeOABPfjgg5JC4crVV1+tq6++2vLYYDCoYcOGNefy9gvG7BUqWAAAACA1IWDBvmHMYNlLizAAAAAAjTBgwADdcsstCgaDevbZZ3XeeefpyCOPjDjG4XCoqKhIJ5xwAvMy0+CuD1j8gYDNKwEAAEA2SDlgOeecc+R0OjVlyhS53W4NGjQo6ec4HA5Nnz69SQtsbYpyQw9JVa3P5pUAAAAAaEl+/OMf68c//rEkac+ePbrpppt08skn79OvOWbMGI0cOVJ9+vTR4sWLJUk1NTV66aWX9O6772rRokWqrq5Wr169dMMNN+iGG26Qy+Xap2val1zhgMXmhQAAACArpBywBINBBUxn6QQCgaRDEZMNVkSsA4pzJUk7qj02rwQAAABAS/XSSy/t86+xYcMGjR07VkVFRRHXr169WkOHDtUPf/hD3XnnnSopKdGUKVN0yy23aO7cuXr55Zf3+dr2FRcVLAAAADBJOWApLS1NeHlfaW1nRB1QlCdJqqz1qc4XUK7bafOKAAAAALRUGzZs0Pz581VRURFxwpzhmmuuSfu+R4wYoVNOOUV+v1/bt28PX3/QQQdp0aJF6tOnT/i6G2+8Udddd51eeukljRo1Sr169Ur769qJGSwAAAAwy+oZLK3xjKi2BTlyOKRgUKrY61WnNnl2LwkAAABAC1NbW6tf//rXevvtt8PdB4wOA+ZOBOkGLLNmzdKkSZM0f/58DR06NOK2jh07qmPHjjGfc+mll+qll17S0qVLW2zA0jCDhYAFAAAAGQhYqqqqtHbtWu3atcuyJdiZZ56Z9n23xjOinE6HivPcqqr1qbKWgAUAAABA491zzz165513NGbMGJ166qk6++yz9fLLL6tLly4aP368ysvL9corr6R1336/X0OHDtWQIUPUr1+/lD9v8+bNkmQZvhg8Ho88noZ2yZWVlWmtcV9xOUMdBghYAAAAIDUhYNmxY4duu+02vf322/L7/TG3B4NBORwOy9tS0VrPiJKkkvwcVdX6GHQPAAAAIC2TJk3Sb37zG911113asWOHJKlr164aNGiQzj33XA0aNEjPPPOMnnvuuUbf9/PPP6+1a9dq2rRpKX9OXV2dxo8frx49euikk06Ke9y4ceP0wAMPNHpNzYUKFgAAAJilHbBcf/31eu+99zRs2DCdccYZat++fcYWtS/PiGoJ2uSHHpbKvV6bVwIAAACgJdq6dasGDBggSSooKJAk7dmzJ3z7ZZddpgcffLDRAcuOHTs0evRojRo1Sp06dUr582677TYtWbJEH3zwgdzu+G9D7777bt15553hy5WVlerWrVuj1rgvOZnBAgAAAJO0A5aPP/5Yd9xxhx599NFMrkfSvj0jKttLziWppCBHklRZS8ACAAAAoPE6d+4crlwpLCxU+/bttXz5cl100UWSQu+DamtrG32/I0eOVIcOHWK6DCTy2GOP6YUXXtBDDz2kCy64IOGxeXl5ysvL3jbJRgXL9mpPkiMBAADQGqQdsBQWFqp79+4ZXErIvj4jKttLziWppL6ChRZhAAAAANJx8skn67PPPtNdd90lSbrooov02GOPqUuXLgoEAnriiSd0yimnNOo+V65cqYkTJ4ZnuBhqa2vl9XpVVlamkpISdejQIXzbP/7xD91111266aabNHLkyMx8czZyu0IBy5xVO8JtsQEAANB6OdP9xKuvvlqTJ0/O5Fok7fszou6++25VVFSE/61fv76pS864kvz6ChZahAEAAABIw7Bhw3T44YeHq/cfeughtWvXTr/61a/061//Wm3bttWTTz7ZqPvcuHGjAoGAhg0bph49eoT/zZs3TytWrFCPHj304IMPho9/9913NWTIEP3sZz/TM888k9Hvzy4ndW8Ijzbs2mvjSgAAAJAN0q5gufzyyzVz5kwNHjxYN9xwg7p16yaXyxVz3PHHH5/yfTbHGVHZXnIuNcxgoYIFAAAAQDoGDhyogQMHhi9369ZNS5cu1aJFi+RyudS7d++Elf9W+vbta3mS3ciRI1VVVaUJEyaoZ8+ekqRZs2bpqquu0plnnqnXX39dTmfa5/ZllSM7t1GnNnnaVuXR3NU71K1Dod1LAgAAgI0cwWAwrel85hfIVmXRRrm03+9P+T5LS0t1zjnnJDxm+PDhGj9+vKTQGVGXXXaZLrnkEr355ptpvWivrKxU27ZtVVFRoZKSkkZ//r4w7n9L9deZq/XbgT006ifH2L0cAAAA7APZ+DoUSMfZZ5+t7du3a/HixZKktWvX6thjj1VdXZ3+/Oc/xzy/+/fvr/79+6d039n4e9L9jx+EP1720GDl58SeaAgAAICWLdXXoWlXsLz00kvpfmpcnBEVku8OvUD3+FIPpwAAAAC0XrNmzUrr884888wMr0Ras2aNKioqJEm33nprzO333XdfygFLtqvY6yVgAQAAaMXSDlh+/etfZ3IdkqSOHTvqkksuibneqFgxblu7dq1++tOfyuFw6PLLL9dbb70VcXxjzojKRsYL9FpvwOaVAAAAAGgJzj777IjOAqkOYG9Mx4F4SktLY9aSZqOEFqemjpPiAAAAWrO0AxY77e9nROW5Q9U4tV5erAMAAABIbsaMGRGXPR6P/vCHP6impkY33HCDjjrqKEnSsmXL9MILL6ioqEiPPvqoHUvdr9TUMTcTAACgNUs5YLnuuuvkcDg0ceJEuVwuXXfddUk/x+Fw6O9//3uTFii1vjOijAoWj48KFgAAAADJnXXWWRGX77zzTuXm5mru3LnKz88PX3/RRRfp1ltv1VlnnaWPPvpI5513XnMvdb+ylwoWAACAVi3lgOWTTz6R0+lUIBCQy+XSJ598krTkPJWSdMSiggUAAABAU7z++usaOXJkRLhiKCws1K9+9SuNGTNGf/nLX2xYXcv291+fqN++/JUkaS/v2QAAAFq1lAOWsrKyhJeROeEKFmawAAAAAEjDnj17tGnTpri3b9q0STU1Nc24ov3HD4/urD4Hl+i78kpmsAAAALRyTrsXgFj5OaGHxePjxToAAACAxjv33HM1YcIEvfPOOzG3vf3225owYYLOPfdcG1a2f2hfmCuJFmEAAACtXYsccr+/y3OHKlhqqWABAAAAkIZnnnlGgwYN0hVXXKEuXbqoV69ekqRVq1apvLxcPXv21FNPPWXzKlsuo+sAFSwAAACtW5MqWP73v//pvPPO0wEHHCC32y2XyxXzD41nVLDUUsECAAAAIA1du3bVwoUL9fjjj6tv377asmWLtmzZoj59+uiJJ57QwoULdcghh9i9zBarMDf0XpcZLAAAAK1b2hUsb7/9tn7+85+rT58+uuqqq/Tcc8/pF7/4hYLBoN59910dccQRuuSSSzK41NaDGSwAAAAAmio/P1/Dhw/X8OHD7V7KficcsNT5bF4JAAAA7JR2Bcu4ceM0YMAAzZ8/Xw888IAk6brrrtPrr7+uxYsXa9OmTerRo0fGFtqa5LmpYAEAAACAbEWLMAAAAEhNqGBZsmSJxo0bJ5fLJbc7dDder1eS1L17d91yyy3605/+pGuuuSYzK21FjBfrtZSbAwAAAEjBOeecI6fTqSlTpsjtdmvQoEFJP8fhcGj69OnNsLr9T159W+c6H10HAAAAWrO0A5bCwkLl5uZKktq1a6e8vDxt2rQpfHvnzp21Zs2apq+wFTJerHt8AQWDQTkcDptXBAAAACCbBYNBBQINm/2BQCDp+4hgMLivl7XfynOF3rN5/QQsAAAArVnaActRRx2lJUuWhC8fd9xxevXVV3X11VfL5/Ppn//8pw499NCMLLK1yXOHKliCQanOHwhfBgAAAAArpaWlCS8js3LqA5Y6PyEVAABAa5b2DJZLL71U7777rjwejyTp3nvvVWlpqdq1a6dOnTrp008/1R//+MeMLbQ1yc9peFhqGXQPAAAAAFklx02LMAAAADShgmXEiBEaMWJE+PJPfvITlZaW6p133pHL5dKFF16oc845JyOLbG1yXU45HKEKFo/PLynH7iUBAAAAyGLr1q1L6/PoOpCeHFqEAQAAQGkGLB6PR1OmTFH37t3Vv3//8PVnnHGGzjjjjIwtrrVyOBzKcztV6w3IQwULAAAAgCS6d++e1uxGv9+/D1az/8t1hX7WBCwAAACtW1oBS25urq644gpNmDAhImBB5uTnuFTrDajWyxseAAAAAIm9+OKLaQUsSA8VLAAAAJDSDFgcDoeOOOIIbd++PdPrQb18t0uSVx56+gIAAABI4tprr7V7Ca1Krpsh9wAAAGjCkPt77rlHTz/9tJYvX57J9aBeXv2geypYAAAAACC7GBUsdT7erwEAALRmaQ+5nzt3rg444AD17dtXZ599trp3766CgoKIYxwOhyZMmNDkRbZGoQoWqZYZLAAAAADSNHv2bH3zzTeqqKhQIBD53sLhcGjUqFE2raxlMypYeL8GAADQuqUdsDz99NPhj6dPn255DAFL+vLrK1g8nBEFAAAAoJF27typCy+8UF988YWCwaAcDoeCwVA7K+NjApb0tckLvZWu9vhsXgkAAADslHaLsDVr1qi6ulqBQMDyX3V1tVavXp3JtbYqeVSwAAAAAEjT73//e3377bf65z//qdWrVysYDGrKlClasWKFbrrpJh133HEqLy+3e5ktVpv8HElSVa3X5pUAAADATmkHLIcffrjefffduLe/99576tmzZ7p33+oxgwUAAABAuj788EPdeOONuvLKK9WmTRtJktPpVK9evfTMM8+oe/fuuv322+1dZAvWJr++gqWWChYAAIDWLO2AJRgMhkvMrXi9XjkcjnTvvtXLzwlVsHh8VLAAAAAAaJzdu3erT58+kqTi4mJJUnV1dfj2888/X1OmTLFlbfsDI2DZU+eXPxD/fTEAAAD2b42awVJZWandu3eHL+/YsUPr1q2LOW737t1644031KVLlyYvsLXKc1PBAgAAACA9Bx98sDZv3ixJysvL04EHHqiFCxfq4osvliRt3LiRE+KawGgRJoWqWNoW5iQ4GgAAAPurRgUsTzzxhB588EFJocGIt99+e9yy8mAwqIcffrjJC2yt2haEXqDvrqmzeSUAAAAAWpozzjhDU6dO1b333itJuvLKK/Xoo4/K5XIpEAho/Pjx+tGPfmTzKluuXLdTeW6nPL6AKmu9BCwAAACtVKMClvPPP1/FxcUKBoP6wx/+oP/7v//T8ccfH3GMw+FQUVGRTjjhBJ144okZXWxr0qVtviRpU0WtzSsBAAAA0NL87ne/09SpU+XxeJSXl6f7779f3333nUaNGiVJOvPMM/XUU0/ZvMqWrU1+jjzVHlUxhwUAAKDValTAcuqpp+rUU0+VJO3Zs0eXXXaZ+vbtu08W1tod1LZAkrS5koAFAAAAQOO4XC7deeed4cvt27fXtGnTtHv3brlcrvDge6SvJN+t7dUeVdV67V4KAAAAbNKogMXsvvvuy+Q6EIUKFgAAAADp6tu3r/r166crr7xSP//5z9WrVy9JUrt27exd2H7EGHRPBQsAAEDr5bR7AbDWsThPkrRzDzNYAAAAADTOc889p44dO2r06NE66qijdMIJJ+ixxx7T2rVr7V7afsMYdF/loYIFAACgtSJgyVI5LockyesP2LwSAAAAAC3NjTfeqOnTp2vjxo2aMGGCioqK9Mc//lGHH364Tj31VE2YMEHl5eV2L7NFo4IFAAAABCxZKscVemh8/qDNKwEAAADQUnXu3Fm33XabZs2apXXr1ukvf/mLHA6Hfve73+mwww6ze3ktWnEeAQsAAEBrR8CSpYyAhQoWAAAAAJnQpUsX9enTR0cffbQKCwsVCPBeoymMFmGVDLkHAABotdIeco99y13fIswXCCoYDMrhcNi8IgAAAAAtTTAYVGlpqf79739r8uTJ2r59u9q3b6+rrrpKV155pd3La9GMFmHVVLAAAAC0WgQsWcqoYJFCIYsxkwUAAAAAkvn000/15ptvatKkSdq6datKSkp0ySWX6Morr9S5554rt5u3gk3FDBYAAADwqjpLmQMVrz8QEbgAAAAAQCJnnXWWiouLddFFF+nKK6/U4MGDlZuba/ey9ivGDJY9HgIWAACA1oqAJUu5nQ2BipdB9wAAAAAa4a233tKFF16o/Px8u5ey3wrPzQzwfg0AAKC1ImDJUuYKFh+D7gEAAAA0wmWXXWb3EvZ7xtxMr4/3awAAAK0VfaeylMPhkNtZ/4KdChYAAAAAyCq59RUsvgABCwAAQGtFwJLFwmdEUcECAAAAAFnFbbQI44Q4AACAVouAJYsZZ0R5KDkHAAAAgKxinBBHBQsAAEDrRcCSxYryQiNyaup8Nq8EAAAAAGBmnBC3eGOlPvh2k82rAQAAgB0IWLKYEbBUewhYAAAAACCbGDMzJenWf36jbVUeG1cDAAAAOxCwZLHi+oBlj8dv80oAAAAAAGbGDBZDZa3XppUAAADALgQsWaw4XMHCC3UAAAAAyCY5LkfE5alLtti0EgAAANiFgCWLtS/KlSTtqK6zeSUAAAAAALOcqAqWR/63TP5A0KbVAAAAwA4ELFmsc5s8SdJWevkCAAAAQFaJDlgkyRcI2LASAAAA2IWAJYt1KA5VsOzaQwULAAAAAGQTo6WzGRUsAAAArQsBSxbLrT8jqs7PWVAAAAAAkE2K8wlYAAAAWjsCliyW564PWHwELAAAAACQTQpzXDHXEbAAAAC0LgQsWSzPHXrBTsACAAAAANnF6XTEXOcjYAEAAGhVCFiyWG59BYuHgAUAAAAAsh4VLAAAAK0LAUsWy6VFGAAAAABkrSf/7wc6rlu78GUqWAAAAFoXApYsZgy59zDkHgAAAACyzk+PPVj/ufV0FeaG2jv7/QQsAAAArQkBSxYLtwjz+m1eCQAAAAAgHlf9PJYvy3ZqS2WtzasBAABAcyFgyWLF+W5J0rLNVSrfvdfm1QAAAAAArLjrA5bfvbVQJ4+dbvNqAAAA0FwIWLJYn4NLwh9/WbbTxpUAAAAAAOJxOXlrDQAA0BrxKjCL5bldGtC9gyRpW5XH5tUAAAAAAKwYFSwAAABoXQhYslyfrqEqlu3VdTavBAAAAABgxUXAAgAA0CoRsGS54rzQHJaaOp/NKwEAAAAAWHG7Ug9Ybv3nN7roqc/k9Qf24YqyS63Xrzmrtreq7xkAALQOBCxZriDXJUmqqfPbvBIAAAAAgJVUK1jKd+/VB99u0qKNFVq7o2Yfryp7/PHtb/WLF+bpT/9bZvdSAAAAMoqAJcsV5oQClr0ELAAAAACyzJgxY+RwONS3b9+Y2+bMmaOBAweqsLBQBx10kIYNG6bq6mobVrnvpTqDxTxb89OV2/bVcrLOfxaUS5L+9tkam1cCAACQWQQsWa4wlxZhAAAAALLPhg0bNHbsWBUVFcXctmDBAv3whz9UTU2NHn/8cQ0ZMkQTJ07UFVdcYcNK9z2XM7W31nWmFlkPvLdkXy0HAAAAzcRt9wKQWGFeqIJlxvJtCgaDcjgYnggAAADAfiNGjNApp5wiv9+v7du3R9x2zz33qH379iotLVVJSYkkqXv37rr++uv18ccf6/zzz7djyfuMKypfiffezetjBgkAAMD+hAqWLHd0l5Lwx99uqLBxJQAAAAAQMmvWLE2aNEnjx4+Pua2yslJTp07V1VdfHQ5XJOmaa65RcXGx3nzzzWZcafOIrmDx+oOWx9Ux5B0AAGC/QsCS5Xp2Kg5/3Jp69AIAAADITn6/X0OHDtWQIUPUr1+/mNsXLVokn8+nE088MeL63NxcHXfccZo/f35zLbXZRM9g8QfiBCxUsAAAAOxXCFhakD9/vMLuJQAAAABo5Z5//nmtXbtWDz30kOXtmzZtkiR16dIl5rYuXbqovLw87n17PB5VVlZG/GsJXFEBizdgHaTEq2wBAABAy0TAAgAAAABIyY4dOzR69GiNGjVKnTp1sjxm7969kqS8vLyY2/Lz88O3Wxk3bpzatm0b/tetW7fMLHwfi6lgidsizN8cywEAAEAzIWBpAf4w+Kjwx1569gIAAACwyciRI9WhQwcNHTo07jEFBQWSQtUo0Wpra8O3W7n77rtVUVER/rd+/fqmL7oZRFewbNxtHSJ5fVSwAAAA7E/cdi8AyQ0ZeLge/Wi5JKnG41fbQnIxAAAAAM1r5cqVmjhxosaPHx/R5qu2tlZer1dlZWUqKSkJtwYzWoWZbdq0SQcffHDcr5GXl2dZ+ZLtoitYynbsUd+ubWOO87TyE+YcjuTHAAAAtCTs1LcAuW6nclyhV6J76nw2rwYAAABAa7Rx40YFAgENGzZMPXr0CP+bN2+eVqxYoR49eujBBx9U37595Xa79dVXX0V8fl1dnRYsWKDjjjvOnm9gH3I5I99axxtyv8fT8H7u6C4l+3RN2Yh8BQAA7G+oYGkhivLc2l3jVQ0BCwAAAAAb9O3bV5MnT465fuTIkaqqqtKECRPUs2dPtW3bVueee65ee+01jRo1Sm3atJEkvfrqq6qurtYVV1zR3Evf56IrWAJB64ClYq83/LE/0PqqWRyUsAAAgP0MAUsLUZQbCliqPQxFBAAAAND8OnbsqEsuuSTm+vHjx0tSxG1jxozRaaedprPOOks33HCDNmzYoL/85S86//zzNXjw4OZZcDPyRYUlvjhD7s0By64ar+UxmVCx16vvNlbolMMPkNOZPaFG9qwEAAAgM2gR1kIU5bkkSTUeKlgAAAAAZLfjjz9e06ZNU0FBge644w5NnDhRv/3tbzVp0iS7l7ZPTFu6NeJyvBZhFaZQZeeeOgXiHNdUP3t2tn7xt3l648v1KX9OME7VTSY5qWDJKh6fX+8u2Kjt1R67lwIAQItFBUsLUZgbeqiqCVgAAAAAZJHS0lLL6wcOHKjZs2c372KyhN8irPD4/Ppg0aaGYwJBVdf5VJKfk9bXWL65Sut21ui8YzrH3LZq2x5J0vvflusXJx+a9L7+/eU6PfT+UhXkuvS7847UVQOSf06qIsIm8pWs8uJnZfrTR8t0VOc2mnLHmXYvBwCAFokKlhbCqGD56LvNNq8EAAAAAGDWsTg34rJVBcuCdbtjrovXSiwVPxo/S9e/8pUWb6yIe4wrxfZgd729SNUen7ZVefTHdxalvSYrdb6G9mn7olvZfxeW68xHZ+i78vg/B1ibUr+/sHxLlc0rSd/milrVemmlDgCwDwFLC7G3LvSCYQ8VLAAAAACQVV797ckRl60Clp176mKu8/nTG3Rvbi22IsHmeDa05IoMWDK/nmH/mq91O2t0+xsLMn7f+zt3Fs3nScfqbdU6Zdx0Xfx066yUAwBkh6wPWMaMGSOHw6G+ffvG3DZnzhwNHDhQhYWFOuiggzRs2DBVV1fbsMp978azekqSNlXU2rwSAAAAAIDZ0V1K9NJvTgpfrqnzx8xXsWr37E1zBssOU1iT44r/tj7VCpZ9yeNvqC4I7MM5LzV1VDE0VsVeb/KDsti0pVsktewKHABAy5fVAcuGDRs0duxYFRUVxdy2YMEC/fCHP1RNTY0ef/xxDRkyRBMnTtQVV1xhw0r3vU5t8iRJu2piz3oCAAAAANjrnKMO1M9+0FWS9NiU5brqhbkRt3vqKzl+1KezCnNDLaD99S3CgsFguGtBKiprGzbGvyrbGb6P61/5Sr9+8YvwbelWjGzO4Il95goWnz+oqlqv/ruwPOPdGZxZvbuRWJ0voC/W7JQ3zYqmdK3fVdOsXy/TOhbnhT+mTRgAwC5Z/RJkxIgROuWUU3TiiSfG3HbPPfeoffv2Ki0t1U033aSHH35YTz/9tD766CN9/PHHNqx23yrICb0AX79zr56Z8b3NqwEAAAAARNtW7Ql//MWanRG31dSFAoU8tyvcmskbCG2oX/vSl+pz30faVuVRKmo8DZvJL3++VpK0vbpOU5ds0cwV28K3JShuSej8J2am94kWIgKWQFC3/nO+hv1rvka9uzh8vcfn1/dbY7tReHyh73PMB0v06EfLEn4dh+yv1knXg+9/p5//9XP1v996L2NTxV7d8vrX+rJsp+Xt6ar1Njw2wX1YXbSvGPskkhoVUAIAkElZG7DMmjVLkyZN0vjx42Nuq6ys1NSpU3X11VerpKQkfP0111yj4uJivfnmm8240uZhfuHw2JTlNq4EAAAAAJCKQCCo37+1UE9OX6mxH4YCgvW7asJtvYwh9zNXbFMgKN355oKU7ndPXWT1h9cf0AaLaoR0W4RV1mauusTrj9y4n1UfAL3zzcbwdXe+uVDnPj5TM5ZtDV+3eGOF+t//sX7193l64dM1erZ0VUTlTrStVS23nfZrc9dJkvZ6/frRE7PCwZLhzn8v1IeLNuuK5z/fZ2swBt6bBYNBfb12pypqsrOVmM/UYs+XZrs9AACaKisDFr/fr6FDh2rIkCHq169fzO2LFi2Sz+eLqWzJzc3Vcccdp/nz58e9b4/Ho8rKyoh/LUG+KWABAAAAAGSf6BZPc9fs0Ftfb9DjU1eEr5u/bnc4+Ig+/tOV21P6OtHtta54/nPLeRp2DLmv9frlM31f5goWs1x3w3bEB99ukiS98Onq8HWfLNsqjy8Q8TNJtNFvrsZI5N9frtM732zI2tBg+ZYqzVi2LeK6hRt27/Ov+9ZXG2Kum/LdZl323OcaPGHWPv/66TD//vgJWAAANsnKgOX555/X2rVr9dBDD1nevmlT6MVXly5dYm7r0qWLysvL4973uHHj1LZt2/C/bt26ZWbR+1hBVMBCf1EAAAAAyC7RYcLVf5tneZxRweIPBBWI2hheUp78JMA9Ue2QFqzfbfkesbmH3Fd7fOr/wMe65NnZ4evq/NbvXfPdsdsROaaeZlZD63fuadpM0q1Vtbrr7UW6882FOvbBj/WnJG3H7BKIatdl9bNIxdbK2ritv6Kvd7tinyv/WxyqatnUxJk8tV6/hv5rvt75JjbEaYoNu/aGP/YFmnd+DQAAhqwLWHbs2KHRo0dr1KhR6tSpk+Uxe/eG/ieal5cXc1t+fn74dit33323Kioqwv/Wr1+fmYXvY/m5kQ/VV2W7bFoJAAAAAMBKdDssq5PqC3Nd4c1sXyCgmqhgZHt18jksHoswxaqCozC3eTshzFu9Q3W+gBZvbAiJHv5gqeWxBRZrMwcoQcX+8Kqa2Lpsa2Xkz/a50lUxAdf+4u2vN2jA2Ol6JE6IVBdVPeV27rvtobe+Wq/3FpbrzjcXZvR+zZVh5CsAALtkXcAycuRIdejQQUOHDo17TEFBgaRQu69otbW14dut5OXlqaSkJOJfS5AbNZ1w6aaW0doMAAAAAFqL6NkoVl797YDwkPvLnvtcb34ZedJfKjM3ozfHpVD1SLQORblJ70uSSvLdKR1nqNjr1X3vLtaC9bsjrvdYtAObv253zHVSZLWKYXu1R7Vev/5v4lz9debqmNujW6o1ltUMl8nzN1oc2Xz21XD5370VCjOsfo5SbLVVx+LUnivpyORMn3j2xwqWHdWe/TYAbA2+31qlZZvZuwNag6wKWFauXKmJEydq2LBhKi8vV1lZmcrKylRbWyuv16uysjLt3Lkz3BrMaBVmtmnTJh188MHNvfR9zuFw6OuR56qo/iwfq/66AAAAAAD7nHPUgUmP6de1XUS48OD7SyJuX7SxIul9WM01sQoKEu3d13r94bkVVoFNImM/WKqXP1+rS56ZHXG9ub1Zso1hq/Ewu2u8euur9fp89Q7Lz0m2zmRzOKxajH26cpvFkel7de7aiMqKZFKdHZNp0WFYzwOLbVlHplz67Bw98N53di8jY+at3qETHp4WDsrQsvgDQZ37+CwNHv+pZfgNYP+SVQHLxo0bFQgENGzYMPXo0SP8b968eVqxYoV69OihBx98UH379pXb7dZXX30V8fl1dXVasGCBjjvuOHu+gX3sgOI8XXt6d0nWZycBAAAAAOwzdFAvjfrJMQmPyXE5Iga8p8OqkuPrtbFtpP1xEpa9dX6d8egMnf/ETHl8/nBgc/9FobW3K8xJ+PWtzspesaVKT8/4Pnx5SZKuCw6FEpZFGxoCJV8gkPBkQqtgyWz1tuqEt++ojg1YrFqVNcWo/yzWk9NX6vutVSkd39j39je88lXCmayBQFAeX/KZLdE/S59/31VKmKuymlqFZPBF3U/FXq9eml2WkfvOBk99EvpdsrvCCukxP893WvzdAbB/yaqApW/fvpo8eXLMvz59+ujQQw/V5MmT9dvf/lZt27bVueeeq9dee01VVQ0vWl599VVVV1friiuusPG72LeK8kKl23sIWAAAAAAgq7QrzNVvB/bQLWf3tLw91+2Uw+HQyT06NOnrJAsaDH+duVrlu/dqw64aPfjeEq3fWSNJKq/Yq21VHq3atkeLNlSEZ8Uc1rFIklScl7hlmFWhiDkokaSfPPVZwiDAcNHTn4U/9vqDej5OS6vQ7ZHfd3R7rehqoGg7LObb5LnTD1iiv7550z/VwfRWAUuiyqOPl2zR7O+3W962c0+dBoydrtv+OT/p142uYAlYfFGLIqMmq/Gk9nNJprFVVy1NpoIo2MP8+2Q1TwrA/qVxjVb3sY4dO+qSSy6JuX78+PGSFHHbmDFjdNppp+mss87SDTfcoA0bNugvf/mLzj//fA0ePLh5FmwD44XuW19v0MXHddXAIzravCIAAAAAgJkvTqsqIxgZeEQnvfDpmrTvP9WARZLu/+93Wrm1Wmu279HCDbv19s2nRVQrlFfUhj8uzAmFDcmqGcwbhv+Zv1HHdWtn2fJrh0VLLoPDIa2yqDhJVNERvekcvcmebNbHdov1pFvBsrmiVpc8M1tXDeim2889UlJkaOG0+oFYsDp5MtmGrNXm++pt1Rr0l5mSpKlLtiT9ujEVLKbn7JgPlsQ8Py+Y8Kmev/oEHXpAYdL7TiQTs1I8Pr+eL11leVudL9DkCrFsEO9vCFqGZO0KAexfWuz/dY4//nhNmzZNBQUFuuOOOzRx4kT99re/1aRJk+xe2j51cNuC8MdX/32ejSsBAAAAAFg584hOCW/PT7ABfEyXkqT372nE2e1LNlVqzfY9khQeSm/eoC/fvTf8cWFu6IS+ZJu75j3y2/+9QGf/udRy0z/RHJa1O2r0w/pAIFXRoUB0FcbC+u8vHqsKlvw0K1ie+mSlNlfWavy0lZbrmb50a0r3U2URCkUHXNFZjdXjc9lzcyzv/7A4gUh0GzHzhrBV+LdkU6Xe+HKd5X01RiY2nu//73d68pPvLW/bm2LlULaLboGGlsX8PE9UkQZg/9AiApbS0lItXrw45vqBAwdq9uzZ2rt3r7Zu3aqnn35abdq0sWGFzefMIyNfqEeXJAMAAAAA7DXwiI5699bT496elxN/Uz8/J/nb9MZUsJhbVbUrCM1WMW/QV9WGZp44HA1f2x+nysDY9LVqJ2U1rD3TZ3FXRVV7eCy+5q4EVTO7amLnu7jS3BUx/wy+3bBbkiJaoj0xbYVmrdiW9H6sKliiK3Oiq2GsHn+r702SOhXnWV4ffR+pPFabK2uTHpNMUysz/IGg/vXF+ri3vzq3rEn3ny2yqYJl/rpdWryxIvmBCIsIWGxcB4Dm0SICFjTIdTt1QFFu+PKe/eTsDAAAAADYnxzbrV3c2xKFKNFVGVbizWcYYDHbZacpcHC7Qhv15rPjn5kRarWU63LKXZ827KrxandNZFCxcP1uHTN6ip6fucryjGyreSuZ3iR+9KPlEZcr9saGCvG+Zk2dzzLM8KY53H1d/TwbSZq5PBSkRD9217z4RdL7MVqitSvMMa0p8n6im401JmCL91yJXmsqj1VsBZFf73yzwbIyKJ6mhm5GmBXPnz9eoY2mqqyW6rvySruXoGAwqGWbK3Xps3P0k6c+UyAQpLImRebnebzAGsD+g4ClBXr1tyeHP660eEEJAAAAALDf2zefanm9K8F8jlQClngb7HlJZk+4naHbrUIFjy8gt7NhXeaW1Cu3VOniZ2arzh/QI/9blnIFi9VxmbTFoqLCasbHHo9Ppz3yieWmdbrDxGd/vyP8sbP+5xbddiuZZZsrdfu/F0iSTjaFY9EtwmIqWBqxZuOx/rJsZ0Q7uNgKluT3+f63myK6aIz7cJnufHOh7nhzoeXxK7dU6XdRt9X5A9pWlXogE213CnsgK7dUpX3/2eCNL5reii0Txk9bqcHjPw1ffvD9JTruwanhloOIz2/6PcmmaiQA+wYBSwt0zMEl4bNbauoSD/EDAAAAANjjhMNiK0okqSjPHXPdT489WJK0YVdN0rPE4wcsieeJ5BgVLHE2080D3xdvbAgjzntiVsRxfovg5IlpK2KuSzSwPh2dSyLbXW2qCAUsZxzRMVwV5PXFrm3JpkrtjtNCK92AxcxlBCwWIVMid036NvxxUa5bl/6gq/WaovK4xnwdrz+gbzfs1hXPf67THvmk4T5iApbU7s9cufOPOWWSZNkK7Q+TFuq8J2bp7W82RFw/7F/zddKYafp0ZfL2aVa8KQSQlRZzbVqSN76M3wKtOU2YvjLi8j/mlKna49PTcebfoIE5JI0OTIH9yWcrt0eE960VAUsLVVjfs7eGFmEAAAAA0CKMubSvJOngdgX6zendw9f//kdH6fGfHyspVAliNU8jEAhqxvKt2rmnLm4FQ16S+S1GJUS8Db8Ohbkx11mFOakWpizfHKokaGMRKKXjsA5FEZc3V4Q2dQ4qyVdufXszr0V4VJBg5k26LcLMjMIfqzZpieammlt+5+U4wxVEySpUGlPB4gsE9cWanTHXRwcfqbYxWrWtOu5tf525Sqc/8onW76zRm19tsDzGqCJ6fuaqlL5etFQer5oMB3vNLfp5lG2zd42gFvGZq/cyPYsKLdcej09rd+w/FWCzv9+uq/8+LyK8b60IWFqowvoXqHs8BCwAAAAA0BJcddKh4Y9/eXLDx8d1aye3y5mwwuRfX67Tb176Uhc99Znq6qs0LuzfJeKYZC3CjG2+eBv0TmfsxqnV5mCqrb889RvF7Ytig5t0RP9ctleH5sR0apOnnPqAxSo8SlSl0piwIh4juLJq75Zoc9UcXrmcDuW4Y6twgsGgxeyT1Ndc5wtYPl5Tl2yJuJxqG6Pr/vGVlm6yng8y7n/LtHH3Xt0zeVHS+0lWbRVPnT/5HkhLPxE1+vFtzOPdHJL9nUHk7z0twmAYPGGWznqsVMs22z9jKRPmrt6R/KBWgr+KLVRhfen2up17dO/kRfquvMLmFQEAAAAAEnGZAozivIah5rn1G5ZGFYZV1chHizdLkjbu3hsOBQYddaC6tisIH5M0YKnfaG9MyxqrdmCpBiy19d+HO0NnvEcv29h4znO7wl/DKkxJVPXg9QVUUePVi5+tSTob5P7/fqer/zZP86I2lYyAxWpjP97maq3XH9Fuy+10NlThmL4Hq9k2jRly7wsEIiqO4lVDBOrXmUq1xOerQt9/run5Zq66+HTl9qT3ke4m/cL1yfc+WnordU9UBUu2BSzF+ZmpSNtXFm+syHh7wsYyByx1voAefG+J3l2w0cYVIRus3xmquvxk2VabV4JMI2BpoUryQy/GR737nV6ft04XPvmZzSsCAAAAAEQb3Ocgy+uL8hrO4DfiB6Nl1KSvY9srOUyDzo2ZFzluZ0S7nlSrAuLNYJEUnmUihYa2+y3CiVQ7Fj1VP8Mhx5mZrYfoNlbGrJoctyNcwWIVsCQKJLz+gH731gI9+P4S/fblL+Me5/MH9I85Zfrs++26cuLciNu+XrtLkvT7t2KHvccLo37+188jLrucjvBj6Q0E9O6CjfrTR8u0e29do76faF5/UBWmwfDxKnaMICiVs+2L6ztqmEOSeDNu4kk3YDHmviTS0itYoh+BxjzezSHd6qPm8F15hX7y1Gc640+f2NpazRxMf7Nul16cvUbD31igikb+nmD/Yf5/U3GG2mbaLcu6F9qKgKWFOrB+uF+2/Y8WAAAAANAgXvVGUW7DBkv0pvdTFkOkLbp3KdfljKiKyXM79ecrjlWHolz17FQUc7yx6ffthvhVADNGnB3+eFuVx7KCJdVNFSMwclktPspbN52qa0/rnvCY6GzACANynE5TwNK4FmFef1DTlobOJk70c0lUBfPBok1as32PqizOmo8XWER/LbfTFBL5ghr+xgI9V7pK/1u0OeZzU2mTFV63L6BnSxvmnazYbD1DxTjjPpV5EUYFg3mjfWtVbcprkiKrX6x8v7VK/5i9plF7Hree01NSyw9Yon9bPL7s+n4en7rC7iXE9cj/lkmSdtV4I2YcWdmwqyamGi1TzFWClbUNocqa/Wj+Bhpn+tKGtoyFuftHwIIGBCwtVOeS/Jjrsm3wGQAAAAC0dsameTTzvJO2BTmWx5hZtV3KczvlNlWH5LmduvyEQ/T1yHP1j98MiDne5w/qs5Xb9ffP1sT9Ol3aFoTPrvX5g5Yb7ht377X83Hg5SipDsU/q3kH3XHB0wmOiK1iMYMrtaqj+8JnClNfmrtVp46ZrSZyZIVLq7ZeSzWoZ88FSy+sDKc5fcDmtq3CsHqvo0CFRgBQd+pTt2BMRhlxxwiGSGoKVRPdlcNc/0Lmmx/WmV79O+nlmyaogzn18lu5/b4len7c25fs0Ni2tKsBasmxrEZbNzH8nd9fEVn+ZDfzTDF05ca4Wb8x8y31z5VqtKegxqvrQ+pjDdncKJx2gZSFgaaEOsBgSmCydBwAAAAA0r0QbKc/84njd/ePe6nNw24T3Mfv77ZZBR36OK7KCJSe0ae1wONStQ2HM8V5/QB8s2mT5Ne4878jwx8Zd+oPWAUs8Vl9Tktwup8Ze2i/p5yerdIleS7hFmKshaPKajhn5n8Uqr6jVY1OWx73PVAKFVduqk871mLZ0i+X1VhUsVidHev2BhhZhpjVZhVnRAUutN/W9gKCkof+cH77co77SqTEVLMb3VGc6S7+8onEVLOZWdIks3ph4GHS7woZw0phVW+3xafb3yefAZKv83MjwyWMxh8dOh7QvSH5QFki1bd2+CFjMv0fmOUrTmb2RtpZ+Unn0XB7sXwhYWqgSizOcdlYnTucBAAAAAM2rg8XJcYYL+3fRjWf1tLzNvJn0y7/NszzmgOLciI3q6LkWf7osMtSo8wXksMgwxv2sn4b98IjwZXd9JYU/ELRsERbPmEusQxSX06GfHd816ecnO6k3NmCpbxHmcoR/DnuTBCGDeh+ov11zonof1EZS8oBl0YYK/fAvM9Oee2pVwTJvzc6Y674s2xWuYNmbJDCJrqZJdnz0esxf36gkMR7nRK3QDMbPLHoYe2MkahG2eltDG7Ni06wi86bk7390lMoeuVC3nt0rfJ257d7CDbvTXpvdojdf7WgRVlUbP5xIpeVfNqhM8D2Y/74W5GZupsz2ao/+9ulq7TDtzzXm9zORqlqvfvX3efpzgsA4m9T5ArrmxS/CbduaYm+dX+f8uVS3vzE/+cFZyvy31ZNCsN8SBGMmRrVeBCwt1MXHHaxfnHyorj2te/gsjUufnZ30rBoAAAAAQPO5tD5YOLhtbJvnRFJpC9ShKFdFpmG50ZvWndrkRVz2+oMx8x2k2EHsxgaqPxBMucWVJJ3Yvb3l9TkuR0qbsg6r9MckOuwJtwhzOsNt1ir3xn9PPKBHB/31Vyfo3GM6a3h9oJQsYFlQv1G/c096JzRaBVRW79sLclzhgKW6tuH2QovN35gN+KgKhzZ5bssZPFKo+sR8m1Fh1TDkPvnzzgi2apuw8e9yxt+O+sOkb8MfF9Y/v5dtrtSRI/8Xvv6Cfl0kSb8+rbv+MPgovT90YEzlR0sV/ZzMZIuwhet3a1GCWUOG9Tut2wBKzVtR4/H59fXaXWlVLyT6uZk7wCRrV9cYV/71cz38wdKIqjlzwHLEgcVp3/dLs8v06crtenpG7IyubPThok2atWKbnp+5KvnBSXyybKvKdtToPwvKM7Aye5j/bu8vFSxVtexBGwhYWqg8t0tjL+2n+3/aR73q/0Dv2FOnFxP00gUAAAAANK/eB5Xo4zvO1PvDzmjU56UyqLt9YW54XooUW8ESPf/F6w/IaRFiHHFgm4jLrvpjfjzhU22t8sT9+jeeeXjE5dw482bcTmdEq7QrT+wW/rg4z60Xrz0x7te47vQeeuLKYyVJfn+cChZ3Q8BSsTf+WesHleSHfybGf+uSVWw0cmP3+EPbRWyi+izu3yrTKch1Kaf+8TPPTbFqMRa9cRx9hvxtg3rpgzjPtxFvLdSqbaFB21efcmh4FpDxs7XaPP/bNZGPjy8QkD8QTKnaJZ5EwV25qS2a8fy+898LI44pqG+Hl+t26paze6lv17bqVNwQKDZ3N6Hb35ivnz//eaNa6sVjbL4av0+ZCljqfAFd/MxsXfT0ZwmrO6TE4dnmylrNaaYWbC/NLtNlz83RqHcXN/pzE21imyt0MlmRY/xuLd9SFb7O3MIvlZaE8ewxBbONCb7tsspUidbU9l5JsvcWwfzY7w8BSzAY1Cufr4243JoRsOwHuh/QcPbJnz9eoXmrd9i4GgAAAACA2ZGd2yRsFWb45/Unhz9O1p3gp8ceLJfTER7sLcWeiX1az44Rl31RLb9+c3p3vXzdAA3o0SHiOPOG42XPzYm7hpMPj/w8p9O6UsXtdERUp5xk+nr/ufU0Derd2fL++x/SVqN+crSO7BwKgKKrQYxqixynI9xG29g4ttrAMleDGGGG1+K4WSu2hWefNHZz+6QeHTT1zrNUVP+1oquD4q0tEAyGh8abzwq2OjZ6tsReizAulSHKu2q84eOMn63x/RoBhiS1LYxsUe4LBC3bVrnjPP5WrIIjQ63pezZChm3VkUGfVVunk+JUUO1rW6tq9Z8F5fqibKc27Kpp8v0Zj0Gb/NDvdlNasZmZnyezVmzTm1+uV0WcOSXJ5vrcPXlRRtaUzDOfhKo1Xpu7rtGfm+h31zwXxWcReuyt8+vtrzdoR3X8gDlV5p9lUzbWc0xVX9+sC1X1bK2s1RNTV2hLZeNmIDWHjbsagtJUThhIxPxXpaVu5JsDlkQt+FqK6L/J5nB5xvKteuXzsmZekb0IWPYDpxx+QMTlKyfO3S9+WQEAAACgNTmtZ8fw0O5kG5zGUPq2pvmc0RUsLqdD/7r+lIjrdplaXV18XFeddWSnmPt2u1LbJM9xOTWo94ER1025/cyk99e2IEdv33yqnr/6ePWKqp4xjL/yOE2+5XQ5HA2b9h5fQI9+tCw8wNyoPnG7nOHv3djA3OOxaMNlDlgsBspLoY2ha178Quc8Vlp/P43bGOxYFKqicEW13jKzOovd5w/KXb+BWu1J/H5+a1XkZmp0BYurPujISfI4OhTZDk5qeN6ZW8+1i5oB6/MHLStdivLcKQU7oa8Xf6PZHEp564+Lvler1mlul1O/PPnQ0OfV/4yXba7UqeOm6/7/frfPNmbX72x6qGKo2OsNb0YboWGmKli8pp/5bf+crz+8/a2enrHS8thkbcDMAdy+5E2hZV08icIMc0AYPdNIkh76YIl+99ZCXfvSl2l/fYM5zElaMZeA+Wdx+fOfq8fdH+rKiXM1YfpKXf/KV01ao+HDRZt0+iOfaMH63U2+r3Wm3wurv8epuuX1r3Xz69+EL2eyZV5zMj/PElWGthSbKyL/P2T+f91vXvpSo9/9LqV2hPsLApb9QPTZRpIiyrQAAAAAAC2DsXFpbLJanV0tSXn1Q92NYe3m68xO7XmAXrr2pPDlbaaNHeMM+WiuFPux7K3z62/XnKiLjztYI84PBT69DizWny6LHHZvBAdGu6fjD22nEw7roMF9u8S9747FeeHNf2PTfneNV8+WrtIv/zZPP3nqUy2s3wQMzXipr0ip38AcadFSyLwpb1RGRIcd7y/cJKlhM6zG27iNwQOKQ5VKxtqtWvn8+ePYIdW+QKChRViSvva79kQGMNFhXJt8d0QwJSkc3Jm5nI7wY21sjpmrJ37Y+0CdevgB6tmpWF3bFYQ/z+sPWLaQKs5zx20TFy1Rp6Qf9z2o4Wv5QuuKfkpGt7+Lvt5ozXb7Gwu0qaJW/5hTpi/LdqW0tsaqNoVwiSpzUrHS1FrqkPahn3mmqhOsgr3J8zdaHmuEdkccWKx7Lugdc7vxPN/XmpCvWFZZhW8zhR5Wre7erf+5LNrY9A3ivREVLOlVctz2z2/015mrY65fsz3UkuzbDRVaUl6Z3gJNbnn9G23cvVfX/aPpwdJGU6u/6jQDlpo6nz5ctDniumQnH2Qrc+CXicoou0WffGD1t2/7fvB9poqAZT/Q68Bi3XhWZO/bTPaQBAAAAAA0D6PKwmjnE+9s3XYFoQ1O8yD7eMOaz+l9oPp1bStJ2mKqfmiTFydgSfH95NFdSuR0OjThqh/otkFHRHw9MyPI+fzuQfri3h/qANOsjGjjftZP157WXaf3aujUYDU3ZvHGhs3ENvnucLWGURnxwbebYj7HfNZ9rjsykDFEV49Ytd8ymIMrg9EKbld966U9Fp+/YVfsAHF/oKFFWHQLMEm6/owe4Z9jnT8QEdys3FIdcaxRfWI+c/5kixMzA8GG6qJAVAVLntupv197kv51wylyOh36cNgZ6tkp1J7cFwhG3LfBFwikXP2UqILFbWqFZIQCjpgalnifW1+ZVH//5pk8CzNwVr6ValMg1tQZLMbPtfdBbfTpylCl1pgPl6Z1X9Hh7NbK2M3OeL/rxvPgoLb5Gtgrtspt9vfN05o+ui3g8zNX6Vd/n5fSJnuiCpZkc1GsqlrSFfm1Gv/8qPX69b7F37NoV/99XpNmvJjtNFU6ZuI+0p3XZNVarKVWsJgfm6bMr8oW0W1Mjb835r+Bqf7/YH9AwLKfuPvHR0dcbkr5HQAAAADAHkaVRU39ptx/F5ZbHmcEMcWmKpRcd/y3+J1LQqFG+e6GgKWoiQFLtw6FltdHVzG0rw8d2uTn6MA2+Qnv8/8GHKr7f9onYmaLecPdSpv8nPAx3gQb3OafT06cAeLmTdnPV+1IODvgrCM7qfsBkT+DNvmRlSKfLNuq77dWadqSLZb3YQRJV59yWNyqDCnUPm7u3T9sWKdps25dVIuq6DbikpRv0dKpOM9tamUWuj/j5xF9fNvCHJ1cf78eb8CyOmBLpUdu0/dgzsV+/6OjIo5NVOkRsRFptAhLcZ/OHVXBYn584z3fm8q8/+Jr4sapOeA68bDQTJl0Opst3lihvvdP0TMzvg9fd/Ezs2OOi3ffRtCTn+OKW+nWHKIDq0f+t0yfrtyudxfEVt5Et4BLtBFvvs0qlEhnA3xTRWxwKkVWpKUTgKQa9uzcU6cv1+xs9P3vC+8u2Jj0Z5wKq4C7pVaw1Hqb/vPIJtH/b2yogmy4Ptn/u/cnrec7bQXevvk09egYOqNk6aamlwYCAAAAAJqXUWWxt86v9TtrdPc7iYdJF5s2jYty42+Eti+MbenTlIClS9v4QUl0UNDB4ms3Rn5usoDFHT5TNl5LNSlysycnTosw8/f+fy/M1bcbdse9P6fToT/+OLJ9UvRsiienr9S5j8/SkFe+0jfrYltUvXjtSfr4jjP102MPThiwuF2OiBk75hZHe+rPJB7+wyP09chz1dGiQsiq7dud5x0Zvt5oNWTe4I9WGG5f57OsYJGkHKc5GGv4ODp0i1fpsbumLmL+gxF4pXoedE7U88A8ID6ohq85b/UOLducmX2TKk8GK1jqNyfzcly676I+kqSDShKHklZG/mexar0BPTYl1I4u3vyZww6wDkmN50F+jituO7BEm8Rrd+xp0kB3K+bvYeee2Cqv6NAu8QyWQErHNUa8Fl3mKipfIGjZNjCRxoR2q+t/jzOtfPde1fkCWrN9j16ftzZpQDD8jQURl9NtnRc9X0pS3L892c5c8dHUvxPxvDBrtU4bNz2jc6Hiia1gCX1P5lAs2RwwK7Vev16ftzaixdy+mp+VSQQs+5ETDmuvv/z8WEnSwlY0SAgAAAAA9hcF9SHJU598r28t3te9PuRkzbunoZLBHKocXt/CyYo73EIrtFExZGCP+MemELBYVUQYokOGplYOFCf5/GLTcPWtVR79eUrsjBMpcrPH2PCPPkM6+qz3FfXtt+7+cW99+odz9J9bT4+4fXDfLhHVGUYFktXP8LuoDdhD2hcoz+3SkZ3byOFwJGynUpjrktvlDAdA5rOEje+hY3Fu3PZrzqj1XHtad3Vqkxfe+NxS6ZHH549bwWL+3qZ8tzkiuDBcf0aPiAoWc1jlcjr039tO15GdiyXF39Q+/ZFPtGxzwxyScMCSYglLdCVTrfks+vqPN1Xs1ZUT52rw+E9Tus9kIipYmjI0RA3BWX6OSznu+nZnjTjbvaLGK4/PHzPzIl41R7wKLWNjO9/tVKHpb8wtZ/cMf/zS7DWWn/vZyu0667FSXfvSFymvO55801ypctNQ7T99tCzm2OifU6IZLE1t29UUjW0/1pjHP1HAnK4l5ZU67ZFPdNNrX+ucP5fq3smLk859jg5o063YsHp+ttQKFvPMkkSVlk0x5sOlKq+o1SP/i/39yLToGSzGY2wOxdIJkv4xp0z3Tl6sCyaE/j4Hg0H1HvWR+t8/JWPzqPYFApb9TK8DQy9WtlV5VFHjjdsvdmtV6BfuhVmxQ7IAAAAAAPYoqN9QXLqpUrf+85uY2084rL06m85oP/SAQg0d1EsPXdwnYegRPcekbUHs0PPwsSkELInO+nY6HZHVCwlal6UiP85sGUOOKXgoXb5NT5vaIpmZN/+Nzevozc5476G3V3vUrUOhjuvWTncN7q3nrz4+fFtPU7BlhBDRIZMUOgs8GAyq/yGheTj311coGKyqRgzFeTkRx5g3zI1NyIIEFUzmCpaLjztY9/809LXNw5b3ePx66pOV9fcZ23Z8W/2xZTtqLOfI9D+kXURIZA7/urTNV/9D2umXJx8mqaFSI1r0zBqrM9gTia5kOu/ozuHbpi4NtWmzCnCaIjJgadrG6ffbQoFersvREBaluDm9u6ZOxz74sX70xKyIuTBSZJsqs3j37TFVsEjSb07vrhMOa6/h5zbMWjIPXV+/s0Yff7dZwWBQr3xeJkmas6ppc1qCwWDE83xrks3V6Mcy1QqWTIUSqT5O+zJgyXRY9OrnZbrgydBG9yfLtoav/zzJY3vWkZFze9IPWGKfty01YImsYNm3VTjN8TOK/tvsC8/xavje0glYvlkbqvQ0Kr88voA8voAqa337rM1jJmTvypCWkvwcFeS4tNfr11l/niGvL6C59/wwog/sqm3V+uFfZoYv/7jfQTqkvXVZKAAAAACg+RQm2CSXrDfhf3f+URZHRooOWNoVxW/blUoFS7LhteaN5kTBQSqSBT45LmfC9lrm46w+Nos+899w1pEHhj++2XQWv6SIllz59QFLfq4ronWUJD1Xuko+fyDcSiUn6ucSPb/FrCgvdL95bqdq6vwRZ+cbG3dFuQkCNtPP0Bz+7KppaF9UU+fT2h2h1jJflsW2M9tomt+z1qIFTXGeO+J5NuGqH6iy1qsF63frR30OktRQkeCJavPjDwQtW9MZx6U6g6WhRVjoZ9ze9Dw3BrP//q2F4euqar1xq34MlbVe3fHGAv30uIN18XFdY27fU5e5GSxTvtssKTRPI/y9pLhJedyDUyWFArBo8Z7X8dZbG65kCj1e90WFgVLk933GozMkSX/91QkZa3+01+uPmBETL/w0RAcXiWewJB5yn466FB97byNDvcaEJl6LjfuF63fr4yWbdds5R4Rnd6Vq1LvfWV4fSNKy6eOomVPp/F48+N4SvWhRJdVSh9ybKz6a+nciGX8ztNSKnv1thEbmcCedwDn6/4OV9UGL05H4/3F2o4JlP2T8wdxd49WeOr/mrY4ccvX63HURlwf+aYYqa2P7VyKS1289yA8AAAAAMiVZuJFqq6Ro0ZvX7RJUsFTujRcyNJyVfHjH+O3IojU1YEnG5UzcXstgbhEWL2CJ1zLplMM7xL3f3l1Kwh8bVRvm1kZmL3y6JtxGKqcRj4nRJi2vvprHfJaw8XgVJxhGbq5UMW+A//ykbuGPk21g/+qUw8IfV9TUxdwefXbxcYe20wX9uuieC44OBzxGRYS5gmXppkod+8DHeq50Vcx9GmdJpxL6hY6LbBFmtXm+vbph7ZVxKjvMnpnxvaYv2xozV8Jg3jhtarhgnPza5+C24edoKpuxX5YlHm4evRlqiLcBamySWlViGXIsBliXLt+asc3d6BDuupe/THh8dMXKpor4FS/m359Ug5FkUq2EaWwFS2MqbKyeKxc/M1vPzFilZ0utK/ukULVQdMu3RPtfiQIWqzDviWkrtNA0WykVVuGK1HIrWMyPe1Mr3ZLZVzNezKL/X2kEgXsjApamh2HG3+g2+Tlpv/5pDgQs+6GdeyJf6JTt2BN1u0fRbnmtofS81uvXMzO+13JT2azZq3PXatz/lraIIUOZUuv168xHZ+inT80mZAEAAACwz+yrjZHoCpaD28UfnL18i/V7wZevGxD+uCRBGBCtqS3CJKnPwSUJb0+p6sa0IdwmTquRdXGGA1tVVxiK89z69A/naPYfB4WP65SgKsLYXHNHhTyJfqbGiZR5ObEtwoxhwNHD7f98RWhG658u6xfx+JufYl3bFah9YejrbquO3SswO++YhnZbVhUuRpWNweoxsQqIHnjvO1V7fJZzNfbW+RUIBNWusKES5W/XnBh3jdFD7pNtTlelcLLprj2xYZJZdQZnsBj7LD84tKHdmlVVQrSvLB4PqaHyJ16LsHg/H2MTO88iYOlRH66ecWTHmNsqa30Z+xsWXamQbLh5dKXH1Kgqisj7Tq+CJdE+WKr34/U17ufTmEAmej/QbFmcPT5J+nZDhR54b0nEdYlavCV6jB/539Lwx0Y7xPnrduviZ2bH/ZzGqG2hFSzmUKWpbel8/oC+Xrsr7nMuWYVRJsQbch9RwdLE8DIQCIYLAtokOIEgGxCwtAIPf7A0IsnfvTf2BcRn328Pf/zsjO/12JTl+tH4WTHHBQJBjfrPYv115mot3lgZc3tTfLtht8ZPWxFxZk222FRRq00VtVq+pSrj3zcAAAAAGBINvx17ab+07zd6r7tru6a1iU4WZ4y5tG/447wkM1RSccUJhyS8PZU2OuaQxOl0hDeKU5HszNluHQrVtV1B+PKjlx8b91hj0yk6tEk0Q8eoFsitD2WMza012/eEN/g7tYkMWC4/4RB998CPdOVJh0Zs7gUV+bMyWmSVbbcOl6ws2RR6X2yuTiqOCq2sqoSMgMi8CZcovKr1+XXVxLlaUH/2+wvXnKhzTUFPNCO08voDerb0e/1nQXnC7yOVGSzR4WS0yNkKTdtQNNaT63aGH/NgMPn9xhv+bIRcja1g2es1WoTFPid/O7CHJOs1Ve71ZjBgadzJrY0JSsxhTaLPMz/0Yz9cqoF/mhE3cHv7640pfe2ZK7fFve2ZGd/rR0/M0m5ThVhjNqn/Macs7m2JMmirfcJS08yVaIn2718zdc1JVAGVrpZawWKeu9LUCpYnpq3QZc/N0UPvL7G83Xh86nyhICZTc4bMoivEjCDYXAnZ1L8FHl8gpWq6bEDAsh+yetKZS/2S/TH6el3smQ/rdtTo9jfm61NTEFNh8Qc4XdurPfrp07M1ftpKnfDwNH2/NX6ybgfzi5E5pp8BAAAAAGRSvOG3/Q9pq1+cfGja9xvTIqww9QoUK8kCh7amaoy8OO2yGuP0XrFny5ul8v40esP2prMOb9KaEul1YHFE4GJmbHblpNDWzGC02Fq5NTQE/Vd//0KSNMO0CRpdwSI1tO0yP69KonrcF9ZXxyzd1HAy4S9TfK6Zv8eiPHfEGf5WwUl+fdhmrk5wW7SaMuyt8+sLU/urZK3gjEBh2tKtevSj5TG3R1cgmNfx+ry1umri5zHPpUTP9W837A7PdpFCG6dbq2p137uL09o7qAs/N5wR32uy8CDejBXjMTBuP/XwAyJuT9YizKrVXfScG7OqWl9kmNeEM+kThV9W60olLDOkWsFiDgknzlqtjbv36rW5ay2P/SJJmzbDqP8s1pxVsc+NqUu26LEpy7V8S5VenF2W0voaw5EgFvdY7BO+/Ln19ymFTtIe8vJXuunVrxNWeGWiejHarBXb9LdPV7e4rjrmh7GplR3PzAi1U3wlzmNkPG/v++93uuy5OXpy+somfT0r0d2SjDDFXGH06JTYv8GN4fH5wz+r6IrPbJPdq0NaPr7jzJjrxv2vodTW3B/UivnFgWHov77RfxaU69cvfhG+bodFq7F0fR5Venju47OS9n9tTuaA5S9TV9i4EgAAAAD7s3gbL01t+RE9KD5RtUQm2pybA5ZMnHmabKOuc0n8lmeG6DZJxXlNC5mSia7oMJTXn/mbqHIjFZc+O1sPxjmDOZp50/v8PpEVIMbjY8zxaFeYo1E/OSal+zVXARXnuZXsWZpvUcGSKGiKDjuStYKLN1vHEN1uybwpf+/kxZq7eqf+OS9ybm2iL/nTpyPbHvn8QT07Y5Ve/nytfvG3eQnXYrk+cwWL6XtJtsker0LFCK+MgKWkIPI5uXNPnWUwEQ5YLKrPoufcmFXWehUwXd+UgeSJPtfq76TV8fE24c3zXeoStOyyeugz8ffxsaiN54Xrd+v6V74KXzZXHCRrEXbu0Qem9DUTrTudx2na0i366LvNmpBg8z7V2UmN8f63m/TwB0s1Y3n8CptslMkKFivm57rxt+NfX4T+lj35Sfz5O+mKbtln/I3asKuhEnLN9j3hFpapMj/fa72B8P3mNuKEBDsQsOyHunUo1Js3nmp524i3FmrRxgrL25aUV+rDRZssb7Pqwbt62x6LI5MLBoOq2OvV3e8sCgcr63fFliK//c2GtO4/0/yBoOauTu1MBAAAAABoingtNa4++TDL61PVmH2u1357siTp9nOP0B8GHyVJMdUzyTYZC3MbNnIPbBN/HkmqkgUsFx3bJea66AAjuk3Kvu7pXpiXOFiyCgOO6twm5fufv253yseaA7rTekZWAxkVLLtrQmHGJcd1jRvAnd4rsgLikPYFeuRn/fTo5f2Vn+NKeqJkeMi9N7XNxuiZEomqXaTkFS51vkBEWzOjkuGtr9aHr4tuoRavRZjV5r0vENB35dZ7LqkwNhPzXM6IzelkZ7wbAYox88IQXcFiFSoam7BmRgBhzP4xc0fNuTHz+YMRwUv0IOzIYxNv6idqEeYLBGN+/kYFVsfihnk98Z5a5kAqUXjl8QW0bkdNRNDnSvIcTEX07/6qbdURl2euCLUR21vnT9qFpihOkBstUau7prTdMrczk6Sf9G/4W5xu1UEqraUmfZ0de4apipjB0oRZTfGer+a/qYUWv7eBDIc60ZWYxt+o6MpBfyOrdSpNv2u1Xn+4/ScVLLDFgB4d9P7QgRFngqzeVp3wD9AFT36qW17/JuK6kf9ZpImzVlmecRQvpf5o8WY9+N6SmP9Zfr+1Wn3vm6LznpilYx/4WP/6Yp3+74W5mv39dm2vii0pTDScK55FGyp07+RFEYlpU/39s9V6YlpD1Urvg1J/wWuHllYmCQAAAKBBvM3mK0/q1qT7dTXitOvTe3XUmnEX6PZzj9RNZ/bU/4afoQd/2ifimETtZqTIFmQdinITHJmaZJUJeW6XzjqyU8R10e9jfxY1x6V4Hwcs8SpYDFYVLO/ccto+WUuiKiJjE90YJpzorPOfnxj5PMzLcemqAYeGr4/Xqip8fH24YW5J1KWtdSs1KfbM+uQtwpJUsPgCERuUHl9AwWBQv5/0bfi66MfN6sexvdqjHnd/GHN9pmaw5Lidcjkd4SAz2aB7I8iIDsaiZ7AU57k08/dn62c/6Bo+xuoM81pfohZhoeuMDdXotnDmubrRg7AN4/63VMc+8LHKtsc/cdeTZKh99N/Kkf9ZLEnaXt2wlxRvM3qPaV3RFTzRn/PV2p26xDSgPd2qDHN7tuiqrejn3Hfllar1+nXaI9N13T++UiLRn1u2fY/+b+JczVoRNeslwxUshsKor2/8rfn9j44Kz4wybK2ynhUULZW2aB8u2pziCrOD+W9DrdefduARL7Ss8jQEE1a/tx8vyezPywg+jL85/kDQMhRtbPWtOcys9fnDz4V9UQ2VSQQs+7G+XdtqyYODw5etKkKSnUn02tx1Gvvhsrhnr0Sn3IFAUDe99rVenL1Gb3y5PuK2Gcu2qtrj0/dbI5P5X/5tntbtbHogsrumThc9/Zlen7dOf/9sTfJPSNGfP45sCbZsc5Xmro5to2aHGcu2atBfSjV1yRa9+Nka3TXpWx37wMf6xmKODgAAAIDsZ3Vm65s3npp05kky5s///Y+OSvl4p9Oho7uUxJw9mmw5PTsV6+FL+uqvvzqhyWuXIitYHv/5sREtyAyjfnJ0xGXz+9gjDiyOmT1Sso8DlmQtwIpyY79+qmejN1aisKcgJ3SbsXGX6EzhvKhKovyoy/FaVYWPz4mdwWJVSfTrU60rtpK3CEt8+16vP6KqweMLaG/UvobP31Ad8b9FmyJmURjXn/jwNMv7b2rrH2PTMtfllMPhCA+6T1bB4ouzCWk8B5+qbxHkcDh02AFF+uOPe8ccU+3x6cnpK/X91qpwJZJ1i7DQ8UboY944dkjabBp+Ha+i6a8zV2tPnV/jp8VvwZ5s0z+VMCveMebW+f6oDWCrao41piDIKuRLpQLkuEPbNdxHVBBoVaH3/dZq7apJPluqOM+t35zePXz5d28t1Oerd+gaU4t/KWG+0qSApU3U3xajxVOe2xnzszKf9D11yRbd8vrXlvOzots52mn+ul36+2drmlwBYv4drvUGtDbNfdB4v1Pm57TVUjfsalyrrmSMx9molvH6A3rxs7K4x6XK/HyoqvWF9zf3xTyfTMru1aHJclzO8AsTYwiSoWu7Ar147Ukp3c+mCuuUObrf673/WRT++Is1kW21tieY2bJgfegX5o5zjwyXE0a/yPEHgrr19W/0RJwZKOOnNVTUzM7gIHqrF6JXTZwbt+zX4/Pr5te+1qtz1+7zapLfT1qo1dv26PpXvtKD7y/Rv79ar8pan3727BxNXbJln35tAAAAAJkXvZE6uM9BGtCjQ5Pv17zZX2TRPqSxUolMrj7lMP2oz0FN/lqSIs6Ebl+Ya7nR3uvANlp43/nhy+ZjrE4aLLEIaTIpWdgQPQ8jFSce1t7y+mSVL5fUVywc0j62WiS6nUyikCJ6kysv6ueabA/SeBzq/IHw5rfVDJDbBh1h+fnJW4Qlvj26wsbj9cdsYv9nwUYd/9BUvbtgo26O6vKRbFN/zAdL9WVZ+ic8ekwzWCRzO64kAUv9uqJDvei2UB8t3hxznPHRXz5ersenrtC5j88KV7BEP75SQwXL/HW7FQwGIzZQfYFgRMhkdba9+YTY/ywo1/o4G82JWoRJkVUO5r2XS03VOfF+bubfzejHNHov6s43F0Zctvrbs7Uy+YziHNPnRf8eWa3znW82Jr1PKbRndfu5R4Yvm09gNgc/73+7SdurrdeZ7GedSMfiPD39ycrwHpTx+5wXNUdIiqykvP6Vr/Thos067sGPY+4zeg6SnS59do4een+J3vu2vEn3E/0825nmXOt4VWHm57RV1UhT2sBZ8YYDltD/x3yBoFZYjJew+vueiDlgufm1b/TS7DJJVLAgC9TF+R/K5FtOU9+ubTXywqMtb0/FP+eti0hx31vYMMNll6kP498+Xa2/zlwd936MEs7DDijUYQcUSgqFJOb/Sb7/bbk+WLRJE6avtAwulpRXhj/O5Fk/8f4YXPjkZ5breG/hJv1v8WaN+s9i9bv/Y63b0fA/t3cXbNSiDan1Y00Wzuyt80eUvka7/pWvmvQ/SQAAAADNr0vbyGHtGWj3LylyQ7Vbh8Im318mBj03hjlgyXU74359cyssc5uU6MoLSTqgqKGjw9hL+0V83r+uP0ULRp+nn/2gqx7/+bFprbnak/j9WKK2XVLsmeGS9PM4reKOO6Rdwvs6+6gD9c4tp+n9oQNjbosOWBKFGLmuyGOtfq6JmB8T4/2q1RnOVjMEpOQtwnKSbMJVR50Zv6vGq11R7cm/3VChXTVeDX9jQcznJ6tQsTobvzGMzVOjuim6WiQeY/M2ekM7+ud1as8D6q9vOO7Vz9fK6w9o4frd4euMeQ5Wz1Hz1/jvwvKIPZPo+TVWP6+Hok7Uve2f38QcIyWvqjCHEuZj7ze1M4z3c6tOMIOlti7x17WawbJ7b/IW9+afRfTP1ep34MXZqXVmKcpzR4Tm26oaNu7LdkS2YHthlvW+nNeX/snBs1Zu058/XqHrXwm1MqszhYTR21pWVX1WW19Gu8JoJ3W3Dpibw9JNseFBY0SHoOlW6USHlmvrH2NzMGhVbRM9lL4p/IFg+HEzQvN4bd0aU8FizOw2mANBZrDAdlal05KUX/8HeOARkQPu/vqrE3T/RcekfP+7TU9+c7WH+Zf+4Q+WpnRfBbmucPr57YYK/WdBQ2JvfnFTuTfyD9Fzpav0RVlDxUyywXqpCgaDCXvI7rYo1zSnydUen8Z8GHrxsHD9bg1/Y4Eueto6mDGb8t1m9X/g44RVKKu3V8e9LbyWJC/oAQAAAGSXey88RoNNVR+ZaK8Vup+Gjw/vVNzk+4vXRnpfcZo25gpyXXE3X81nhpsrVKw29szXde/YEDod3K5Ap/Y8QO0Kc/X4lcfpZ8cfEvO5qaioSbzpGu+xnXTTqbr7x7118Q8OTvlrOVM4u/f4Q9urXWHsPJzoQeaJQozo2xr7PMgztZwyNvysQol4M3eSncXc2AqWjbv2NioUSWU2RLoCgWB4H6UwL/Rzip53Eo+xeXvVSd3UtV2BflDfjip6o/XWc3pJipwrU+Xx6eU5ZRGPpXG2u9UsB/Nz4JNlWyM2UKPzjFTaeC3ZVGl5vdUMlmMPaRv+2ByemPeAinJd4d/tuC3C6lKvYIlm9Wtr/D0yByf9uraNOMZcYRBd3daY59UNZx6ud289PXw5L8cpt8tpGXbuidoTive9Jfv6HYvjjxeInuFjPB9y3U69uyCyCifVKoSu7SIr7X7/o6O08L7zdXC7+POa0lHt8YUDCkOdL6DPV+2IOWHZ34TB9ObPN55vb0XNyA7EmWESLboS5azHSrW7pi7id8DqaW/+vBVbqrR4Y2onf1sxP1+MMNwfCFr+vjWmgmVPnT/u72z0PJ9sk92rQ0YMHdTL8nrjD3/0wMEf9TlInUvyrT7FktFfc1uVR5srG1qJVda/SIkXdrx106m6PGrIYGGuK+J/6m98sT7600JfqzqyZdmfPloWcTne0KfG2FpVazm0zsyqh2H0L/2U77bo2dLvI8o0t9WnsLtr6mLOlgkGg7rx1a9VVesLnwFgZWb0wDILje11CAAAAMBendrk6flfnRC+nKlCEXNrlqa02hh54dE6snOxhsZp4bQvXXtad513TGcdd0i7hJs2Iy88Wsd0KdE1p3YPXxdvw37ir07Q7eceETGAOlOdnu8znUkfbUD3+G3fTuzeQTee1TOmvZMknXlEp5jrot/TN1ZsBUv850f/Q9rGvU2S7q6f7THuZ/0sb3c5HeEWZMaG36qtsScPxmtTlixASVbhEr3hXFnrjei+kYx5Pkum1XjNIUF9BUv995NsA9zYlOxQlKvP7jpHD13cN3R9MLRe46lktKVrEzWP6P1vN0XsxRhn11sFaObHJs/t1JzvG2bURgef26s9+mLNzoQ/s3hVQVabzf+59fTwnos5dDICk1x3KGwIV/7E+bmZT0aN/vrJAhar9RrPZfMJztEnO5sr2r7fVq0Nu2p0/Stf6cuynY3ahL7ngqPVu0ub8GVjTo9VJ5fo7z/ez9o4rm/XEr1wzYkxtyes4jPd5XflFQ1t7lyumK+X6gkD0Y9Bfo5LbQtyMvb/Q8NZj87QWY+VaqWptdXDHyzR/70wV/e9+13Esd4kIWcy0cHBB99uirh8y+vf6MSHp0VUIFmxeq48MXVFRIASPVdIUrjt3x6PT+c/MUs/eeqzmLBmynebdevr36gqTgVReA2m55Wxt+zzBy3/ljYmPIyuMDRL9rfdbgQsrUBRnlvHdCmRJJ1g6tdqvMA8sE2+bqs/i+GM+mqW6P/ZRjP3AH5+5irt3FOnpVFnHRj/Q94Z58VKUa5bJ0f1Ei7MdalTm4ZkfF79HJfo/7EmK7VOJ2D51xfrdMXzc7SjPvx47KPlST/nrre/jbnO6g/Zox8t19B/zQ9ffm3uOnn9AR334FT94KGpuvPNBSpdvlXvf1uudxek1tfx+y3JK1ga2+swFcFgUFsqrWfyAAAAAMgsq032pt5PUzYqhpxxuD6+46yI923N5f6f9tEL15wop9Oh3geFNhitzrAfcsbh+nD4Gepc0rDGeAPnz+9zkG4/98iIjT+r/vXpSDR/5ooTk1fFWAUnB7XNj3kfbcwxTVdBbuTGbKIQozDq2OhNwxvP6qlvRp2n/xtwaNz7MAanGxuxyzZHtt75z62nx92ITTrkPklPvVuj2lF5fAHLzhTxeAMBy03q03oeYHF0YuW790acPV9TX9XgdDQ8r412bck2KX31Z8e7nA45HA5TBUdoU914Sue5rCuODmlfYFkBYRWwmK/LdTt1+78XhC/XRe3d3PL6N/r5Xz/X0H/N1+DxsyJaqBvi/bpZVak5HA7LuTRG+6ZO9ZUW7iQVLFWJZrAk2U/yWTwWRrVNu8L4VXPVnobn2R6P///bu+/oKMouDODPlmTTE1IJSSBA6L33UFWKoNKtCIKgKGIXFbtiV0TBDmKlqPgJClKCFOm9995CCKT37PfHZmanbklCGs/vHI9kdnZ2dmfLzHvfey+6vpOA5fsv4Z6vN7ncZD7hqR4A5BN7Pcy2x9Eq56Z83xToBAmE4EF8vTDV+8DLwwg/L/vnvnXNIHx+j30SgPT78pX/7ZOVCFNydYxKmeHjqC9USVwpmvC86mCiuGzuhlMAgF+2yCd8u5KN5YhwfyG43jQqQHb70n0XkZadj+83nnK4nRyN958V8qCUVkBTeI9KM8ZSs/OQkpmHe7/ZhN+2n8X477dhyZ4L+GTlEdX9pfIkx1EsEVZYiLVH1P2w3RmXzHeQJeSs/1Z5q9h7R6Xmj0e6YP9rt6CmTq3dp25pgCNv9sN3o9sDAKI0Gt9JfX5PGwQUfcH+b9d5tH59OcZ/vw0AxJNYoWaiMkND4Gk2qiLs9SL8cVOjCNmyM8mZuKLoNSKceDz3627cOmOtattJ6Tl44fc9mj98gv+OJmHiT9uRlJ4Dq9WKKb/twZaTVzFvq+1LNFERNW4eHYghraPRLrYaaof6AlCnFwPOGxkCwCcrj+Bkkv1E6rft53D/7C145KcdspMT6Y+zkjINU8v1yGB5Z+khdHhrpSrVk4iIiIiISp+vpXRKcUlLSFX0gQpXzLizNQa3isLvD3fRXUeataMXYNHSIMLf+UolFBfuvEzbuG51cFPjCHw0Qj57XDlwWdLSKT6KgVlng5nSAVitwTNnGTVC4/TsvAJsPH5FdXtzRWklKWfBQb3b9Z5Tbn6hy4PbgG1QXyvYoTfWosdqtaLz26vQ/b3V4mzxjKKBfV9PsxhgEo61s94vwsC58Nm2B1gKMTPhmLieMBivFBXkrRNMUb+3pMFV5XeJ3hjE4t0XcPBiGh7+aZujpyGjd1xMGn1pzheNjwhluYQgoVbWwcWUbNn7VvnaOmsGrjXQLmQHSMsSSt9zd7SKko0fSXtL5OQX4uMVjge0hW0IY1EGg/r7XCswrAqwWG1lnP7YeQ5nr2aq1tMqNWaAQfYdE+Dtgb5Nq+PhHnVVj3c1M8+ewaIRYJE+b6kNx+TfA8pJ03oZiKXF2efL1XVcuX+fxuEA7FlqSloZfVJa37lzN5yStVUoKLSqAoULtp3F3nMpstc2N78Qs/49hrVHkvDE/F3i8oupjrNohAn1JqMBnmZ7wFOrd5a736969PpyVRSV/6yKXOJhMsLH0yyW7dJbRzjprh3qizmj22Hm3a1hMRsxvnsd2brBvp6YPrKVbJkQLRVqJWbmFiC/QD0bpHqAF7rGhaJ2qK+s1uvyx+MR4OUBb08TusbZ+8JM+W2PKkXu8KU05BcU4pctZ7D3nHa9zh83ncbtM9dr3nY0MR13fb0JS3ZfQOdpq7DygD1a/e7SQ5i35bSspNdTN9fHHxO74IPhLbBgQmdM7mNLh4/WCESd0ygbpuXY5Qyn61zLzJMFYqSUdWJb1wzCqie7y5ZdjwyWz/+1nZy9+ud+J2sSEREREVFxvTqoCRpW98fjN9Uv9W2XpERYRVEzxAcfjmiJRpEBuutclgzmCaWtHfnzka64s31NvClpeF9S7RXZJoJqGr1QlHwtZnx1X1vc0Uqe7aJ8Lh5uNppXClCUMnIWgJNmpxRnUp8wgJudV6A5W9tRPxlngTK9QTi93rQ5+QUOJ2Yq5RdYNRuCuxPAsz2u/TEvFQ1mCpM1fSRBVWelrsT9UjTQFjLWCgqt+GjFYXE96UD5iifs4wcmo0EzmOJlVr+eIb72AIsycOVsDEJr/EbvpdMbmNXqSyOUCPMvmgjsIQZY5NvYduoq+n8in6Sr7K3hrESYVtBGyA6QBqmk74l2scGy3lpKeoEHKb3v7ZCigKbWa5+reK8aAHy77gQe+2Un+k23vw7C6+RpMqBhdfl3aoc6wbJgifD9ILzG0kdIy84Ts5i0Ar+nNDKYAGD9UXnmg7S3se0xr+9vlpDxoexZJP1uKG4PFmHbQmBOqBi06USyODFd6oTOGKDAlZJbhVbg5f/tVS3//N9jyJG8v3PyCzXLgTks6VdQiB7vrwZgOy7C+2HH6ati8ObXhzqjRwNbOUtHfa1V23YQxLrmRq+s8sAAyw3GVscVGNu1ttN1ezQIR/9mkdj9ys2Y0q+R6vZqOrNSpE2n0rLzVTX4fnmwI34Y2wEmowGta1ZDh9rBuL9zLOpJZgm1lpQyO3M1U/Vj88qf+xH3wt+qx/77sW6yv/WCL+O/t/c2yS0oxFhFr5Nnf90j+1KrGeIrmyHgJZlxc/hSGv47moTvN57Csn0X8V1ROuFtLWugreR5KM1cfVT3Nqke76/WLMmlDJZl5hagTpgffnmwo7hM+sV7ISULC7edLbWmfMkZudet9qygsNCKu7/eiHFzt173xyIiIiIiqkhGdY7F0snxCPd3vT+mI9Lz6Ypey7y0SIMbaTnOB2eaRQdi2uBmpVr+TC9zwt9Le/ayK0a0i5H9XdIMllA/+bW9s/eHdKa8dHKkq4SB/Oy8QpcqQEg5KwFWM9gHj/SMwysDG8uWK4NIgtz8QvEauVfDcKePv3jPedUA/ODWUW4PAEsbuAvHT3gtpDPbzS42uS9QBFiE950y20Ja/i0u3A/j422TafMLrbAogimeZqNmsEsaOPhq7QnZbcWZ5O+n0TsEUGeSCEMywmstLSckvnZF2xICbcqB+iGz/kOyosqK8rX975i6zJGU1piKkMFi0QhEAICflxl3daiFT+5spbqvq5QZRm/e0RT3d45Fp6LydFqD08py+/svpOLNvw4AsGchAPagkYfJiEBFJZX3h7WQZZAIGQtC0EX6XjbAIAZdLR5GsfKN4OQV7eCB8m12Jlk+cdmikV1VmoRDqgwY5zjIdFJ6f9khfLNO/nk4fy0L7d5cibf+OiDeP0QylvqJRuaSszE7VyZSZ+bmY8G2s6rli3dfwIPf27PIcvMLNTONHD3TJEmFofxCq/h7sUjS7sDPYhY/i5lufMc7KsOmnGRe0TDAcoNpXzsYO6bejBcGqAMmeoQf2bphtlTEdrG2oEE1nfJVSek5Yu3HlKw8XJMEWAwGILYopRGwzSKZN74TXlE0//OUnNCdupKJiy72/HA0e0nKlewRab3ejopZR8IP2+X0HAz6dB3u+noTpi7aK5ZJA2wBiIUPdcasu1trbn/32RSX9hUA/tyl7suSmi2cfNn2ZWCLGrZ9rROC2BBberL0i7fTtFV4asEuzFl/0uXHdcaV19GZS6nZ+HXbWdVMAcAWXFt/9AqW77/kdBYJERERERHpkw5cVIUSYa6IDLRP/ktxo89GadJ7rZ31PXVkVOdY2aCY1gCZO0L95AEl5aCoknTuW4uYILcfT7ieXn80STY46wqTk+CPwWDAU7c0wP1d5JNKA3Re75z8QnFwuUaQF95ykr307tJDqj4ub93RDCad46x1nQvIsySEwIEw+1taSl0IlDjqTWC7XR5gsSj63OgRBs5z8wtVkxq9HLyvbm9Zw+F23aEXYPlyzXHZ38I4k2YGS1GfXmFbwv+d9e8F5OXX959PxQ8bTztcX6uEmNCTwtNkFD9PvRvZA3b+FjNMRgMGNCt+v6RaIfIydHd3qIVXBjURJwNrNaLPUDz/fee1JyFLS4RJ3dIkAqF+Ftn4n/BWFN6b0iDWxVR7+TVPkxFfj2on255uqXvJhOa8gkJsUJQOdPReLA1CdooywLLt1FXx346CnIt2nMOnCUfx+mJ5pZcZq44gKT1HfC8HeJkREWCfNHFBI7PSWYzSlQDL+qNXdHsbKbelGaB3cF9pLyEvs1Ez6O3jaRLHKjPc6JHt6HuuRbR+6ciK4MY4qyKZQB8P3YZxjswZ3R4P9aiLz+6yBQz0MlgKrfYgym2frcfSfRcB2H4MNjzX26XHuqtDLdlMn6mLbKltdSTBGaVu9bRnzszbcloVBXV2wgjY03QXTuiE8AD5rDFhVsKZ5Cxk65wQCim5tzSpXuKTD+WXfH5BoZhm98cjXTHz7tYY181exk34UVx+4BISU7NlJdb+2X+x2PuRqAh0pWRp99dxR6/3V+PJBbuwZM8F1W3SzCXp7AoiIiIiInKP9JLoRslgkdK7brve9EpWlSQo4mEyooukqXpJy+coszuUJYKUtHo9uEO4Pv804ajTwIFScbN19DKGciQZLB4mo0uZRdJBV8AWMNI7BHqz3qWD9MLjC2WupO8Ze4kw1zJYzGKAxbXeLcJ3QV5BIX7YJA8saPVkEZS0H4XscVzsrSDsj1kj6JSuyGARmrIv3XtRtxqGcMzSsvOx5vBlAMChS9oBCMAWbADU/UEAQDg8RqMB/z7dA2uf6Yn6kiotwv44KyU3pktt3No8UpzgLFXbwXgYAPRW9DMG5IPhjkhLhEkJAWJpiT0hA0i4TfndKoylWcxGtKoZJLtNr7+N9GVR9kMG7Md+XHwd1W3FJR0nLCh6jygDvqNmb9ZcX0naS1kaVFW+9YJ9PeX9ZDTeDs6qt5Rmr+XcAu0MFmEcV4t0bM5DJ8vNy8MkfhbdKRGm9xr3bhiOhzR6/lQkDLCQy2KCffBs34ZisMFfZ5aB1WoVI4spWXlYf9QWeb6tZRSqB7qW3h7s64lDr/cT/xY+Y7c21472fzCsBd4d2hyA+gfr2V/34GNJzVEAaFDd9aaFEQHqfXZ0oiF4pm8DALYf2I9GtMSbdzTFY73rqdb7eVxH1bKBLWrIfsCUswykX2ixIT7o3yxS9qV4tKgp1hf/Hkf7t1ai3Zsr3Np3PcqUvNJI0ROi2c/9ult125BZG8R/j/9+G/a4kfVDRERERER2VsmU1KrQg8VdpTko5Y7n+zdCVJA3XnSjioQrpNe9xZg/KaPMIHBWIq2kQ+vSXqauZBgAQM8GYZg/vlOxr2f1AjO5+YVisMDVAIuW9Yom3QK9AUNpBkuvD/5FckYukooGlqVjAWadXiJ6jyO8L1x9nYTB3h83qSemOtrG4t3qCZLuEsZHtJ6b1jKhUodW0MleIsy2z8J41c+bT+vuq/TpvrvsIADA02R/zsoxryY1bONcyubhgH1Q3WSwBXlign1kA+l6WTpKzaID8OldrXFGo7evswCLlk3Hk52u8+Hyw/h7r21AXdlMXng/SSdpC+XQhN5Pet+tnmYjPExG3Nayhpjplldg1Ty2Rsn2lRN7Aft7sUmNQPwxsYu4vCSl5KX7YSiKdCifi3TzeQWF2Hwi2Wm/nALJnYTXVWA0GmSTyY0aX97OnlJp9lrWy2ApkAWJ5MdMGjDxMBlVFXf6NApHmL9FPGbu7K9e4Pbxm+rDx7P4ZTXLAgMsVGwGgwF3d6iJDrXlDa+a1AiUpWIL3K3NajQaMKyNvJnfXR1qqdb7a1I3DGkTLT7mDw90UH1BzFh1FJtPJIsfbHfKTWn9EHo7OVlZ/VQP8ccXEF6rWpoNKlvXCpL9ffLtAZhxZyuslDSsX7L7Ao5dThf/PnPV3hhMmcIJAEE65dsA/dqzrlBGnq9mlCzAIv2SdpY2uPPMNc0mXURERERE5Jz0Gqk4FQ2oeGKCfbD+uV4Y262O6vq2JKQDcwatadBuUE5S1Mu6EYzuHAsAxS53JJ3Z7yigIS0J07luqKynjruUpbKEfqlXM3NxJtl2fe1hMhS7dFv1AO2gVJ5Oho5yTGJmwlEcL+oDW1uSveDpQg+W9Jx8cXtCdofFxQwpR9s9r1fOqZQIwRCtMnHSTAcfTxN6NgjD9JG2/iVaJcK2n7ZlFQn9a6R9fZc5mI0vOFsU0JAOjocoehMJM/K1xpOE+0ln80sH0l0NsAif67lj2qtuiwn2US1z5uDFNIe3bzuVjE9W2vuACONLPYsalI/qrB6DEzLYlNkuSsI44fSRrTBP0itYK4tFGlT4SKMvidC3CZCXSnOUVeKMNJgifG4cBQPWH03C8C82oO0b9gnMWiUAhX2yWq2qSckmg0EWxNJ6BZ2WCCvFyQLZeQWaY4qAfRL0xJ+2o/Pbq8TnIs1Y8jAa0Ldpdfn9inp4i72S3Nhfve8jV7/PylPF30Oq0N68oxnmje+ExY92RbvYarijVRSeuLk+WirSAAEU62RIWrOyaVSAKgPmno410biGPH25U90Q7HvtFtW2hn+xAd9vPIWtJ5Ox95x+2qeSj0V9cqn8oQWAeuF+4r/1yqcBQMJTPcR/P31LA1UjOUGonwULJnQS/94uSUNesf+Sw33+/eEuureVpPawMsByJDFdZ03XSBsaujKJbvvpayV6PCIiIiKiG5WviwN8dP2U5jEozQwWJWcBuHoR/tj76i349K7iNeyeICn1kl5UneH+oqBNTLB9suZbg+39UEpa1m7dUXnj8sgg2+Nk5hbIZu+7Uk5c6tv72wIAXrutqebtBToDhspB5gsp2The1OO0bqh9bEFawkvPUskseeF9YTQaXCqn9vde/UyU0iwDpkXoW6PVJ0Y6iNs1LhSzR7cXAwzia1JYiAspWWj68jKxLJXwGbtNUqbdlYy9a0XjJNIB8yZR8p4PQuBRs0SYmMEi/Vy6H2ARjl/HOiE4+fYAWW9gZXaJK3R7nhSRVg2xPYbt8b+6ry02TumNNrX0x/Gc7Y/0/WcxG8XvKSFAJf0Ok36+hXJtUtJsKmkQq6AEGSybJdk9QmArJ19/4q90UvC+8ylYvPs8mr/6DxIOJcrWEz43WoEQk9Ege67CayLNxHFWgrE0M1jOXcsS+88o/bLlDADgrz0XcTktB0uKMsGk310eZiPu6lBTdj/vos+JcHzd+R7RKxlZ0j5jZaHi7yFVCvUj/LFgQmd8NKIlArw80EERTCnuh6FVTfusg9Qs24nXAEmZsGf6NtS8n94X/UfLD+PrtSfEvyf3kZfs+mBYC1kaqIfJoBkACfaRB1BuaRKBXg3twSBHM35qBNmDRM7SdtvFBiO8KD376YW7Mf77rUjJzENu0UmaXk8aR6mjVzOL3zclQxFgOZ2s3+R+//lUTPvrgMOAjrTvihUlm31ARERERET6btQAi1BuKcTBJLiy8kivOLStVU0sb10S5Z2E5GcxFzsTKsDLQ2yaLVyfNosKxIYpvbD8cXslB7OkebJvMcrDNIq0TcYc3CoKg1tHyW7TypyxlQhzL4OlV0Nb3wu97AKtwcXP/z2Gu77aJF9oAI4XVa2oI8lgEV4DR4OU0sF7acNpV2Z9P9pLXca8rAj7l5VbIA4wn0jKwKM/78Dus9fE9TwUz0MIzOQXWPHMwt2yiaDCaxEs+bxrBXD0SMckHuhaW3abMDZz/LJ6oqkQmJEOnktn7rv6/WtSfKZKa4ykR1FGijNCUMRsMuqW+BfG/50FWCyS8S6DwSBWgsnOtb0u0vens1JfEf72fZG+Rm62cJIZO3er5PFt/3c1eLHyQCIe+WkH0nPyMXr2FtltP2w8BUD7fWc0yAOfQmBHepxPXclU3U+qtAMsuQ6y2KTH5WhiOlbsv4TXF+8Xl5mNBlUpPSFIJwQ2heeWkpWHxbvPIzuvAP/bdR5PzNupCjTrlbSrDAGWG/MMi647Lw8T1j7TEyO/3Ihz17IwuFWU8ztpCJfUfj1dlLY7bXAzdIsLRd+m1RHg5slPek4+9l2w9/F4rHc9PNa7Ht5eehB7zqZgQPNInErOFFMk9X4ElU2cBjSvgXax1bDuaBJuaVLd4Q+NNGAjfPE807cB3l16SJy1I3VH6yh88e9xAMCyfZewbN8/4m1DHKSYf/9Ae9z7jb0hV5e4EKw/ekWcmeGq/IJCMWUwWVESTJglovT7jrN4fN4uALYamy8NbKxaJyk9By/8bi/5ZbUCv2w5jbuLysAVFlphMDivP1kcVqsVH/xzGMmZuRjSOsrhrAwiIiIioqqgZXRQee9CuZg3viPeX3YYT2iUay5roX4WLHyoc6lsq3v9MPy1x5a5UBlLvvl4mnE1Mw8XUmz9Frw8TKpS49IZ7sXpjTJ3THss23cRt7eKwuW0HPy2/Zx4m6/GpEhbiTD14wxoHinO3naV2WhAfqFVc4D87b8Pqpbl5hfifNFrIZ0wKYwZZOTko7DQqtlQWpqhIa2mYfEwQqNfuEz/ZtUdr3AdCSXCcgsKkZ1XiNcW78PPm22z5nectlfweE4xsdaj6PluP30Va4/IM5OEbUrLuof6Oe4pJCVkRPRoECbrFQTYS9udT7FnhWTnFSAjJx/JRYFCaem+OmF+aBEThFBfT9kA8R2tovD7Dvt7UUp5fEsri6hxZACuZuZh15lrDtfTKxclVehigEWZQeXtYUJmbgGy8mwBNWkmkNCLSS+gFCgpgy/9XkjLzoPBULJew4D9uGdrlKvT4qgs/9t/H0TnuiGarROMRu3XTZmJk5iaLfa/VnLWj0lQJ8xXzIprGROEnRrHPievULMPjED6eny7/gS+XX9CdruHyQg/xXemEOQV3kvCe3jsd1uw5eRV3NuxFr4vCkJVD/SSTZyfvlJdHg7Q76FVkVT8PaRKKybYByue6I55D3bEywObFGsbBoMBY7rYZg28XDRIH+DlgZHtayLIp3gzkM4k234Mp/RrCIPBAIPBgCn9GuGncR3h5WFCw+r2erCOZslM6G5Pax7YPBKRgd5YMqkbJmk0sleKLJoJ0L2+bRbBhPi6WPxoV83Gh3e2q6laJnCUvtytXpis7NZjvW0XFNfcyGD5Zt0JxL3wtxiBT86wnZ0Jr5FeZF0IrgDA4UvaNT+FgJmUNOCSnpsvBleE5yGtuwnYfnyVMx0OXkzF9xtPadbCFGw+kYxPE47ip02nMWTWBs0ZKEREREQkt2/fPgwbNgx16tSBj48PQkNDER8fjz///FO17vz589GxY0cEBQUhJCQE3bt3x5IlS8phr0lQM8QH/3ukC9Y+07O8d6VMNawegK9HtVWVlq7shrWJEf9dGuEVZR+W662ar3yAsonG8ZEGDpSDeK4I87fgno614Gcxo3aoL74Z1Va8TatShdlo1KxG8fptTd3OgLKXx7ENUH64/DBmKwYnpaSN06VjHcIg5RtLDuCOmes17yuUImofK584KM0A0mMwGNBMUQqrrEQF+YjX+qsPJYrBFcDeEyUiwKLKDhKyRGatPqbappDBYjAYMKKt7TPizntbGF8wGQwI9/fCpF5xAIDqAV5ikCRPMuN/6Of/oc0bKzB7/UnVY5mMBix6uDO+ub+d7DHeGdIca57uiUNv9MXTtzSQ3VbSDJaPR7SEyWhAt3ryHsjeHia4UmXPw41SfM7WVd4uBEGy8grEAXbBpaLG9srgwUM96mLp5G6yZdKAQJd3VqHh1KV47tfduJpR/GotwviRq+NlgU56Gx+8kKZZbsxkkJcIyy+0YuvJZLzyv32y9Q446J3jagaLkI039dbG+GhES811svMKkOdge58maAc8BJ5moyqAKWScKXuwbDlpC5pKj/3e87b2Da/+uQ99P17j8HEquoq/h1SpeXua0KFOiFiDrzheGtgYB17ri9FdajtfWeKnsR3QQNI8T0nvBE16QuWr0X9FMLlPPXx+T2vsfuVmt2cM/fN4PNY83RO1QmwzU4xGA5pGBWrOFogN9UXHOtoZFrc0dTzb5Mmb7T/WcUU9YjJyC3S/kBMOJWL07M24mJKNxNRsMfXvxUV7i2631cLsWCcEBoMtC+VEUgY+/OcQ9p1P0dxmnKQ3jdSlotk5SsJ20opq8XqajNj4fG8AthRL4YQnJ78AN334L0bN3oLc/EIkHExEckYu+n68FlMX7cWindozQgDgcrp8Gk+vD/5VlT8ridTsPIe1O4mIiIgqo1OnTiEtLQ2jRo3C9OnTMXXqVADAoEGD8OWXX4rrzZgxAyNGjEBoaCjefvttTJ06FSkpKbj11lvx22+/ldfuE4Dm0UHFapRMFY+xlHuwlPUM4VrB9iwNbw+TrHG1QHpt7l3CGeoAEF/fXiZJa8DOy8OkeW3vYTLoXtfqkZbHOX45HZ+sPIJX/9yvOxFQuEY3GOSD9B6Sf+86m4LLGikpwn2Vz8nVvjWvDHJ/QmyLaHVQRhkscGRMl9poF1tNDIic1xkf0MpMcJQ54SOpQhJVlIHiXokw2/+Fz9cTNzfAP4/H4/eJncXHLSjKTCostKr6+yqzAbTeT55mI2qG+MBiNqnKuCmDQe429769VRSOvNEPPRuEy5a7mvXgyveAMCajPA7SjB8Pk0H13IVxwUU7zmHaX/Isrt93nENqdp4sY8fPYsazfRuiYXV58FX6GgnBrl+2nMHrS/ZDKS07D4/9sgO/bjvr8DkJGSTXslyr+OKs0kpmbr52iTCjvMl9fkEhhn6+QRZcBICcPP3xJFeb3AvbMBsNqu9PoUd2Tn6hw/fGZwnqIKaUh8moeh8IgTVXerAI35Oz15/EQQdBJQZYiEpJcQI0neNCsezxeP1t6pygScuC1XMQoPHyMKFv00i3y5QBtkhyTY0TSD1630fOHlt68hbk7SF+eV0pykQ5k5yJWz5ag/lbzyA1Ow+jZ29BwqHL+H7jSRxPsvdXCfAyI7+gENtOXRX/Fmpg9pu+Bp+sOoqx321VPSYAzPnvJMZ/v1WVaTLl9z2a+zyuaDtp2bYfNn8vs3isrFb7ydGhi2k4npSBNYcvY+qivRg9Z4ss6q880ZHKzFH/WDV5eZnu+u5Iz8lHt3cS0H/6WofrnUnOxH/HkhyuQ0RERFSR9O/fH0uXLsXLL7+McePG4bHHHkNCQgJatGiBDz/8UFxvxowZaNeuHf78809MmDABkydPxpo1a+Dn54fvvvuuHJ8BUdVUGrknFo+yHR6SlvyJDPLSHIgOD/DC7S1rIC7cr1QykKQZMVqvmTCYvX3qTbLlHiYj3hvawuXHia8fJhtclPYI+XHTKc37pBWtox6slP99SGMQUgiwKDMGXA2aFaf82hu3N1MtcyfL59l+DWx9OYrGevSyD7w0Mo0cBUz8JFVIhAoYjiY/rnzS1vNHOPYFkgwWQf0If0QGeste33eXHkRGrnqSpruZYBbFuJSyRJhWppUzRqNB1bemY90Ql+7rSokwgfK9WTfMHoTM0+jrIYzrzPnvpNjoXurF3/fKsinubB+jWgcA9F5ireop3/13En/sPI8nF+xSBRKkZb6SigKXjnoISzkLcpiMBs2JzSaDIsCiM9gnLZ8mlZGTrwrG6BE+JyajQVUNRqiGk51XIOvB8uFw17/nAPt3TqSkX49YIkzRg0WLo/JkUiwRRlQBbJjSC8smqwMtej9UcZIfhUidmodlrWMd7R9DZ3UmBzSPBAA0jw6E0WgQe9pcLJod8uqf+3DoUhqeWbgbHy0/LN7vZFKmLDUyr0B+UpianY8aQbbXRqjJeCElG0npOWLmidSyfZdwOT0HOfkFOHfNluor7QVz4LW+4r/Pp2Rj7oaTSM2ybSfA20MWDBN+aKQ/RPO22n5g/rfrvLjs2/UndDN1tE6ESsuRS2lIycrDscsZSEzVnoUDAH0+/Bd3fbUJW09qN/Fy1d5zKbh/9mYcTdSP9hMRERFdLyaTCTExMbh27Zq4LDU1FeHh4bIB04CAAPj5+cHbW12TnIhKppqb5au0uDtTvqSk13j1w/UnNn48shVWPNEdPsVocq9kMBjEAcE2sdVUtwvX18GK19PDZMs4iNRp+q1UK9hHHKguKLTKJkxO/WOf5n1Si2bOeyhGj9Ny5AO+C7fZB1eF0jvCYK+jDBY/ixk/je2g+diuNmCXKk7JNilhEFbo6/ppwlHN9bR6zhxN1C/x7SOpQiKM+eTo9NX4+r62YnApt8BWLUOYMKpVXU06MP7FmuPYd149qdPtAIvymCnuHxHgev8YKen7yN9iRue6oQ7WltzPhawnYaKvp1m+rqMKMIDzLLT/7TovC4JM6acuoQ+gqNS/erlWVkm6ZHLtQkUWSzVJKb4F285i8e7zYuCns5OAVJZOAESQW2DVzWCRvkeW77+keX+9rJL3/znk8HGlThRNmjYbDaqxQyFz7O+9F8XHerZvQwxurd/nWYvwmWhdy/59KnxmlT1YtJiNBs1qMvMe7Cj7uzL0GWOAhaq8yEBvNKjuj8l95L1R9L4wq/l6YnKfegj29cQ9HWuVxS469XCPuqr+LLEuZMDUCfPDpud7Y8GETgAgNskSTmJSJOmPWyQD/euOJmHCD9vFv7PyCpCUbg+4DGgeiTFd1SXbTiRlYN1R7ayMxbsu4JGfdqDL26tkjdW+f6C9KkPppT/2YfWhRAC22TRmk1H8MRZOPB+ft9Pxkwfwz/6LmsuFIM2Q1tFivdlAbw8kHEzE/C1nVNk2rkjNzoPVapU1Adt++qoYzFISfmxdnX2gZ9zcrVh96DIm/rijRNshIiIiclVGRgaSkpJw7NgxfPTRR/j777/Ru3dv8fYePXpg6dKlmDFjBk6ePImDBw9i4sSJSElJwWOPPVaOe05Utbw7pDmGtI7GgGaRJd5WWZdgkQ62VncxcFEaNj/fB9+MaotOdULw9mB5FoZekEkYEJ0/vpNLpco8TEZ7BkuBFYUuXF+mFlVwUGYQrD0sv75etNM2qfCzhKNo+dpyHLiQKikRJt83aQ+WT+5sic5x2oPsfjoBFkeZLcpAgO3xXXsPeXuYNAMnWg5cUAcx8nUGn29pEiELggjHUy+DpU/jCFhM9moZ+UWlvwDtmfXKWfRak0tdnZGv3Ee9+783rAUaRwbgs7tau7Vd6euQ5kY5dEctX2bd3RrNogLxztDmqscAnPf88XKhMo0wVuNpNjp8jyh71eiRvlem/CavoqKckPvcr3uQXRRgqR/hj5saR+hu9+X/aQdKpdvWKvPl6n7rZX1sL6oq4w5TUYCln6TFwOFL9iDln0UTlYXgWtMo17MFhc+E1vve/h2on+1jMhowd4M8qy82xEdWFm7RxC4u7095YoCFbhgP94jDLw92RICXGbe3rOFwls/kPvWxfepNiA311V2nLHl5mDC2Wx3Zsrs7uBb8iQjwEmduCCm7QnaK9DxPWlIrRaPuZJ8P/xX/3S42GI0j1V+6Ty3YhYk/bVctB2wnRkJ0/s0lB8TlHWqHFO2nfGbGzKKGdcIPS4ifbd+vFKUOn7qSqfk4Uo/8pB10ECLkAd5mzB5taziXkpWH0XO24Jlfd2PtEddKd51JzsSDc7fiyzXH0PyVf/DK//aJJ8YAMOGH7eg4baVmqqrg1+1nkZKZh4ycfAz/YoNmoz5HLhQFcA45eAwiIiKi0vTkk08iLCwMcXFxeOqpp3DHHXfg008/FW//5JNP0KNHD0yaNAm1a9dGo0aNMH/+fKxcuRKdOnVyuO2cnBykpqbK/iMibcPbxeCD4S3cKuujZ1CLGgCAOmV0DSydZCct1XO9VfP1RO9GETAYDBjZviYm9bZPxHRWISIm2AdbXuyDbS/2weBWUaqMEOG1G9giUlYeJ1+jXJKSMFivzCBQlnoSvLfsENJz8vHqn/vsGSw6vRBst+k/N70Ayzej2mkuB7T7u0hLRD3TV78fizuN1LXoBQGUE2QtYokw/QFeaVAor6BQDIZpZaIoB/z/0Oj76u5HUVlZRfm4dcP88Ndj3cTqJK7SOj7OAiAAxACDln7NIvHno11Ru+h9rg6wOD6u/i5kSvV4f7Vt2062pRV80YpjOuovonxfeHuaxGVeHibdUmSuyM0v1Mlgsf3/7g41Hd5fL+vDUQBMj/BeuK1llLisfzN7sEXYz6tF44Qfj2iJrjrBWACoJvm+Frat9ZEW3g8Jhy7rvq+W7LmAa1ny8oAhfhaYJBss6fdFWWGAhW4YnmYjOtYJwdYXb8JHI1qW9+6U2M1N9KPpeoKKUiA3nUhGdl6Bbl1HR4QfGa3mmI6CHmeu2m87ecWWqujvZRZPaBaM76x5vytFmTMhfrYATLJObVZ3CM/b19OsOStn2t8H8feeC06388hP2/HP/kt4q6hB23cbTmnW7Pxp02nZ38o+NX/tvYAfN53C5hPJeGfpQYcnNVKbT9izjirCj87us9c0g3NERERUtUyePBnLly/Hd999h379+qGgoAC5ufZzNB8fHzRo0ACjRo3CggUL8O233yIyMhKDBw/G0aPaZWAE06ZNQ2BgoPhfTIx2DXYiKl2TetfDRyNa4JfxHZ2vXAqkE56DvMsuwKIkHRR2pQ+Nn8WMED8LPhyhzghZPKkrVj3ZHa1qVpP0YCmUZVDoBTPs+yPfB2UpImUQpdBqX8fbU79/i6PsEr2yVo5Komndp0VMEKaPbIm5Y9rj4R5x4vKG1f2x7tme4t/FGCOW0UsCUGYXCUEl6QRKYXD407taAZBfR+fmSwIsLmQaLN6tHjNwNUNBoHzPlVarCWXwAwCq+Tr/nIX6uV6STDkGoRXUkQrzd33bzkpCab3OyqyP45fTkaH4/Gw6fkX8d64is8nPYhbHYixmIwwl6G6VW1CgHWAp2u8FinJlSnoZLNJsuGf7NlTd3rC6utxioLe6pFvXemGq9YQy/XHh/mLAXctSSQsGsRSixu5KvyN+2XxavUKRdEUmWLCvp/x7uRI0uAcYYKEbkKfZWCnq92kReqhM7lMPtULcn1kUXPSD+vuOcxj//TanvUgaRKi/nNvFBgOw/WB3qB3s8P5/TOyCsUWlxDYetwcDEosaiElr29YM8cGGKb1U2xC+lIUmXLNWH8W+8ykOH9cZIYPFx2KCpyR9W3DgQioe+nG701Jhu86q92P14UTVMuWsif2KNOcDF1IxY5V9sGH+VtfKhg3/YoP4by8PEz5LOIpeH6zG5aLXVyknvwB/7bkg669THLn5hWKgy2q14t2lB/HYLzsw6NP1uO3TdSXaNhEREVV8DRs2RJ8+fXDfffdh8eLFSE9Px8CBA8Vzp2HDhuH06dOYM2cOhg4ditGjR2P16tXIzc3FCy+84HDbU6ZMQUpKivjfmTMlK6dKRK6xmE24o1U0wv3LplxXXr79Wqs4PUBKi6kUB/J8PM2oU5TFIc1gkZaRdnYNrhykVvaDyS0olFVNgBXYdfYaANsEQr1tOSvfNX98J7SIDsTcMe0drifwkASC7mxfEyuesA263tYyCvH1bYO3k/vUg7eHCR8Mb4HoavYJmlqD/+6YdXcbzeXKbBDpc1aWg6pX1PfHbDKKk0hz8wshXLq7WsJMyd37eSn22d0SY3q0XmNnwZP3hjZHA40BelceI8zf4jSTzp0AS7qTsmZZGpNSpQGkf/ZdRK8P/lX1XRnx5UYAwPcbTyFVMbBvMRvlGSwleJvaMlg0SoQVvT/0+gUL9DJYpIGXZlGBsl4ld7aPwbzx6izhmkWTo6XHy1ejXJs0eOOol5AscFv07+QM9RiUdL1sB883UTF+FezjKXv8gHIMwLuDARaiSmTRxC749K5WeKx3Pecra5CWRfv38GWnJ5DLHo9XLXtpYGPx385mnrSICXJYt1LaVAyw9ctR8in64heyTrafvqY5U0TPmWR5Vs21zFxxtoCvpxkGg0G3jq4QwVdKy87DXV9t1Lztrz3qvi+7FYGYW2fIgxBzN5yS1W89ezVLc9uOWMwmvLfsEI5fzsA3606obt98IhkNXlyKh3/cjjFztri9famHf9yGtm8sx7HL6ThwIQ0zVx/DH0W1gE+6ULqNqpak9BxsP+1+LVgiIqo6hg4dii1btuDw4cM4fvw4li5dikGDBsnWCQ4ORteuXbF+/XqH27JYLAgICJD9R0RVT19JPwCLC31NrhfpTGlnJcLcIfZt2XpGVqHAWTsW5cD4l/epgwn9p6+1bw9WrD50GYC9fLTWtpxVPGhfOxh/PNJVnFAJwGHvGGnwpm/T6ogLVw/MT+5TH7tfuRlNagTKlvtIBne/vFc7WCJ4RTL+IOhaT7t8kXJQuGMd+3PJyi1AYaFVrLggLUvnKfZqsWewFLc8VMkzWEonwKIVULurqCyVVpYDAAxr617GqPT99fO4Dk7LeoW7EWApjjBJcNhZM/ipi/aqlnmajfIMlhIEu37efAY5eeqggvD+mHqr+n0tVVCoHZCQfiR9LSZZCcH4emFitopUgJdtmbw/kfq7Tvppd5SN5KFRvuvmxrbv87hwe5lA6XvZUfk4oZWAwMdigofJiHeGNMNrtzUps6B/STHAQlSJ1Ajyxq3NaxT7i14Z0Dh2OUP29/SRLVX3mS+JgH8zqq3s5EhZ6kpqSj9buqKfg8Z4ytk4APD67U1lfwsn3tIIvrJPSVSQN4691R+LJnbB5hd6yxrACeXIBF+uOS7+Wzix0/uuT5JE4TNz87Fs30Vk5ORj/Pfb8N+xK9p30rDnXAoOXXS9R4py5pGW89fkQZikdPu+KmdDJKZly7Jdtp++5jQ7x5EVBxJRaAWmrzgi1vstT3vPpeDxeTux/zxrtJeHXu+vxuCZ/2FbMRruERFR1ZCVZTsvSUlJwaVLtgvlggL1zM28vDzk57vebJeIqi7pbHNl2auyVJoZLFJC+ez5W8867AGipByIVAYnAPmEvC0n7efgymtOrYbvzkgHT4WBWS3+Xh64s30MBrWogfaSoIx6e+rHlZZJaxKlfn5S7sxeVwYn/L08xGVZeQVIz80Xe1hIB6KFfcwrKBQzBIob6HA3g8VZk/vikpZCFzbZpEYgVjwRjx8VvYOKS3ps/b08NAf3pUI1Aiy/P9xZs2x7cUiDEspgoyvMRoNYbs/LwyQrEHZne/eCT+k5+Xh64S7VcmEcaUyXWIf318tgkWbFBPl4yiYLC32tHiiqIiMQjpM06KYVgJOO7znq1yMP3Nr+fXeHmvj6vrZYIBk/lO6bs/48UkLwZ0S7mrivU6zL9ytvDLAQ3UCUAZaCQisMBmDZ5HgcfbMfbmsZJZ7sDG5ta4DVvnYwXh3UBLc2jxRTfQV6qdxzRrfDg/F1AKhrzErTUrWaGd7bsRa2vdgHa5/piddva4JHetlqt+brDOSffHsA1j/XCyajAS1jghDu74UBzSPFbSsDETMlwRnhh1yZGioQ+r8AwFdrTmD899sw4Qf3giuCzSfs9wkpCiy1i62mua40vXLvuRT0fH81liiydhbvtmWMeGnUCU7OyJGVJXtp0T7VOldKoZfNoYtpuv1iLqRk4WRShks9cxIOJZYoODL2u634fcc5fLzicLG3QcUnfH7+O5rkZE0iIqrsEhM1SqHm5WHu3Lnw9vZG48aNERcXB6PRiHnz5skmdJw9exZr165Fq1atynKXiaiCskiarpfSpP1iMV2nDBbpAKmrPTYB4EhierEfU9knVTqo6ajJvew+JiPmjmmPL+9tI6uAoWXa4Ob45M5W4sCuq6QD6s4G190JdIT6qfdXGOTNzitAalH2iqfJKDvWQpAjt0CawVK8N6W7gRllJkFplcsLkLyuP4+zl5GKC/dHiJ8FY7rU1rqbW6TP1WgwIKqauiKJVNta8vGPOmG+aFWzGjZM6V3ifQGA/KJGIFarVSwL765TRRVQoqp5y94Dk3SqyDhqBq8VIxFKmzmbNF2g1dQE8vG02BAfeYCl6N/KMSIhmCIt66eV0Sbtm+SINMAi9Eo2m4zo0zhC9p0hfS/P/u+kS9sGKk/PFaXKuddEVCzVNAIaPh4mNKjuL9bL3PvqLdj10s34YFgLcZ1RnWPx6V2tVbNPXh7YGHVCfXFvx1qy5c2iAsUfDOmXqsEAfHJnS/Hv+ho9XgDbl3RMsA/u7RQrnnBo1djsppMaDAD9mkYCAM4pym0JtSbrhfuhR4Nw3fsDwBVJVkjCIduAgrRBnjuks5aEurvtdXrY/G/XefHfk37ZgRNJGZj403bZOgcv2GYnPdJT/SO4aOd5WbDhcrq6HmZqMZvRS2c15BcWqpouAsD+86noNG0Very/Gq1fX47EVP3ZI7vOXMPo2VvQ/5O1uus4c7Fo+/8oUksFRxPTsXTvxRJl7ZS1FfsvYdbqYxV+n9Mk9Z+FzwgREVVd48ePR+/evfHqq6/i66+/xhtvvIHmzZtj+/bteOONN+Dn54ewsDCMGTMGq1evRu/evfHpp59i2rRp6NSpE7KysjBlypTyfhpEVAG40lC+rF2vgT13AixaFkzo5DBLRDClv7zptXSyo7MeLFLx9cNwc5PqzlcsJn9JZoyfp1m3aT3gWsDilwc7YvboduJgr5QQSMnMLcA9X28CoD7OQgZVbn6heL2r97ijOtXSXC5wZ6a+1r5UDyidckjekqoYTTWyhIa0iSrxY0hfI5PRgGBfxyXA/L08MLmPPVAhvFbKSbnFVVBoRWp2Hrq8vUozuCFdT0tegVUcu4gK8kKIJGCnnKwMADHB3rinY82S7bQOvQwW4XvzxQGNYDAYZOX2hECnskydVhaZh/IzYDaiZog9QJuvU6IMsB3rd4c2R48GYeLEai3SQM8pN0rJV8TfBldUzr0momIJ0vhR8NYoRxXo4+FSGbI6YX5Y9VQPsZan1uNIfyytVsjqJzZzkg4spQziAMALAxrprl871PbjsP30NcnjW8VAzY9jO4gnW2O7as/e2HMuBZ+uOiILtOgZ4aReaU6+LRiRm18oNjnUmxVzNTNPzNhJydQOhAiNDUP8LIgMVJ+EfZZgz9TRynJx1jROj7QpoxXaTRqVwZIXNeqbCm77zF6H3ZVgQmJaNmKfW4Ie7yW4HHyYPG8HJvywTfZYFd3YuVvxztKD2HQiubx3xaGX/rBnR0k/a9fD6SuZOJGU4XzFEsrNL8Sxy8WfOUhEVJWNGDECRqMRs2bNwkMPPYQPP/wQ0dHR+OOPP/DEE0+I682aNQszZszA1atXMWXKFLz11luoV68eli9fjvh4dY8/IrrxlGdZMCnpYKtWX4LS4Ojaq1XNINnfQiUJqXaxwZg/oROighxnCDganJeWZCtv0uwKo9HgsOm9Kz1NOtYJQU+dyZPCtXBSeo7YLzRNcTyEwea8gkKxWoXeAPeU/vpjEIDzzAQl5WCyu9lAemoEeqFvk+q4tXmkZgBD+V56wcnz0hLo7YH7O8diVKdaCPb1lDVOf/OOppr3Mcv6cpTud0CB1Yp/9l3CeSflwbSazwO24y8cd0+TCY/0jENEgAXD2kTrBl9rh9p7jhQ3QOujccz1gkBCb2IhW036fhHGl5Rl6rSyVZTfv16Kfdd7fMHwtjGYM7q9w+BYcb/jDSjHlMYSqBi/aERUJjQzWErhBzzEVxrZ93BYxzY8wD6rwZ1ZNHe2r6k6CQjy1k9Z7lgnBABw6JK9Dq0t5df2by/J85Zm0kgb4c1cfQzv/3MYT8zfpeprojSma21ZQ69vRrWVvd47Tl9Fy9f+QYe3VojL6kket3fDcFm6p1Baq0AniCAEinw8TVg0sQt6N9TPxjmTnKVaVtwAyzVJwCc3v1BWRk3PgYva5b/2nkuR/a2VpaT02/ZzAICTVzJx4IJrfW32nrM9/u6zKdh2qmIHLADIsoIupKiPXUXy+45zurfN23Ia936zSZblInU1IxcrD1xyevIG2AKK/T9Zi57vr1aV/Stt4+ZuRe8P/sWm4+6XAixt2XkFFT6LiYhuLCNHjsTy5ctx8eJF5OXlITk5GcuXL1c1tDebzXjkkUewY8cOpKWlIS0tDatWrULPnj3Lac+JqKJxt1fF9ZIvC7BcnyEyrXJFT9xUH2O71sZvD3WWlc6uFeyrux2tiXNSyutrZ02ty9rDPeoiyMcDT97cQHedRRO7yP4uadN3oWxSioMKDsJAcE5+IbYW9ZX8adNpzXW1ysg1igwQ/+3u7kqPy+N96rt3ZwcMBgM+v7cNPpX0p5UK8vFEkxr2/dYK7LnilUFN8OpttmCK9P03qEUNzfVNkqCKo0bqzkRrlCNbfegyLjmoniGQjml0rhsi/vvgxTQxgGE2GRDiZ8GG53rj3aHNYTAY8OKARhjXzT451wADGlT3x+zR7fDP4/HFDo5ZrepSY9Lvpe2nr+LABduYhjBWIIzjeWu8H5VBSSHoZ5W0sfcwGTGsTbT4t1kRDNELMLojQmMisCtOJ7ue7VKRMMBCdAMJD/DCs33lacOlEWAJD/DCu0Ob4/n+DbH6afmFs3QGxysDG8NfEuGO8Hf9C9fLwyRLPwzy8UBEgH4KamSg7Qc3KT0H+QW2VN/hX2wUb9dqBgYAX9zbVnVi8+/hy5pp3d+Maiv+O9TPEwsndEKH2sF4645m6N0oAp/dbT+ZWXEgETn5hbgq+TG/tVkkBreOwvC20fjqvrbY+mIfhBU1fhPKekkHn/edT8Hpolk3mZLmaxEBXvjm/nayH8iIAAsKCq0Y//1W8QfqoR51xe0nZ+Ri7Hdb8ME/h3RfQ6X8gkIkptmzedJz8nHwovMgR3y9MNWyXzafxq0z1smWpWa5F/RJTHN+8qTsC7KvBL1eyoo0qDIz4Ri+XXeixNssKLSW+kC9cnvK2SvP/roHa48kYc76k5r3HzV7Mx74bit+2nTK6WOdvpIpBgWPX3aexVJQaMWl1Gwc1AnuOfLv4csAgL/2XHCy5vV1LTMXnaatxLi528p1P4iIiIiut/KcTiKd3HS9gj7pOepryXs71sKLtzaGwWBAjUD7YLGjSYjOBnCV5am6N7Bdh93SJMKd3b1ununbENtfvEnVK0Y6mTFA0ZOlpAEWISCSqjPpC7C/5s4mVWoJ9PbAjDuL31tMOh7jaynbIJg00KBVAstdRhf6GckzWOz/Xjihk9bqur5/oIPm8veWOR/f6Pz2KgC2zA69z5sQ/DEaDeKY1thudfDCgMbiOsKx69kgHPUj/OFVzCBmodWKT+9qhfeHtRBLjhUUlejafvoqBs/8D/2mr8XqQ4niOJDw2GaTEXXCfBHgZRYn/Op9jwljQYDtczV1YGPN9QB7PxvANolaK6DlTICXh2a1lQnd6+KBrrURE6y9zTyd/ssVHQMsRDeYh3rUxeYX7E3EcopxEqFleNsYPBhfF4He6iyZxkUzOvo3i4TBYMDCCZ3w+T1tZDUeXVEnzD6bR9rnRUuIrycMBttsgKuZeTifkoVdZ66Jt0tn80h//P0tZrSrrW4+r5Vd0TQqEAsndMLcMe0R4mdBkI8n5o3vJJZMiw5y/PyMRgM+HN4S7w5tIf4IBhW9fsIMm7Rse9BhwCfrEP9eAi6kZGFHUTkm6QnZ+O51xX9fzczDmiOXsWyfvS+Jv5cZLaKDAABfrjmOFQcSMWPVUZxxYYbAmeRMtH1zBYbM+k9clpad71IvF60fyMW71YPXjk56BdKTwJSsPNUgvxCQSs/JR3JGLu4qqrMrOJOciYJCK7LzCvD873uwQqdvS3m6IElpPpKYjtcW78fxYpas2nsuBfd+swl1n/8LTy7YVVq7CAC4nCYvnSe85kp62VK7z9oymKb+sU/sO3QiKUOzr480mJbkpGTflfQc1H3+L3R4ayX6frzW4THOzM1HZm4+rFZbAEraY8jd9H53JKXn4M9d52WPp/RZwlFczczDigOXnD5nIiIiosqoYXVbRr9QfaA8lEXG+M+b1dkQ0h4I0oFGrXI+Aq3Z6lLK89d+Tatj+ePxulkM5cFRECvM3wIfRQnzkga9XMlgEcYG8iSDytLsDkfMRkOxBp+Vjw2UTtaAO6TlvksjuCitOKJX9s2kUyKsbWwwVj3ZXfx77pj2Dh+rdqivrPqIM+O7q3uF5BVYdfsjeTgoX/bG7U0R6ueJN26Xl0FzJYPlfUmvY4EVtoyioW2i4Vv0/l99yDbpb/BM+/jL/bO3iJNnvT3sn5Nlk+Ox+YU+4riW3jVmZKA3Pr+nDX4aawtOSUt4qcdV7GM4JqPBaXlCPdIqL4LHetfD1Fsbi89V8OqgJqgV4oNHe6n7DFcGpdNJiIgqFWkflAY6jeZL06KJXZCZmy/2ZmnrQoM+LXXC7F/O/l6Ov76MRgM8jEbkFhTiz13nEV9fnUUhkEbyjUaDGBCSylQM+n59X1tEBHghwkGdW3cDSIA92JNT1KfFYjaqgmA3f7RG/Lf0JDsu3A87pt6EVq8vR25+IS4pao/e07GWuEwY3AaAQxfTVLOIAGDlgUt4Yv4ufDSiBf47ekUW3ABswYwlDmb5x9cPw5rDl3Ex1T44nHAoETtOXcU6RWYJAFmw5lpmLl5bvB9D20Sjc117uuxVyQD+5/8ex82N5c0Xr2bm4mpGLgZ8sg65GoGdr9aewJX0XGTlFeDvvRfx06bTOPBaX7fSeT9afhinrmTgw+Etr8sst4saNWNPJ2fK3v+umr3+JNYesb3Wv20/hw+Ht3S4/jfrTuCPnefw3ej2qObreBbTOY1SXZ+sPIJXBjWRLdOadXbkkjzzadLPO7B413n8s/8S2hfVmJaSBnOuaARxhP3Zfz4V32+UZ8T8vvMc+jRWz9orKLSi41srYbUCbWKr4XRyJn55sKN4e+F1LM01aMY6nE/JRlZuAYa3U/dvyszNx1dr7ZlLn646qnpdiYiIiCq7xY92RW5BoWpQvSzd2zEW87eeRb+m16+puxazzmx/R2XK9LIC9BgMBllZ6oouNsRHlVGg1zR+eNtozN96VrNXq5RQGlyvtykgz2CJDfHBySuZeK5fQ931ZftnkveQKcnVYX4Zz9y/uXEE5m89KytxVhIRAV74bozjvhzSsmDKEmF1wvxwYlp/lye6ORqLUfLx0N4nvQwpR+XL7ulYC/dovO9a16zmsGeop8mIoZKqIwJpcOPXopLoRxLTMXP1Ud1tSSfaepiMkH41OIrT9ZV8z0nft8r7NJX0S9brHewKrXLgwmurrIYyqnMsRnWOLfZjlTdmsBDd4JzVcS0NnmajrPF9cUmj5uevOS8PJQywv7Z4v2xm0rTBzWTrtYgOxPjudfD6bbYBzCAfT3SrJ6+BKZ3x0jUuVHPAVotyO4LP72mjuVw4Htl5BSgotGoGCaRZLTUVgZEgHw/xBFE56z3AywO3NFFfOCgHypMzcrHh2BU88N1WpGTlYcycrZi35Yzm/gpigr1lM04AoEtRPdM1hy/j/tmbkZVbgNGzt+CTVdonCj9tPo0pv+1BXkEh3ll6CL9tP4e7vtqEaX8fwOkrtsyTq5n2wfUDF1Lx4XJ5CvCecylYsO2s5usm+G3HOfy996L492uL96vWSUrPwX6NcmL/HU3C9JVHsGjneRxJ1M8quZiSjYd/3IZNx6/g9JVMfLT8MB6cuxV/7JT3LEnLzsPKA5dkx+BKhjpbQZrV8cbi/Rg3d6tLvUt2nL4q+9tRmTCr1YrXF+/H7rMpqiCFlgxJqYObij4Pc/47iWOX02WzZpSzl5bvv4SbJEFCwT9FmSabT8r75Hy77gSe/XWP5HG1M2Je/H0Pxs3dijVFJb4EeTpZeskZuUjNzkdaTj5WH7qM45czsEjSU+Z6pSbn5BeIjRcTDiXi2YW78VmC/DOx64y8P9FOSfadO65l5uL2z9Zj9vqSl5nTU1horbRp3ERERFS+zCZjuQZXAKBZdCC2vdgHn5Vxloe8P4pRc7mSdHKdspTWTS5en1ZkFrNJNT6h1+T+9dub4udxHTH1Vv0yR4C9ebejagnC659bUCAO7rsazDIbjbJB+pJkwUszaMrC1Fsb47XbmuC7Me1KbZvd64ehTS11RRCB9LXSCm648/o9168hwv0taBEd6HRdrdL4fhYzXh3UVGNtx59DPS8NbIyxXWvrBqz0XhfpZf3wtvYAzLtL9cudOSr1L+3jO7Zrbd31pK+/8lC0qllNtl5x+8toBlg0jvukSpq1IsUAC9ENLsRPv49JRSScON7vZmR75YFEALaMnTvb15TdZjAYMKVfI9zbyfk21z/XC985SVeVenmg9qzztrHaP67CiVxWXgHSsvPgaBJ9+9hghCtmbRgMBgQXBbPOXrUP2gu9b7TS789etZcIS0zLRuvXl+POrzbK1knTGdQWjO5cG3XC/GTN8RpUt8+WWn3oMhq9tNThNn7bfg4/bz6N37afxdFE+2yGL/49jvj3EvDioj2qLBrpLH8A2H0mBV+uOe7wcZSElP2CQisycvLx46ZTaPvGCvT/ZC0OKzIt/th5Xvx3eo7+SfrrS/bjrz0XMeLLjbjzq42YvvII/tl/CY/9slO23m2frccD321Fl7dXYVtRQ8XkDPV2hRJ1BYVWfL3uBJbvv6QKJCidu5aF44oZNJcdlJr6aPlh8d/S9PQtJ5PFEl5SQkp565pBsplj3647IWtMN33lEZyU7Me4uVsd7jcgn72lDIBJU9mlEg5pvx7/7L+kCmwB2hdZQuk92+3u9QRylXRW06GLaZi39QzeW3ZI1g9JmT1zLVM7a8eZz/89jp1nruHVP9VBxNIy8quN6PHeat30eiIiIqKKLsTPospMFyb3Fbf8k1A2Wo9JJ4PFUQ+WDceuiP9WTmCcPrKlm3tY8XiYDPDxNKNnA3v1Cb2KARazCZ3qhjh8vQB72aafN+tPGBRLhOVbkV9UGkkvc0ZJGSQoSZXh5i4ECkqTv5cH7usUK6twcr1JX1fPYgQxpCIDvbHp+d54/Kb6Ttf10ggQWMxGxIX7Yf1zvRzup6sCvT3w4q2NVQGfd4c2R59GEaqJvoLaofZS+P2bRbr0WI4CHtJJlS8MaOTS9hz1OjIaDC6XzFPSqgohBNGkn3NfB1lPlQUDLEQ3qI9HtES3eqGVrr7hJyNb4Y+JXXBbyxpO15WmXwoz+V1tHHd7yyjN5RH+Frca7cWF++Hk2wNw8u0BsqBQgJe6Vw0gD7DM0Mn0EHSO065VLJR2mrfVfhIplFzSOkH9au0J/Lb9LGKfW4L2b650+Jh6BhUdjyBv+4l+3WKUtAKAc9eyseXkVdXynzefQbKTgeYfNBqm1w71xTtDtE9mpO77dhOavLwML/y+V1y2+YQ8m0KaFXQlXX9fpH1ttEppCaQN27/fcBIAkKyRwbL3XCrmrD+BByXBidFztuBMciaOXU7XzCDQCipsOaF+XQFgxf5LssyiTElAbdjnGzDp5x3Ye06eVSEEhHwtZjSMtAfTlu27iKOK7J7nftut+bh6rhVljL3w+x7VbXoZLI4oA1sAVME6QH68065TgCVZ8r6RBsBmrDoqBhaVNaLTcwqQnVeAhdvOIs2FXkWCxFR5pp/Qb6a05BUUYvOJZJy7loWGU5e6te3E1GzMWX/Cpd5LRERERGXtuzHtMbh1lNNeEHpedaO8q6sZLNJJb8pyviUdrK4IhOc+qXc9cVlxBrqltPrWvKTIehFeu5yCQrG5t9lBDw4p5f4VZ29XPNEd00e2RK+G4cW4d+VikryuzoJjrjAYDC4dK623kTDQr/XZcWfMR0lZXqxTnRB8PaotYiWBFAD43yNdcEuTCHx1X1txmauZU476MRUUo6+oo+oYRiPwcI843NQ4QrOHTHG3O1Iy8bk03gvlrfI/AyIqlttbReH7BzqUSumusuTtaUKLmCCXfijeGdIcQ1rbgiy7inqOuJraeHurKCyZ1BXrnu0pW24uwYmrdPBR7wdE+EF94fe9+Gad47I+erOign09ih7P9vetzSNlaaqz7lanvz8x370G6MMkwavjb/VHaFEmlIfZflxquNAIbUL3uqpsJGn2ipLeTP4BzW0zPZSN1wFg4YRO4vtAT05+AdYfvaJarjxO0hJlTzloGp+rU5YKsA1yA+pyXcJfWhks364/gVf+3I+VBxNly7u9m4DeH/yLWauPAQDeWXoQUxfZAkTSxnxCs0y9rJsVB+SN4LcXBSSlWQm3zliH95YdRH5BIXacvipmCuUXWBHu74V7Otrej0npufh6nTyLKEknGDWkdTSOvtlPtVzotfPjJnVD0HSNwMcVF5rA93p/tayHzzGNEm/S/i6pDhphloSjIOGqouN7VbFOek4eZqw6gqcW7HIpA0jwm6Tk2ekrmWj68jK3P+uOKPfTnayfe7/ZjFf+3I/mr/wjK81GREREVBHEhfvhw+Eti9UHEXCvxJDF7FoGi1SMIrOmJNepFYVQ5UE6m72kPS+1+oGMUZRNEl7z1//cjwtFpXxdHWBXrVeMFJa4cD/c1jKqROXFKgtZBkspDaq7EgvTmuAqvNxaAZaSHAtlwEfveTaPDsIX97aVZbA46sEkewwHn/d8F0qJK1110KPIZDDA12LGV/e11ewh44ijXXE1c6+yqPzPgIhIh8loQO1QeY8SrUF0vfs2qRGI6Go+Yt3Kkvar6dHANiMl1E8/qOXrJAAUGWhL333zjqa6qbzShmQA8GB8Hdnf/ZpF4qexHfCBg9kHNzeOwIPxdXRre756WxNMG9wMm1/oLTvprR9uz2RwdlIaEWDBc/0aokaQ/Hn8teeizj30f/g7aZQ+E1Tz8XR6wZGYqj1ArzzBuSYZdNcbTE5MzVY1bJNKSrMNSmcpSioJr5Zy0NoVHy4/jIycfMxafQzfbzyF89eyxGBBNR8PMdVYLytD6AnSsU4wAIgXFsog32cJx7DjzDXcMfM/cZlQDuyOVvasr43H5Zk/3h4m7Dufgt93nJUtD/b10Dw2yRm5utkQi3aeV2WxPLNQnSHTWFH79nhSBv7cbS91duyyfg8dQB5gScvOQ8LBRFlvGcAWgPpw+WFVdo8j0iCP0skrmbJ1bi4qiZidVygGm5SvrdL/dp3H9xtPocvbq2TL5/x3EoVW4PdiBDMycvIR+9wSxD63RJblc1URDMzUKd+m5ZCk/N7keTvd3iciIiKiqkJ6/u9qJoo7Db4ruqWTu+GF/o0wuovtuls6GK7XT9FVykwfLWKTe0lVAA8HTc6lqkJgqyylS67jSpIlIuUsg+XpWxqgXoQ6UCo8unSSaGkI9JYHc9zJLnMlg6WHpLSWlpxSLt0sDQCXJmkWTlXIwKv8z4CIyIHAUsjQefHWxvjt4c5Y96y6Nqc7ejYMx9wx7fHTuI666yh7nVTz8cDTtzQQ//7s7tZYNLEL7u5QS3lXUWyIfQZEfP0wNI8OUq3TOS4UQxzMPni+fyM8378R/n26p+btPp5m3Nm+pirIc1vLGrizfQzeG9pcd9sfj2iJyEAvfHGvLRXWnR9TIcV05ZPdZcsbSvq9KAkBoNduk6fp39uxlpgqvEdngPzl/+2T/S0tK6VsLCnQy9YQnEq2lYVSBnX8iraX7GAAXk90NW8kSrJ3JvywDRuOJQEAHuhaW5y5la5RXuvIpTSxn8vgVrb3RGJaDvILCvHeMnVjvSfm75T9LaSyN6yuX5e1ZrAPBnyyDo/Pk2dPjO1WR3P9q5m5yMyVnxi+MtCeyr9k9wXZbcrMHgD4+cGO+HhES9myl/7Yh07TViInvwD/OulhczwpA70/WI2UrDx8tPwIRs/ZouoH8+7SQ/hk5RHc/fUmh9uS0spQEj4DQoaWsE5MsI9qXQC6/U7yCwox6ecdmLpor6o0XW5B8U+0Ew7ZX993lh4U/618r2bksA8LERERkZ4QncH+LMl5r6PMF2kvUEclgiqbhtUDMC6+jvjcIwLsfWJLGkhSDna/fru6qbnWa+7q4H9plAi7kUivWYVybCXl7FiN6VIbdUL9VEEzRxksJaHst+tOdoYrk3qdBZSy80oWlFRSfoZKi/Q7zNVKMxUZAyxEVKUFKX4MolwoW6Wldc1qYhmskoivH4b6EfrBgO717LMRPE1G7HjpZtkMhRqB3mgZE+TwMaQzfkZ10g/EAPqBCaE+aJi/Bdun3iTLEHEUzDCbjJg2uDmGtY3RXef2VlHYMKW3+DwcBXq0+HiaEBviK6ujWs/Bayq4r1Os7G8rrLi9KOti+ynt3iRCQKWw0IrdZ6/JBpSlg997z6Xg4MVUAHDaI+PebzZj1upj+HjFYdnyrFzbiVBxAixnr2aJfYYAYPfZFLEsXjVfT3HWyccrjqgyQ6TZKA2q+8NsNKCg0IrZ609qPtaZZPvAfYCXGc/0tQUAfS1mvHmH+oIFgGYmVOuaQQj31/5MJWfk4Z/99kymJ26qj/u72FP5N59Mxr+HL2Pqor3IzivQPBEN9PYQj6/UhZRsNHhxqcMsI8GxyxmY8P02fLvelskz57+TstuFUmopWXnI1+iDo/3cbBcVfRrZaywLzVOF7BRhFmNEgEW8EJDWr31eozcNAMzfelZzOQD8sNFebk2ZieOMtLTCqSv2vjHKbCt3MljKy9ojl51mLxERERGVtubRgbo9Ku+RXLM5GoztUDtY/HdeYekOolYkBoMBq5/qgZ/HdVT1rXCXdPIhANzdXl1mW6ssk6s9WJSD+40ii9cM/EYhrUSg1Ue0OJwFGy1mIzzNRt1G6maTEcPbRuPmxhEY3CoKz/VrWKL9aaEYr3EnwOLr6bzZu7Psqux81ye93Vf03RNfXz8rRllxxB2OKq1FSrYb4lvysbbyxgALEVVpQT7yAMs397fVWbNikNa07FYvFID8R9aVyL63p/2rvXPdUIfrfnVfW9VJ4TBFwCPY1xM/P9gRr93WBOH+Fsy4s5XTfRC0l1wE6PH38hD7d7iimo8nTEaD2DjyiZvqq2ZVdI2zPe8W0YGq+wuOX85AdFHATRhA1/P9xlMY9Ol62bJ951Px4NyteHPJftw6Yx36frwWeQWFLjVHf2fpQSQckmdQ/G/XOWw7laxqcP5s34aaTfmU9HprBPt4IkwSyPhk5VG88r99eOSn7Xh36UFZVkt4gEWcJfbmXwfE5Z/fo+7bYzQAu1+5Bf6SgN5d7WvKgh3C8b+meE7h/hYsnNBZrG2rnPl1MTVblu3ySM84AMC7RZlRp65kYNS3m/H9xlPoP30t6oU7D7DpWTSxC3a9dLPu7RuO65cVrCb5ftl++ppLj5dcFLSTBkrrhNku/JIzcpGdVyAGLqr5eIoXAtL31W/b1WW+jl1O1w28KCmzW5yRzi6THm9lMPCOmf/JZmAKUjLzMHDGOrz0h60/kF75t+vt4MVU3PvNZvT+4N9yeXwiIiK6sUwtaqbuYTLg7cHNUaBzDhQsqbrgaPBUNtO+fE6nykxsqC861dUvA+0q5Ta0erpoDYArG5XrETb3z+Px+PLeNmhTq5rjO9zgBre2T4Bz1LfUHc7GSIRjrsxUmdKvkfjvd4e2wJf3tcWHI1piQve6Jdoff0UgR3mt64grPYeclaXTq3ag5fn+jTDjzlaYMVI9xvPOkGZoER2I5wc00rinaxw9G2lGn1YJt8rGeWiMiKgSC/K2f2lP7FnXYRmjisBoNOCXBzvi582n8VLRCbkQ2TcatJv0KXWvH477OtVCu9hgpycbMcE+OPZWf6Rk5sFoBC6l5ujOULivU6wqC8SZuWPa49SVTAycsU5W01bp+f6NEOzjic/XHHd6ohVS1MPm3k6xGNomRvM5ThvcDIt2nMO9DjJ4mkUFombRjCZHE/rfXXoQM4uayCv9s1/eHD4tOx8zVx/VXLdXw3CxiTkAMZDSp1EEVhy4hLwCK4bM2qC6X+MaATg+bQBin1uiv5MOVPP1RM+G4WJpp48UmTNSwb6eiKrmrRqAj67mgwHNIrFkj700155XblHd32AwoF64v1hyrXFkADafSMZyxetUI8hbdvL41X1tMfu/kwjwMmPx7gs4IunP0aF2sLhuvXDbideWk/ZsneNJGfDXKdcGALVCfHCqqLeJFiHQMaJtDOZtPaO7nhZpMGz4Fxtw8u0BTu8j9FeJkjQm7VYvDCsO2N4b6Tn54jrBvp7ws5hlpen0nEzKcLqO4ERShm75MS05ks/kiaQMFBRaYTIaVP1kCgqtWHvkMm5uUl22fMG2M9hzLgV7zqVgbNc6mhlHVqv1ujf2PCTJWsrJL7hu9YSJiIiIAFup3ge61kZeQSE8TEbNiSiA682epefPVTy+UmpMRgOMBsfXe1pBLUeD4h+PaCn2EBTmIdWP8HdYqYJsmtSwT4BU9iQtLr2+sYB9gh4g/2z9NakbGte4PmNDymsad69xzEaDw0b1Hk6CMDc3ro5l+y6hRqDzzBMvDxMGtqiheduIdjUxop3rE2HdZTAYsP65XsjIyS+VajHljRksRFSlCTPDATgcZK1IOtYJwfSRrRBS9CNjMZuw66WbsfPlm12qBWsyGvDabU11fyi1BPp4wN/LA3HhfvBxIS3VVV4eJjSo7o9AH8d1O308zXji5ga4v3Os5u3STIE6kjRxaXBFKIf2bN+GiAn2waO96yFI0YNnZDtb6bK7O9TEI73iEF9fneGz7cU+OPRGX/FvveCKltWHEnUzGfo0itBcHl1NXbZO2t9F+PcDXW0lsp66ub5s3Zsaa29XEOzrCS8Pk9OZM93rh8FiNmmW0asT5isrB3Vn+5q6KdZ1JZ85vQZ8DRQXH0J/oqZRthPuk5LPqvTkUq8Gs5DdoVVy7MexHfDqoCawmI2wmI2q10+glxZdXfKYynNjV7KVlISsj2o+nnj9tibo3TAcw9vGiBcGqVl5Ynm3IB9P3aCqMgvEqHHi7m8xq3oPAVD1t3EmR5FmXvf5v3DkUhqSM9Xl7I4kystvXcvMxRtL7NlQe8+n4Ms1x1X3yy+04mRSBib9vEMst3fscnqplR1Ly87D7zvsmT/nr2WXynaJiIiInBF6fOjNLJeWqHK194e7JV9Jn6dJPUDv6Djc1tJ+nX2cpWfdJky26q1zfewuR5NKh0tKl19KtZ//R2lcg5emZlH6lTSccZbF4iy76o5WUfjhgQ5YMqlbsfehtDgLLkUFeVeZwCQzWIioSpMOAtcuYf3W8uQsQFHRudKsDQAaRdp/XCf3qYfJferDarWi0Gob1AWAvk2ra973uX6NMKhlDbSuqZ+WPW1wM7x+e1PxIsdLUa91UIsaYmCrOPTKdAFAd71gg0ZPm4JCK4a2ical1Gw0jw4CYMvyGdomGg0i/HExNVvsqVFQaMXEnnXxWYJ2ICi4KPXW0SyYRpEBYtNM5QygmxtHwMfTjGZRgfjvmK1clqMsI2lt6WBfT7SIDhQDBgJl6T6BEEg7cCFVXCatzRum07NFMKhFDXy97oTsgii6mg9GdY5Fr4bhsHgYkSDJIpLq0SBMDMD9ssWeySI9J1QGqVytG2y1WvH+P4cQF+6HxDTbiX2IrwU9GoTj3qKsMB9PMzJzC2S9b4J9PXUDWRm5BbLgS4HG8R3VOVbWP0ngTto4APy46bRq2U0frRGDUh1qB2PTCVv/mIsp8sDFmDlbZH8//ON2zcd4ffF+rD50GaeTM7HzzDV8dV9b9J2+BnVCffHP491dHmzQc9un63FckuXz4NyteGtwM7SLdV7GkIiIiKg06E1ysUiulVxtrcLwiuucxaK0soYCHDT2lg4aS8stk2v+fbon/tx1XlYevST0erC8J8leAYA8SdljVyqDlETNYB+xqoO7zEYDHHVldVYizGg0oGs9x6Xiy0qkC1k0VUWFymDZt28fhg0bhjp16sDHxwehoaGIj4/Hn3/+qVp3/vz56NixI4KCghASEoLu3btjyZLilU8hoqpt8aNdMaF7XTwYX6e8d+WGNayNbeDa2UyOQS2iUCfUF14eRowpytgwGAwwGQ2YO6Y9PrmzFfo2jdS8r7enCW1qBTucJWEwGMTgCmCbTSYtLxUR4Dy40rpmkNN1lKoHeCEqyBvfjFL3AOrVMFy1LCO3AO8Pa4HvH+ggDiybjAY0igyA0WjAywPtWQnx9ULRLEp/n6S1TfVIs1bOXpWXB/vyPts+PyHJ/BCCBJrbkswG8vYwYf6ETqp19E5oq/mo9/VKuv300sPJyeSTNzfA07c0wLLJ6tk6McE+CPf3kgUspK+9r8WMt4c0x9tD5CfiFyQBA2WWiPQk3WjQ7y2y7mgSPks4hsfn7UJS0fOp5iu/aBPu+/3GU+Kyaj4esoCXNLMpVdHXRlmGDbAFaGqFqAPLHy4/jLNX7VlCzgIu205d1Vy+5rCtj9Ck3vXwxu1Nxf1Py7bvm6u9aeZuOIXTybZ9Op2cia2nkmG1AscuZ6Du83/JXpfiOK4ooXYkMR3DPleX5CMiIiK6XvRKIknLlha62KvOanU924Uc0yoR5uy6g4ovIsALY7vVUfVRLS4Pk1HV+6ZZVCCGSbJXlK73Z6ck5c+c7ZuzEmEVyUsDG6OnzkTTqqZCfWOcOnUKaWlpGDVqFKZPn46pU6cCAAYNGoQvv/xSXG/GjBkYMWIEQkND8fbbb2Pq1KlISUnBrbfeit9++628dp+IKqimUYF4rl9DWXNmKlsP9aiLWXe3FrMk9JiMBqx6qgcOvt4PAYrjFV8/DIPcKHvmqmBJAEJaguqOVlGqdSMDvfDabU1xb0d5bxdHtZIBIOGpHgBsadDzx8sDDmHFyJjxMBmR8FQPTO5TD4PbRKNrvVDd7A5Xar7GBNuDItLa0E/cZA+qWMwmsYTbwz3idLcl/ZwFenvAYjZhvCK46afTM0Vr+d0dXav72r9ZdXh7mjCxZxziHDS995WUwJt5d2vNdV7or93Iz2qVl2OQ9hUqtMp7lUid1ChPGKwIfF3JUM9TCvT2kAWjqgd6iVk+0vJk6Tn5mv1jQvw84Wk2qkq1nU7ORPy7CQCAr9ceR8OpS/HhP4dU90/LzsM1SRkwvYugmsE+slJq7y87hPlbz+DVP/dpru+Mp9moyoSZumivZpaOK9zN2CEiIiK6Hj67qzU8zUa8eUdT2XKT0YCawT7ws5gRF+5as2dXAzFkp2w+LrA4uZZzpPIMdVdtCxTX2NZyzvEqyfWHs9LezjJYKpJwfy/MHt3+hggGV6ij0r9/fyxduhQvv/wyxo0bh8ceewwJCQlo0aIFPvzwQ3G9GTNmoF27dvjzzz8xYcIETJ48GWvWrIGfnx++++67cnwGRESkxcNkRL9mkapB5YpAmjURLhkk1iprtmFKbzSNClT1tZhzfzvVugNb1MD47nXw33O9ZHVh29cOFktktYwJgtFoUM24cUXtUF9M7lMfAV62Qfj1z/ZSBW/0eqAAkGV0NY60N/iTBg0e6SkPpLw8sDG2vdgHneqqy04JWtUMgq+nCY0jA8TXc0r/Rvh5XEdxHa1MFQCqoBoAjOvmOPPs8Bv98N7Q5ph6a2OH6wnqRdgvWpUl4gRju9XGumd7in19BLkFhTgqqbOsLBG2aMc57DxzTbW9dI1eLc56HU3p1xAGg0FWdiCmmo/4GZLWEL6SniP+Wxr8E17nT+9qLXv9AVtAaN2RJLE/yierjoq3JaXnYN/5FLR6bTlavrZcXD5XJ0Aa4O2B6pL0762nruKZhbtl5c60srf0WHSawJ5Icl7jet6W05jw/TbZRU1qdp6DexARERGVja71QrHv1Vtwd4daqttWPdkdW1/so3t+qqW4k09uVBadstXOJss5wiNQMSj7lmjFH1vGBAEAXh2k7lFZ2kqSneMsGFGSgGB5uRG+qyr8UTGZTIiJicG1a9fEZampqQgPD5fNyg0ICICfnx+8va9voyIiIqpaQiUZJNVlARb5xc1PYzuI/zYYDLIMl451QjCmS22M6lQLceF+qBnsg5cHNsaUfo1QQ6Np/MonuuOpm+tjzmhbYObze9rIbv/kzlZuPw9Ps7zcGSDvlfL67U0RXz8M00e2xLLJ8bgqyZiQlvWS/lt5omowGJz2qAn1s2Dts72wQFEaTJp63zxau1RckxoBeKx3PbFf0isDG6vS86Uls0Z3iYWn2YhhbWMQGeja7390NR/8NLYDFj/aVXcdg8GA6Go+aKPRn+PnzfZ+JMpeNM/9tge3f7YerV77R7Z8gUZ2iTPC82wkCX5ZPIxiE8D7vt2M2OeWYPHu80jNsgdh7pEEWIRgjJ/FjE51Q1A/Qj4j8rsNJ2V/Z+UWwGq14qYP/8WAT9ap+vbEBPvg8T71ERviIy4zGGyzAaUBlstpObL7WcxGdKunDvbd1rKG5sVHWk4+MjQCLClZjgMlaw5fxrO/7sHSfRfxx057Q3utABcRERFRedArPWU2Gd0Krlg8jGhY1Muxbljl7TValvRee5YDq3q0Aiw/jO2AXx/qjPs6qQOcpe3FWxujY51gfHFvG+crK0hLBmoJd9KXlMpHhWxyn5GRgaysLKSkpOB///sf/v77b4wYMUK8vUePHli4cCFmzJiBgQMHIjs7GzNmzEBKSgoee+wxh9vOyclBTo79wj81NdXB2kREVNWFS/quSHuwSC9wRneJRec4eaO4N25vikEtaqBrvVAYjQa8NNC1DAoACPGz4JFe9cS/w/wt6NMoHCsOJGJ42+hil0KLVfTbkM5+ubdjLVl2w6Te9bBg21kA8hk2L93aGAUFVtxbghNPrUwlaQkzIYCiZDAY8PhN9fH4TfVx9momamgETRZO6IxX/9yHdrHBeLS3fqkyR5THUo/W4P/KA4liDxy9JvdXM+2BAKvVqur/oQyoafEuynB5ML4OvlxzHADQt2kkNhxLkq335Pxd+GaULVDXIMJfFoAK8ZMfh2mDm2PIrP/Ev5UBuU5vr8Sc0e1l+y/l42nCY33qYUibKHR9J6Ho+dkCccGSrKTL6fIAS/PoQHiajWhSIwD7ztvPu6r5eKqCVIK/915QLbua4TjAct+3m8V/J6ba9yEjRx6smXV3azz043YAtiBZSWYtEhEREZWlFwc0wm/bz2FCfF3c2a4mvll3gr1GXaQXSHE2oE2Vj1a+hJ/FXKzKEcURFeSNXx5U9yJ1xZM318cT83fp3h7mf+M0jq9MKmSA5cknn8QXX3wBADAajRg8eDA+/fRT8fZPPvkESUlJmDRpEiZNmgQACA0NxcqVK9Gpk+M38LRp0/Dqq69ev50nIqJKxVNyoi3twSLVrZ56QN7XYkZPjQb1xfXRiJb4Z9+lEm3T29OEXS/djJ82n8bs9Sfw4gD9oE9MsA+evqUBzl7NkpUIiwjwwufFmGnjTK0QX8y+vx2qB3q51BcmupqP5vLGNQIwb3zxTlbdVVujQXxkoBdOX8lEwqFEscn9gGaRWLJHHhCwWq0wGAx4euFu2fL2tYPRt2l1p4/tXRTgC/Wz4NAbfbH7bAra1KyGnYqm8Tn5hThwwRa0CA+wyHq2KEux1VEEtpTBjWuZeXhgzhbdfRLS0bVKvBmNBvRqGI5VBxNhMRuRnWff9paTVwEAc0a3x7ZTV5GUnoPVhy5jUu96mKvIopHui9LYuVvxQNfamNynntOeWh8sP4xHe9uCmNtOJctuqyU5rtcyc5FwKBHta4foBv6IiIiIKoqx3epgbFEJ3Wq+nnj99qZO7kEC6TWPVPVAeUYAMwQqv/axZRNIuR4Gt452GGDxtTAgWBFVyADL5MmTMXToUJw/fx7z589HQUEBcnPtpUx8fHzQoEEDREdH49Zbb0VaWho++ugjDB48GGvXrkVcnP6M1ilTpuCJJ54Q/05NTUVMTMx1fT5ERFRx3dKkOub8dxLR1bxlWStekplMvRpGXPf98PfywJA20SXeTqCPBx7qURcTutdxGsiY2LN4GSDFVZoBqbJQM0Qd5MktKET8ewmyZWEaF2ErDiRixqoj2H02RVz2+u1NcUsT7ffSbw93xuCZ9uwSaSaKxWxCu6JyZdLlgoMX0wAA7WODUc3XE+8NbQ6Lh0lVZqKaryf8vcxIKyqZJc3yEFyRlI5TEt5PvjoNQu/rVAurDibKgiuAPaMpzN8iBpeEUmbuluP9Zt0J/LnrPDa/0Ee2/GJKtmrdlMw8FFiteOXP/bLlof7216H9WysB2ErsHX6jn3s7Q0REREQV3qKJXfDL5tN46pYGmrfHBMvP+X99qLPTbb4ysDFe+XM/ZhSjtDNdf8/0bVjeu1AiEQEWXNK4VgOYcVVRVciaCA0bNkSfPn1w3333YfHixUhPT8fAgQNhLSqiN2zYMJw+fRpz5szB0KFDMXr0aKxevRq5ubl44YUXHG7bYrEgICBA9h8REd24OtUNwbwHO2LhBPmJ9N0dayIqyBtjutQupz0rGVeyRMi5d4c0BwD0bGDrIZKikVmhlfk0bu5WWXAFsJVpC9dJ6W5dUz7LSq8Gt7dGgOXQJVsGS3SwraTasLYxumXm/n26p/jvS2nqoISemooLz9tb2rbfvb69t0qATjPHr+7Tb3A/1ElQccadrVBLEehKTMtB69eXY/fZa0hMzcaHyw+j9werVfc9czVT1jNHUM3HEwGKDBi9UmVEREREVLm1jAnC20Oay3pvSnlLzruDfT1VARct93epjf2v3YJbmxevtDOVvgUTOqFbvVCseCJed0JYZbHiie64v3MsagSqrx1Z3rhiqhTvuKFDh2L8+PE4fPgwPDw8sHTpUnz55ZeydYKDg9G1a1esX7++nPaSiIgqqw51QlTLQv0sWPdsTwYqbnBD20SjW/1QXM3IQ8Khy6p+KoC8d4+e5/o5n0X19C0N8N6yQwC0M1X0lh++mA4AusEbqWBfT/h6mpCRW4BTVzKdri9QZt68fntTNKgegN6N7FlJyqCFoEkN/cksr93WBD0ahOGRn3Zo3l4rxAdXNbJqkjNycd+3m9GkRgDWH70iLg/09kBUkDf2X0jF2O+2ysr7+VvMaFWrGjxMRs3XsaDQKutbRERERERVnzQjIF+nx6IWH89KMaR6w2gXG4zvH+hQ3rtRKvy9PPDKoCZ4ZVAT9P5gNY5dtl+DWiphgOWDYS3w5IJdeKMKlzSsFEclKysLAJCSkoJLly4BAAoKClTr5eXlIT8/v0z3jYiIqi4GV8hoNCAy0BsB3toXUO8MaYYgH8f9QADgzvY1na5zc2N7EEMrUwWwzcDzNBsRGegFc1EwILfoQtCV/QCAYD95DxUhS8cRs6IpqL+XrRRd/Qh/cZnea6SXjQPYLkwdzfxrHh2EJ2/WLudwLTNPFlwBgFcGNRbrEl9MzcaCbWcBALe1rIFdL9+M70a3K3pc+T61rVWNWSxERERENyAPk/2az93ytUTXm3ICWGUMsAxpE439r90ilomuiirUUUlMTFQty8vLw9y5c+Ht7Y3GjRsjLi4ORqMR8+bNE0uGAcDZs2exdu1atGrF+odERERUuvTKX8WF+6NjnRDUj/BDgwh/1A3TbpTu70KaurQcgV4iRaua1bB96k1Y80xPtIgJkt2m1XxeS7BivU51Q7BxSm/0ctAjx8Pk/JQxUOc1csUDXW2l+Ea0tffFE16z+zrVwhM31Xe6jW71QnFHq2hc0OjH0iI6CEajQQyaSgNYLWOCsPChzrpBLSIiIiKquqST6vILOeGGKhajQRlgqZzXLFU946tCPbvx48cjNTUV8fHxiIqKwsWLF/Hjjz/i4MGD+OCDD+Dn5wc/Pz+MGTMGX3/9NXr37o3BgwcjLS0NM2fORFZWFqZMmVLeT4OIiIiqGD+NE0I/ixkNq/vDx9OMJZO6wWw0YPCs/zTubcuEccbLw4Tx8XVwISUbdcP89PelKPAQqshEcTXAsvd8quzvAG8PBHp74Nv72yH2uSXi8t8f7oxhn29AfqEV8ZJSW3osZhPGdq2Nr9edEJe9N9R5dgwAPHVzA9zRKgpx4X6Yt/WMuF+A7aJ3Uu966Nu0On7adBqNIv3x7K97VNsQ6mc/fUsDPPbLTtltA5pHyv6WlkfrEqcuEUhEREREN54CprBQBdM0KhAHL6aJfxsrVKoECSpUgGXEiBH45ptvMGvWLFy5cgX+/v5o06YN3nnnHQwaNEhcb9asWWjRogW++eYbMaDSrl07zJ07F/Hx8eW1+0RERFRFKQMkM+9ujWZRgWIDRSHDw6+EDRWn9G/k8rrKRp2uZmCM7hwrC4JIs2uGtonGwm1ncWf7mmhVsxrWP9cLp65kom1ssGvblgRYEp7qgdqh2hk9St6eJjSNCpQtU1boqx/hj1cGNQEAPD7UPwAAHKJJREFUTF20TyyNJhBKkQ1qUUMWYAnx9UREgLw/jTTLpUF1/R4xRERERHTjYICFKpqptzaGn8WMOf+dBOC4/DKVnwoVYBk5ciRGjhzpdD2z2YxHHnkEjzzySBnsFREREZFc/2aRmsv9veSnVvXC/XBLk+rXZR+UARZXPd23gSzAIg0evX5bU/RtUh1dizJWIgK8VMEJR6KCvPHdmPbws5hcDq7oqeMgiydPo3zDmKIyYwaDAW/e0RQv/L4XAMQgmJTQaBEA4hw8DhERERHdOBhfoYom0NvW8L5NrWrIyi0o9jUgXV8VKsBCREREVFEtmtgFt3+2Hi0VvU+k/C3yPiTLn+h+3fYn1L94J9cWswm9G4Zj5cFErHpSvn/enib0aRxRov3qXj+sRPf/eVxHzF5/QsxW0WJVXPz++lBn2XG5uXF1McDy5h1NVfcf0iYaZpMBiak5aFyDGSxERERERFRxDWxRo7x3gRxggIWIiIjIBS1jgrDiiXhEBnrrruMnyWCZ1Lvedd2fUF97z5XXb9MPRmj58r62SMvOQ5CLfVvKUqe6IehU13FflPHxdfDFmuO29euEoHXNINnt1Xw8EBFgQW5+ITrV0d7WbS2jSmV/iYiIiIiI6MbFAAsRERGRi+LC/R3eHuhtz2AJK2aGiasMkiYlt7VyL1hgMhoqZHDFVU/f0gA3NY5AbKgvArw8ZK8FAJhNRiQ81QNGgwFmEztBEhERERER0fXBAAsRERFRKWkiKTdlMV/fgf3WtYIAAMG+ngjw8nC8chVjNhnRNjbY4To+njzNJSIiIiIiouuLV55EREREpURaPszLw3RdHyvc3wvrn+sFP40m7kRERERERER0/fGKnIiIiKiUVPO1Z5Jc7wwWAIgK0u8HQ0RERERERETXF4tSExEREZWSYF9PeBYFVmoG+5Tz3hARERERkTOtagYBAEa2iynfHSGiSokZLERERESlxGI24bvR7ZFXUIhGkQHO70BEREREROXqi3vbYPn+S7ijVVR57woRVUIMsBARERGVok51Q8p7F4iIiIiIyEXh/l64u0Ot8t4NIqqkWCKMiIiIiIiIiIiIiIjITQywEBERERERERERERERuYkBFiIiIiIiIiIiIiIiIjcxwEJEREREREREREREROQmBliIiIiIiIiIiIiIiIjcxAALERERERERERERERGRmxhgISIiIiIiIiIiIiIichMDLERERERERERERERERG5igIWIiIiIiIiIiIiIiMhNDLAQERERERERERERERG5iQEWIiIiIiIiIiIiIiIiNzHAQkRERERERERERERE5CYGWIiIiIiIiIiIiIiIiNzEAAsREREREREREREREZGbGGAhIiIiIiIiIiIiIiJyEwMsREREREREREREREREbmKAhYiIiIiIiIiIiIiIyE3m8t6B8ma1WgEAqamp5bwnRERERHQjEc4/hfNRIlLj9RoRERERlQdXr9du+ABLWloaACAmJqac94SIiIiIbkRpaWkIDAws790gqpB4vUZERERE5cnZ9ZrBeoNPmSssLMT58+fh7+8Pg8FQZo+bmpqKmJgYnDlzBgEBAWX2uHR98HhWLTyeVQuPZ9XC41l18FjaZkKlpaWhRo0aMBpZuZdIC6/XqDTweFYtPJ5VC49n1cLjWXXwWLp+vXbDZ7AYjUZER0eX2+MHBATcsG/SqojHs2rh8axaeDyrFh7PquNGP5bMXCFyjNdrVJp4PKsWHs+qhcezauHxrDpu9GPpyvUap8oRERERERERERERERG5iQEWIiIiIiIiIiIiIiIiNzHAUk4sFgtefvllWCyW8t4VKgU8nlULj2fVwuNZtfB4Vh08lkRUkfE7qmrh8axaeDyrFh7PqoXHs+rgsXTdDd/knoiIiIiIiIiIiIiIyF3MYCEiIiIiIiIiIiIiInITAyxERERERERERERERERuYoCFiIiIiIiIiIiIiIjITQywEBERERERERERERERuYkBFiIiIiIiIiIiIiIiIjcxwFLGcnJy8Oyzz6JGjRrw9vZGhw4dsHz58vLeLZJYvXo1DAaD5n8bN26Urfvff/+ha9eu8PHxQfXq1TFp0iSkp6ertsnjXjbS09Px8ssvo2/fvggODobBYMCcOXM01z1w4AD69u0LPz8/BAcH495778Xly5dV6xUWFuLdd99F7dq14eXlhebNm+Pnn38u0TbJNa4ez/vvv1/z89qwYUPVujye5WPLli145JFH0KRJE/j6+qJmzZoYPnw4Dh8+rFqXn82Kz9Xjyc8mEVVGPG+v+Hi9Vnnxeq1q4fVa1cHrtaqF12tlz1zeO3Cjuf/++7Fw4UJMnjwZ9erVw5w5c9C/f38kJCSga9eu5b17JDFp0iS0a9dOtiwuLk78986dO9G7d280atQIH374Ic6ePYv3338fR44cwd9//y27H4972UhKSsJrr72GmjVrokWLFli9erXmemfPnkV8fDwCAwPx1ltvIT09He+//z727NmDzZs3w9PTU1z3hRdewNtvv41x48ahXbt2+OOPP3DXXXfBYDBg5MiRxdomucbV4wkAFosFX3/9tWxZYGCgaj0ez/LxzjvvYP369Rg2bBiaN2+Oixcv4tNPP0Xr1q2xceNGNG3aFAA/m5WFq8cT4GeTiCofnrdXHrxeq3x4vVa18Hqt6uD1WtXC67VyYKUys2nTJisA63vvvScuy8rKstatW9faqVOnctwzkkpISLACsC5YsMDhev369bNGRkZaU1JSxGVfffWVFYB12bJl4jIe97KTnZ1tvXDhgtVqtVq3bNliBWCdPXu2ar2HHnrI6u3tbT116pS4bPny5VYA1i+++EJcdvbsWauHh4d14sSJ4rLCwkJrt27drNHR0db8/Hy3t0muc/V4jho1yurr6+t0ezye5Wf9+vXWnJwc2bLDhw9bLRaL9e677xaX8bNZObh6PPnZJKLKhuftlQOv1yovXq9VLbxeqzp4vVa18Hqt7DHAUoaefvppq8lkkp3gWa1W61tvvWUFYD19+nQ57RlJSU/YU1NTrXl5eap1UlJSrGaz2fr000/Llufk5Fj9/PysDzzwgLiMx718ODrBCw8Ptw4bNky1vH79+tbevXuLf3/22WdWANZ9+/bJ1vvpp5+sAKxr1651e5tUPK6csOfn56s+Z1I8nhVP69atra1btxb/5mezclMeT342iaiy4Xl75cDrtaqB12tVC6/XqiZer1UtvF67ftiDpQzt2LED9evXR0BAgGx5+/btAdhSmKniGD16NAICAuDl5YWePXti69at4m179uxBfn4+2rZtK7uPp6cnWrZsiR07dojLeNwrlnPnziExMVF17ADbMVEeO19fXzRq1Ei1nnC7u9uk6yMzMxMBAQEIDAxEcHAwJk6cqKqvzeNZsVitVly6dAmhoaEA+Nms7JTHU8DPJhFVJjxvr1x4vVY18ZywauI5YeXD67Wqhddr1xd7sJShCxcuIDIyUrVcWHb+/Pmy3iXS4OnpiSFDhqB///4IDQ3F/v378f7776Nbt27477//0KpVK1y4cAEAdI/n2rVrxb953CsWZ8cuOTkZOTk5sFgsuHDhAiIiImAwGFTrAfZj5842qfRFRkbimWeeQevWrVFYWIilS5di5syZ2LVrF1avXg2z2fZTx+NZsfz44484d+4cXnvtNQD8bFZ2yuMJ8LNJRJUPz9srB16vVW08J6x6eE5YOfF6rWrh9dr1xQBLGcrKytJ8E3l5eYm3U/nr3LkzOnfuLP49aNAgDB06FM2bN8eUKVOwdOlS8VjpHU/pseRxr1icHTthHYvF4vKxc2ebVPqmTZsm+3vkyJGoX78+XnjhBSxcuFBsuMbjWXEcPHgQEydORKdOnTBq1CgA/GxWZlrHE+Bnk4gqH563Vw68XqvaeE5Y9fCcsPLh9VrVwuu1648lwsqQt7c3cnJyVMuzs7PF26liiouLw2233YaEhAQUFBSIx0rveEqPJY97xeLs2EnXcfXYubNNKhuPP/44jEYjVqxYIS7j8awYLl68iAEDBiAwMBALFy6EyWQCwM9mZaV3PPXws0lEFRnP2ysvXq9VHTwnvDHwnLDi4vVa1cLrtbLBAEsZioyMFNOlpIRlNWrUKOtdIjfExMQgNzcXGRkZYrqb3vGUHkse94rF2bELDg4Wo+mRkZG4ePEirFaraj3Afuzc2SaVDW9vb4SEhCA5OVlcxuNZ/lJSUtCvXz9cu3YNS5cuVX1XAvxsViaOjqcefjaJqCLjeXvlxuu1qoHnhDcGnhNWTLxeq1p4vVZ2GGApQy1btsThw4eRmpoqW75p0ybxdqq4jh8/Di8vL/j5+aFp06Ywm82yRooAkJubi507d8qOJY97xRIVFYWwsDDVsQOAzZs3q45dZmYmDhw4IFtPeezc2SaVjbS0NCQlJSEsLExcxuNZvrKzszFw4EAcPnwYixcvRuPGjWW387NZuTg7nnr42SSiiozn7ZUbr9eqBp4T3hh4Tljx8HqtauH1WhmzUpnZuHGjFYD1vffeE5dlZ2db4+LirB06dCjHPSOpxMRE1bKdO3daPTw8rIMGDRKX9e3b1xoZGWlNTU0Vl3399ddWANa///5bXMbjXj62bNliBWCdPXu26rYJEyZYvb29radPnxaXrVixwgrAOmvWLHHZmTNnrB4eHtaJEyeKywoLC63dunWzRkVFWfPz893eJhWP3vHMysqSfQYFTz/9tBWA9bfffhOX8XiWn/z8fOugQYOsZrPZumTJEt31+NmsHFw5nvxsElFlxPP2yoHXa1UDr9eqFl6vVW68XqtaeL1W9gxWqyK/h66r4cOH4/fff8fjjz+OuLg4fPfdd9i8eTNWrlyJ+Pj48t49AtCrVy94e3ujc+fOCA8Px/79+/Hll1/Cw8MDGzZsQKNGjQAA27dvR+fOndG4cWM8+OCDOHv2LD744APEx8dj2bJlsm3yuJedTz/9FNeuXcP58+cxa9YsDB48GK1atQIAPProowgMDMSZM2fQqlUrBAUF4bHHHkN6ejree+89REdHY8uWLbKUxWeeeQbvvfceHnzwQbRr1w6LFi3CkiVL8OOPP+Kuu+4S13Nnm+Q6Z8fz6tWraNWqFe688040bNgQALBs2TL89ddf6Nu3L5YsWQKj0Z6syeNZPiZPnozp06dj4MCBGD58uOr2e+65B4B7rzuPZflx5XiePHmSn00iqpR43l7x8XqtcuP1WtXC67WqgddrVQuv18pBeUd4bjRZWVnWp556ylq9enWrxWKxtmvXzrp06dLy3i2SmD59urV9+/bW4OBgq9lstkZGRlrvuece65EjR1Trrl271tq5c2erl5eXNSwszDpx4kTNCDCPe9mpVauWFYDmfydOnBDX27t3r/Xmm2+2+vj4WIOCgqx333239eLFi6rtFRQUWN966y1rrVq1rJ6entYmTZpYf/jhB83HdnWb5Dpnx/Pq1avWe+65xxoXF2f18fGxWiwWa5MmTaxvvfWWNTc3V7U9Hs/y0b17d93jqDwV4Wez4nPlePKzSUSVFc/bKz5er1VuvF6rWni9VjXweq1q4fVa2WMGCxERERERERERERERkZvY5J6IiIiIiIiIiIiIiMhNDLAQERERERERERERERG5iQEWIiIiIiIiIiIiIiIiNzHAQkRERERERERERERE5CYGWIiIiIiIiIiIiIiIiNzEAAsREREREREREREREZGbGGAhIiIiIiIiIiIiIiJyEwMsREREREREREREREREbmKAhYiIiIiIiIiIiIiIyE0MsBAR3QBeeeUVGAwGJCUllfeulNjq1athMBiwevXqcnl8g8GAV155pVwem4iIiIiIqh5er5UeXq8RUVljgIWIiErdzJkzMWfOnPLeDSIiIiIiIlLg9RoRUekxl/cOEBFR1TNz5kyEhobi/vvvL/Vtx8fHIysrC56enqW+bSIiIiIioqqO12tERKWHGSxERFSuMjIy3FrfaDTCy8sLRiN/woiIiIiIiK4nXq8RETnGbzsiolJ07tw5jBkzBhEREbBYLGjSpAm+/fZb8XahHu28efPw/PPPo3r16vD19cWgQYNw5swZ1fYWLFiANm3awNvbG6Ghobjnnntw7tw51XoHDx7E8OHDERYWBm9vbzRo0AAvvPCCar1r167h/vvvR1BQEAIDAzF69GhkZmbK1lm+fDm6du2KoKAg+Pn5oUGDBnj++eddfg1iY2Oxb98+/PvvvzAYDDAYDOjRowcAYM6cOTAYDPj333/x8MMPIzw8HNHR0QCAU6dO4eGHH0aDBg3g7e2NkJAQDBs2DCdPnpRtX6umb48ePdC0aVPs378fPXv2hI+PD6KiovDuu++q9i8nJwcvv/wy4uLiYLFYEBMTg2eeeQY5OTmq9R5//HGEhYXB398fgwYNwtmzZ11+HYiIiIiIqGLh9Rqv14iIShtLhBERlZJLly6hY8eOMBgMeOSRRxAWFoa///4bDzzwAFJTUzF58mRx3TfffBMGgwHPPvssEhMT8fHHH6NPnz7YuXMnvL29AdhObkePHo127dph2rRpuHTpEqZPn47169djx44dCAoKAgDs3r0b3bp1g4eHBx588EHExsbi2LFj+PPPP/Hmm2/K9nH48OGoXbs2pk2bhu3bt+Prr79GeHg43nnnHQDAvn37cOutt6J58+Z47bXXYLFYcPToUaxfv97l1+Hjjz/Go48+Cj8/P/GiISIiQrbOww8/jLCwMLz00kvijKgtW7bgv//+w8iRIxEdHY2TJ09i1qxZ6NGjB/bv3w8fHx+Hj3v16lX07dsXgwcPxvDhw7Fw4UI8++yzaNasGfr16wcAKCwsxKBBg7Bu3To8+OCDaNSoEfbs2YOPPvoIhw8fxqJFi8TtjR07Fj/88APuuusudO7cGatWrcKAAQNcfh2IiIiIiKji4PWaDa/XiIhKmZWIiErFAw88YI2MjLQmJSXJlo8cOdIaGBhozczMtCYkJFgBWKOioqypqaniOvPnz7cCsE6fPt1qtVqtubm51vDwcGvTpk2tWVlZ4nqLFy+2ArC+9NJL4rL4+Hirv7+/9dSpU7LHLSwsFP/98ssvWwFYx4wZI1vnjjvusIaEhIh/f/TRR1YA1suXL5fglbBamzRpYu3evbtq+ezZs60ArF27drXm5+fLbsvMzFStv2HDBisA69y5c8VlwmuYkJAgLuvevbtqvZycHGv16tWtQ4YMEZd9//33VqPRaF27dq3scT7//HMrAOv69eutVqvVunPnTisA68MPPyxb76677rICsL788stOXwMiIiIiIqo4eL1mx+s1IqLSwxJhRESlwGq14tdff8XAgQNhtVqRlJQk/nfLLbcgJSUF27dvF9e/77774O/vL/49dOhQREZG4q+//gIAbN26FYmJiXj44Yfh5eUlrjdgwAA0bNgQS5YsAQBcvnwZa9aswZgxY1CzZk3ZPhkMBtV+TpgwQfZ3t27dcOXKFaSmpgKAOMvqjz/+QGFhYQleEcfGjRsHk8kkWybMBAOAvLw8XLlyBXFxcQgKCpK9dnr8/Pxwzz33iH97enqiffv2OH78uLhswYIFaNSoERo2bCg7Rr169QIAJCQkAIB4HCZNmiR7DOmsNiIiIiIiqhx4veYeXq8REbmOARYiolJw+fJlXLt2DV9++SXCwsJk/40ePRoAkJiYKK5fr1492f0NBgPi4uLE+rWnTp0CADRo0ED1WA0bNhRvF05GmzZt6tJ+Kk/qq1WrBsCWrg0AI0aMQJcuXTB27FhERERg5MiRmD9/fqmfvNeuXVu1LCsrCy+99BJiYmJgsVgQGhqKsLAwXLt2DSkpKU63GR0drbpIqVatmvjcAODIkSPYt2+f6hjVr18fgP0YnTp1CkajEXXr1pVtT+t4EBERERFRxcbrNffweo2IyHXswUJEVAqEE9p77rkHo0aN0lynefPm2L9/f1nulopyFpLAarUCsM1KWrNmDRISErBkyRIsXboU8+bNQ69evfDPP//o3t9d0tlPgkcffRSzZ8/G5MmT0alTJwQGBsJgMGDkyJEuXTA4e26A7Tg1a9YMH374oea6MTExLj4DIiIiIiKqLHi95h5erxERuY4BFiKiUhAWFgZ/f38UFBSgT58+uusJJ+xHjhyRLbdarTh69CiaN28OAKhVqxYA4NChQ2I6tODQoUPi7XXq1AEA7N27t3SeCACj0YjevXujd+/e+PDDD/HWW2/hhRdeQEJCgsPnJqWV7u7MwoULMWrUKHzwwQfisuzsbFy7ds3tbempW7cudu3ahd69ezvcx1q1aqGwsBDHjh2TzYI6dOhQqe0LERERERGVDV6vyfF6jYio9LBEGBFRKTCZTBgyZAh+/fVXzZPny5cvy/6eO3cu0tLSxL8XLlyICxcuoF+/fgCAtm3bIjw8HJ9//jlycnLE9f7++28cOHAAAwYMAGC7UIiPj8e3336L06dPyx5DOhPIVcnJyaplLVu2BADZfjjj6+vr9om2yWRS7fOMGTNQUFDg1nYcGT58OM6dO4evvvpKdVtWVhYyMjIAQDwOn3zyiWydjz/+uNT2hYiIiIiIygav1+R4vUZEVHqYwUJEVErefvttJCQkoEOHDhg3bhwaN26M5ORkbN++HStWrJCdDAcHB6Nr164YPXo0Ll26hI8//hhxcXEYN24cAMDDwwPvvPMORo8eje7du+POO+/EpUuXMH36dMTGxuLxxx8Xt/XJJ5+ga9euaN26NR588EHUrl0bJ0+exJIlS7Bz5063nsNrr72GNWvWYMCAAahVqxYSExMxc+ZMREdHo2vXri5vp02bNpg1axbeeOMNxMXFITw8XDWzS+nWW2/F999/j8DAQDRu3BgbNmzAihUrEBIS4tZzcOTee+/F/PnzMWHCBCQkJKBLly4oKCjAwYMHMX/+fCxbtgxt27ZFy5Ytceedd2LmzJlISUlB586dsXLlShw9erTU9oWIiIiIiMoOr9fseL1GRFR6GGAhIiolERER2Lx5M1577TX89ttvmDlzJkJCQtCkSRO88847snWff/557N69G9OmTUNaWhp69+6NmTNnwsfHR1zn/vvvh4+PD95++208++yz8PX1xR133IF33nkHQUFB4notWrTAxo0bMXXqVMyaNQvZ2dmoVasWhg8f7vZzGDRoEE6ePIlvv/0WSUlJCA0NRffu3fHqq68iMDDQ5e289NJLOHXqFN59912kpaWhe/fuTk/Yp0+fDpPJhB9//BHZ2dno0qULVqxYgVtuucXt56HHaDRi0aJF+OijjzB37lz8/vvv8PHxQZ06dfDYY4+JzRMB4Ntvv0VYWBh+/PFHLFq0CL169cKSJUtY95eIiIiIqBLi9Zodr9eIiEqPwVqcnEQiIiqW1atXo2fPnliwYAGGDh1a3rtDRERERERERXi9RkRE7mIPFiIiIiIiIiIiIiIiIjexRBgREbns8uXLDpsYenp6Ijg4uAz3iIiIiIiIiABerxERlQcGWIiIyGXt2rXDqVOndG/v3r07Vq9eXXY7RERERERERAB4vUZEVB7Yg4WIiFy2fv16ZGVl6d5erVo1tGnTpgz3iIiIiIiIiABerxERlQcGWIiIiIiIiIiIiIiIiNzEJvdERERERERERERERERuYoCFiIiIiIiIiIiIiIjITQywEBERERERERERERERuYkBFiIiIiIiIiIiIiIiIjcxwEJEREREREREREREROQmBliIiIiIiIiIiIiIiIjcxAALERERERERERERERGRm/4PAtBtIwl578MAAAAASUVORK5CYII=",
"text/plain": [
"