forked from cms-patatrack/pixeltrack-standalone
-
Notifications
You must be signed in to change notification settings - Fork 0
/
WaitingTaskList.cc
213 lines (193 loc) · 6.05 KB
/
WaitingTaskList.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
// -*- C++ -*-
//
// Package: Concurrency
// Class : WaitingTaskList
//
// Implementation:
// [Notes on implementation]
//
// Original Author: Chris Jones
// Created: Thu Feb 21 13:46:45 CST 2013
// $Id$
//
// system include files
#include <cassert>
#include <tbb/task.h>
// user include files
#include "WaitingTaskList.h"
#include "hardware_pause.h"
using namespace edm;
//
// constants, enums and typedefs
//
//
// static data member definitions
//
//
// constructors and destructor
//
WaitingTaskList::WaitingTaskList(unsigned int iInitialSize)
: m_head{nullptr},
m_nodeCache{new WaitNode[iInitialSize]},
m_nodeCacheSize{iInitialSize},
m_lastAssignedCacheIndex{0},
m_waiting{true} {
auto nodeCache = m_nodeCache.get();
for (auto it = nodeCache, itEnd = nodeCache + m_nodeCacheSize; it != itEnd; ++it) {
it->m_fromCache = true;
}
}
//
// member functions
//
void WaitingTaskList::reset() {
m_exceptionPtr = std::exception_ptr{};
unsigned int nSeenTasks = m_lastAssignedCacheIndex;
m_lastAssignedCacheIndex = 0;
assert(m_head == nullptr);
if (nSeenTasks > m_nodeCacheSize) {
//need to expand so next time we don't have to do any
// memory requests
m_nodeCacheSize = nSeenTasks;
m_nodeCache.reset(new WaitNode[nSeenTasks]);
auto nodeCache = m_nodeCache.get();
for (auto it = nodeCache, itEnd = nodeCache + m_nodeCacheSize; it != itEnd; ++it) {
it->m_fromCache = true;
}
}
//this will make sure all cores see the changes
m_waiting = true;
}
WaitingTaskList::WaitNode* WaitingTaskList::createNode(tbb::task_group* iGroup, WaitingTask* iTask) {
unsigned int index = m_lastAssignedCacheIndex++;
WaitNode* returnValue;
if (index < m_nodeCacheSize) {
returnValue = m_nodeCache.get() + index;
} else {
returnValue = new WaitNode;
returnValue->m_fromCache = false;
}
returnValue->m_task = iTask;
returnValue->m_group = iGroup;
//No other thread can see m_next yet. The caller to create node
// will be doing a synchronization operation anyway which will
// make sure m_task and m_next are synched across threads
returnValue->m_next.store(returnValue, std::memory_order_relaxed);
return returnValue;
}
void WaitingTaskList::add(WaitingTaskHolder iTask) {
if (!m_waiting) {
if (m_exceptionPtr) {
iTask.doneWaiting(m_exceptionPtr);
}
} else {
auto task = iTask.release_no_decrement();
WaitNode* newHead = createNode(iTask.group(), task);
//This exchange is sequentially consistent thereby
// ensuring ordering between it and setNextNode
WaitNode* oldHead = m_head.exchange(newHead);
newHead->setNextNode(oldHead);
//For the case where oldHead != nullptr,
// even if 'm_waiting' changed, we don't
// have to recheck since we beat 'announce()' in
// the ordering of 'm_head.exchange' call so iTask
// is guaranteed to be in the link list
if (nullptr == oldHead) {
newHead->setNextNode(nullptr);
if (!m_waiting) {
//if finished waiting right before we did the
// exchange our task will not be run. Also,
// additional threads may be calling add() and swapping
// heads and linking us to the new head.
// It is safe to call announce from multiple threads
announce();
}
}
}
}
void WaitingTaskList::add(tbb::task_group* iGroup, WaitingTask* iTask) {
iTask->increment_ref_count();
if (!m_waiting) {
if (bool(m_exceptionPtr)) {
iTask->dependentTaskFailed(m_exceptionPtr);
}
if (0 == iTask->decrement_ref_count()) {
iGroup->run([iTask]() {
TaskSentry s{iTask};
iTask->execute();
});
}
} else {
WaitNode* newHead = createNode(iGroup, iTask);
//This exchange is sequentially consistent thereby
// ensuring ordering between it and setNextNode
WaitNode* oldHead = m_head.exchange(newHead);
newHead->setNextNode(oldHead);
//For the case where oldHead != nullptr,
// even if 'm_waiting' changed, we don't
// have to recheck since we beat 'announce()' in
// the ordering of 'm_head.exchange' call so iTask
// is guaranteed to be in the link list
if (nullptr == oldHead) {
if (!m_waiting) {
//if finished waiting right before we did the
// exchange our task will not be run. Also,
// additional threads may be calling add() and swapping
// heads and linking us to the new head.
// It is safe to call announce from multiple threads
announce();
}
}
}
}
void WaitingTaskList::presetTaskAsFailed(std::exception_ptr iExcept) {
if (iExcept and m_waiting) {
WaitNode* node = m_head.load();
while (node) {
WaitNode* next;
while (node == (next = node->nextNode())) {
hardware_pause();
}
node->m_task->dependentTaskFailed(iExcept);
node = next;
}
}
}
void WaitingTaskList::announce() {
//Need a temporary storage since one of these tasks could
// cause the next event to start processing which would refill
// this waiting list after it has been reset
WaitNode* n = m_head.exchange(nullptr);
WaitNode* next;
while (n) {
//it is possible that 'WaitingTaskList::add' is running in a different
// thread and we have a new 'head' but the old head has not yet been
// attached to the new head (we identify this since 'nextNode' will return itself).
// In that case we have to wait until the link has been established before going on.
while (n == (next = n->nextNode())) {
hardware_pause();
}
auto t = n->m_task;
auto g = n->m_group;
if (bool(m_exceptionPtr)) {
t->dependentTaskFailed(m_exceptionPtr);
}
if (!n->m_fromCache) {
delete n;
}
n = next;
//the task may indirectly call WaitingTaskList::reset
// so we need to call spawn after we are done using the node.
if (0 == t->decrement_ref_count()) {
g->run([t]() {
TaskSentry s{t};
t->execute();
});
}
}
}
void WaitingTaskList::doneWaiting(std::exception_ptr iPtr) {
m_exceptionPtr = iPtr;
m_waiting = false;
announce();
}