-
Notifications
You must be signed in to change notification settings - Fork 0
/
macros.tex
810 lines (677 loc) · 31.2 KB
/
macros.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
%%%% MACROS FOR NOTATION %%%%
% Use these for any notation where there are multiple options.
%%% Notes and exercise sections
\makeatletter
\newcommand{\sectionNotes}{\phantomsection\section*{Notes}\addcontentsline{toc}{section}{Notes}\markright{\textsc{\@chapapp{} \thechapter{} Notes}}}
\newcommand{\sectionExercises}[1]{\phantomsection\section*{Exercises}\addcontentsline{toc}{section}{Exercises}\markright{\textsc{\@chapapp{} \thechapter{} Exercises}}}
\makeatother
%%% Definitional equality (used infix) %%%
\newcommand{\jdeq}{\equiv} % An equality judgment
\let\judgeq\jdeq
%\newcommand{\defeq}{\coloneqq} % An equality currently being defined
\newcommand{\defeq}{\vcentcolon\equiv} % A judgmental equality currently being defined
%%% Term being defined
\newcommand{\define}[1]{\textbf{#1}}
%%% Vec (for example)
\newcommand{\Vect}{\ensuremath{\mathsf{Vec}}}
\newcommand{\Fin}{\ensuremath{\mathsf{Fin}}}
\newcommand{\fmax}{\ensuremath{\mathsf{fmax}}}
\newcommand{\seq}[1]{\langle #1\rangle}
%%% Dependent products %%%
\def\prdsym{\textstyle\prod}
%% Call the macro like \prd{x,y:A}{p:x=y} with any number of
%% arguments. Make sure that whatever comes *after* the call doesn't
%% begin with an open-brace, or it will be parsed as another argument.
\makeatletter
% Currently the macro is configured to produce
% {\textstyle\prod}(x:A) \; {\textstyle\prod}(y:B),\
% in display-math mode, and
% \prod_{(x:A)} \prod_{y:B}
% in text-math mode.
% \def\prd#1{\@ifnextchar\bgroup{\prd@parens{#1}}{%
% \@ifnextchar\sm{\prd@parens{#1}\@eatsm}{%
% \prd@noparens{#1}}}}
\def\prd#1{\@ifnextchar\bgroup{\prd@parens{#1}}{%
\@ifnextchar\sm{\prd@parens{#1}\@eatsm}{%
\@ifnextchar\prd{\prd@parens{#1}\@eatprd}{%
\@ifnextchar\;{\prd@parens{#1}\@eatsemicolonspace}{%
\@ifnextchar\\{\prd@parens{#1}\@eatlinebreak}{%
\@ifnextchar\narrowbreak{\prd@parens{#1}\@eatnarrowbreak}{%
\prd@noparens{#1}}}}}}}}
\def\prd@parens#1{\@ifnextchar\bgroup%
{\mathchoice{\@dprd{#1}}{\@tprd{#1}}{\@tprd{#1}}{\@tprd{#1}}\prd@parens}%
{\@ifnextchar\sm%
{\mathchoice{\@dprd{#1}}{\@tprd{#1}}{\@tprd{#1}}{\@tprd{#1}}\@eatsm}%
{\mathchoice{\@dprd{#1}}{\@tprd{#1}}{\@tprd{#1}}{\@tprd{#1}}}}}
\def\@eatsm\sm{\sm@parens}
\def\prd@noparens#1{\mathchoice{\@dprd@noparens{#1}}{\@tprd{#1}}{\@tprd{#1}}{\@tprd{#1}}}
% Helper macros for three styles
\def\lprd#1{\@ifnextchar\bgroup{\@lprd{#1}\lprd}{\@@lprd{#1}}}
\def\@lprd#1{\mathchoice{{\textstyle\prod}}{\prod}{\prod}{\prod}({\textstyle #1})\;}
\def\@@lprd#1{\mathchoice{{\textstyle\prod}}{\prod}{\prod}{\prod}({\textstyle #1}),\ }
\def\tprd#1{\@tprd{#1}\@ifnextchar\bgroup{\tprd}{}}
\def\@tprd#1{\mathchoice{{\textstyle\prod_{(#1)}}}{\prod_{(#1)}}{\prod_{(#1)}}{\prod_{(#1)}}}
\def\dprd#1{\@dprd{#1}\@ifnextchar\bgroup{\dprd}{}}
\def\@dprd#1{\prod_{(#1)}\,}
\def\@dprd@noparens#1{\prod_{#1}\,}
% Look through spaces and linebreaks
\def\@eatnarrowbreak\narrowbreak{%
\@ifnextchar\prd{\narrowbreak\@eatprd}{%
\@ifnextchar\sm{\narrowbreak\@eatsm}{%
\narrowbreak}}}
\def\@eatlinebreak\\{%
\@ifnextchar\prd{\\\@eatprd}{%
\@ifnextchar\sm{\\\@eatsm}{%
\\}}}
\def\@eatsemicolonspace\;{%
\@ifnextchar\prd{\;\@eatprd}{%
\@ifnextchar\sm{\;\@eatsm}{%
\;}}}
%%% Lambda abstractions.
% Each variable being abstracted over is a separate argument. If
% there is more than one such argument, they *must* be enclosed in
% braces. Arguments can be untyped, as in \lam{x}{y}, or typed with a
% colon, as in \lam{x:A}{y:B}. In the latter case, the colons are
% automatically noticed and (with current implementation) the space
% around the colon is reduced. You can even give more than one variable
% the same type, as in \lam{x,y:A}.
\def\lam#1{{\lambda}\@lamarg#1:\@endlamarg\@ifnextchar\bgroup{.\,\lam}{.\,}}
\def\@lamarg#1:#2\@endlamarg{\if\relax\detokenize{#2}\relax #1\else\@lamvar{\@lameatcolon#2},#1\@endlamvar\fi}
\def\@lamvar#1,#2\@endlamvar{(#2\,{:}\,#1)}
% \def\@lamvar#1,#2{{#2}^{#1}\@ifnextchar,{.\,{\lambda}\@lamvar{#1}}{\let\@endlamvar\relax}}
\def\@lameatcolon#1:{#1}
\let\lamt\lam
% This version silently eats any typing annotation.
\def\lamu#1{{\lambda}\@lamuarg#1:\@endlamuarg\@ifnextchar\bgroup{.\,\lamu}{.\,}}
\def\@lamuarg#1:#2\@endlamuarg{#1}
%%% Dependent products written with \forall, in the same style
\def\fall#1{\forall (#1)\@ifnextchar\bgroup{.\,\fall}{.\,}}
%%% Existential quantifier %%%
\def\exis#1{\exists (#1)\@ifnextchar\bgroup{.\,\exis}{.\,}}
%%% Dependent sums %%%
\def\smsym{\textstyle\sum}
% Use in the same way as \prd
\def\sm#1{\@ifnextchar\bgroup{\sm@parens{#1}}{%
\@ifnextchar\prd{\sm@parens{#1}\@eatprd}{%
\@ifnextchar\sm{\sm@parens{#1}\@eatsm}{%
\@ifnextchar\;{\sm@parens{#1}\@eatsemicolonspace}{%
\@ifnextchar\\{\sm@parens{#1}\@eatlinebreak}{%
\@ifnextchar\narrowbreak{\sm@parens{#1}\@eatnarrowbreak}{%
\sm@noparens{#1}}}}}}}}
\def\sm@parens#1{\@ifnextchar\bgroup%
{\mathchoice{\@dsm{#1}}{\@tsm{#1}}{\@tsm{#1}}{\@tsm{#1}}\sm@parens}%
{\@ifnextchar\prd%
{\mathchoice{\@dsm{#1}}{\@tsm{#1}}{\@tsm{#1}}{\@tsm{#1}}\@eatprd}%
{\mathchoice{\@dsm{#1}}{\@tsm{#1}}{\@tsm{#1}}{\@tsm{#1}}}}}
\def\@eatprd\prd{\prd@parens}
\def\sm@noparens#1{\mathchoice{\@dsm@noparens{#1}}{\@tsm{#1}}{\@tsm{#1}}{\@tsm{#1}}}
\def\lsm#1{\@ifnextchar\bgroup{\@lsm{#1}\lsm}{\@@lsm{#1}}}
\def\@lsm#1{\mathchoice{{\textstyle\sum}}{\sum}{\sum}{\sum}({\textstyle #1})\;}
\def\@@lsm#1{\mathchoice{{\textstyle\sum}}{\sum}{\sum}{\sum}({\textstyle #1}),\ }
\def\tsm#1{\@tsm{#1}\@ifnextchar\bgroup{\tsm}{}}
\def\@tsm#1{\mathchoice{{\textstyle\sum_{(#1)}}}{\sum_{(#1)}}{\sum_{(#1)}}{\sum_{(#1)}}}
\def\dsm#1{\@dsm{#1}\@ifnextchar\bgroup{\dsm}{}}
\def\@dsm#1{\sum_{(#1)}\,}
\def\@dsm@noparens#1{\sum_{#1}\,}
%%% W-types
\def\wtypesym{{\mathsf{W}}}
\def\wtype#1{\@ifnextchar\bgroup%
{\mathchoice{\@twtype{#1}}{\@twtype{#1}}{\@twtype{#1}}{\@twtype{#1}}\wtype}%
{\mathchoice{\@twtype{#1}}{\@twtype{#1}}{\@twtype{#1}}{\@twtype{#1}}}}
\def\lwtype#1{\@ifnextchar\bgroup{\@lwtype{#1}\lwtype}{\@@lwtype{#1}}}
\def\@lwtype#1{\mathchoice{{\textstyle\mathsf{W}}}{\mathsf{W}}{\mathsf{W}}{\mathsf{W}}({\textstyle #1})\;}
\def\@@lwtype#1{\mathchoice{{\textstyle\mathsf{W}}}{\mathsf{W}}{\mathsf{W}}{\mathsf{W}}({\textstyle #1}),\ }
\def\twtype#1{\@twtype{#1}\@ifnextchar\bgroup{\twtype}{}}
\def\@twtype#1{\mathchoice{{\textstyle\mathsf{W}_{(#1)}}}{\mathsf{W}_{(#1)}}{\mathsf{W}_{(#1)}}{\mathsf{W}_{(#1)}}}
\def\dwtype#1{\@dwtype{#1}\@ifnextchar\bgroup{\dwtype}{}}
\def\@dwtype#1{\mathsf{W}_{(#1)}\,}
\newcommand{\suppsym}{{\mathsf{sup}}}
\newcommand{\supp}{\ensuremath\suppsym\xspace}
\def\wtypeh#1{\@ifnextchar\bgroup%
{\mathchoice{\@lwtypeh{#1}}{\@twtypeh{#1}}{\@twtypeh{#1}}{\@twtypeh{#1}}\wtypeh}%
{\mathchoice{\@@lwtypeh{#1}}{\@twtypeh{#1}}{\@twtypeh{#1}}{\@twtypeh{#1}}}}
\def\lwtypeh#1{\@ifnextchar\bgroup{\@lwtypeh{#1}\lwtypeh}{\@@lwtypeh{#1}}}
\def\@lwtypeh#1{\mathchoice{{\textstyle\mathsf{W}^h}}{\mathsf{W}^h}{\mathsf{W}^h}{\mathsf{W}^h}({\textstyle #1})\;}
\def\@@lwtypeh#1{\mathchoice{{\textstyle\mathsf{W}^h}}{\mathsf{W}^h}{\mathsf{W}^h}{\mathsf{W}^h}({\textstyle #1}),\ }
\def\twtypeh#1{\@twtypeh{#1}\@ifnextchar\bgroup{\twtypeh}{}}
\def\@twtypeh#1{\mathchoice{{\textstyle\mathsf{W}^h_{(#1)}}}{\mathsf{W}^h_{(#1)}}{\mathsf{W}^h_{(#1)}}{\mathsf{W}^h_{(#1)}}}
\def\dwtypeh#1{\@dwtypeh{#1}\@ifnextchar\bgroup{\dwtypeh}{}}
\def\@dwtypeh#1{\mathsf{W}^h_{(#1)}\,}
\makeatother
% Other notations related to dependent sums
\let\setof\Set % from package 'braket', write \setof{ x:A | P(x) }.
\newcommand{\pair}{\ensuremath{\mathsf{pair}}\xspace}
\newcommand{\tup}[2]{(#1,#2)}
\newcommand{\proj}[1]{\ensuremath{\mathsf{pr}_{#1}}\xspace}
\newcommand{\fst}{\ensuremath{\proj1}\xspace}
\newcommand{\snd}{\ensuremath{\proj2}\xspace}
\newcommand{\ac}{\ensuremath{\mathsf{ac}}\xspace} % not needed in symbol index
\newcommand{\un}{\ensuremath{\mathsf{upun}}\xspace} % not needed in symbol index, uniqueness principle for unit type
%%% recursor and induction
\newcommand{\rec}[1]{\mathsf{rec}_{#1}}
\newcommand{\ind}[1]{\mathsf{ind}_{#1}}
\newcommand{\indid}[1]{\ind{=_{#1}}} % (Martin-Lof) path induction principle for identity types
\newcommand{\indidb}[1]{\ind{=_{#1}}'} % (Paulin-Mohring) based path induction principle for identity types
%%% the uniqueness principle for product types, formerly called surjective pairing and named \spr:
\newcommand{\uppt}{\ensuremath{\mathsf{uppt}}\xspace}
% Paths in pairs
\newcommand{\pairpath}{\ensuremath{\mathsf{pair}^{\mathord{=}}}\xspace}
% \newcommand{\projpath}[1]{\proj{#1}^{\mathord{=}}}
\newcommand{\projpath}[1]{\ensuremath{\apfunc{\proj{#1}}}\xspace}
%%% For quotients %%%
%\newcommand{\pairr}[1]{{\langle #1\rangle}}
\newcommand{\pairr}[1]{{\mathopen{}(#1)\mathclose{}}}
\newcommand{\Pairr}[1]{{\mathopen{}\left(#1\right)\mathclose{}}}
% \newcommand{\type}{\ensuremath{\mathsf{Type}}} % this command is overridden below, so it's commented out
\newcommand{\im}{\ensuremath{\mathsf{im}}} % the image
%%% 2D path operations
\newcommand{\leftwhisker}{\mathbin{{\ct}_{\mathsf{l}}}} % was \ell
\newcommand{\rightwhisker}{\mathbin{{\ct}_{\mathsf{r}}}} % was r
\newcommand{\hct}{\star}
%%% modalities %%%
\newcommand{\modal}{\ensuremath{\ocircle}}
\let\reflect\modal
\newcommand{\modaltype}{\ensuremath{\type_\modal}}
% \newcommand{\ism}[1]{\ensuremath{\mathsf{is}_{#1}}}
% \newcommand{\ismodal}{\ism{\modal}}
% \newcommand{\existsmodal}{\ensuremath{{\exists}_{\modal}}}
% \newcommand{\existsmodalunique}{\ensuremath{{\exists!}_{\modal}}}
% \newcommand{\modalfunc}{\textsf{\modal-fun}}
% \newcommand{\Ecirc}{\ensuremath{\mathsf{E}_\modal}}
% \newcommand{\Mcirc}{\ensuremath{\mathsf{M}_\modal}}
\newcommand{\mreturn}{\ensuremath{\eta}}
\let\project\mreturn
%\newcommand{\mbind}[1]{\ensuremath{\hat{#1}}}
\newcommand{\ext}{\mathsf{ext}}
%\newcommand{\mmap}[1]{\ensuremath{\bar{#1}}}
%\newcommand{\mjoin}{\ensuremath{\mreturn^{-1}}}
% Subuniverse
\renewcommand{\P}{\ensuremath{\type_{P}}\xspace}
%%% Localizations
% \newcommand{\islocal}[1]{\ensuremath{\mathsf{islocal}_{#1}}\xspace}
% \newcommand{\loc}[1]{\ensuremath{\mathcal{L}_{#1}}\xspace}
%%% Identity types %%%
\newcommand{\idsym}{{=}}
\newcommand{\id}[3][]{\ensuremath{#2 =_{#1} #3}\xspace}
\newcommand{\idtype}[3][]{\ensuremath{\mathsf{Id}_{#1}(#2,#3)}\xspace}
\newcommand{\idtypevar}[1]{\ensuremath{\mathsf{Id}_{#1}}\xspace}
% A propositional equality currently being defined
\newcommand{\defid}{\coloneqq}
%%% Dependent paths
\newcommand{\dpath}[4]{#3 =^{#1}_{#2} #4}
%%% singleton
% \newcommand{\sgl}{\ensuremath{\mathsf{sgl}}\xspace}
% \newcommand{\sctr}{\ensuremath{\mathsf{sctr}}\xspace}
%%% Reflexivity terms %%%
% \newcommand{\reflsym}{{\mathsf{refl}}}
\newcommand{\refl}[1]{\ensuremath{\mathsf{refl}_{#1}}\xspace}
%%% Path concatenation (used infix, in diagrammatic order) %%%
\newcommand{\ct}{%
\mathchoice{\mathbin{\raisebox{0.5ex}{$\displaystyle\centerdot$}}}%
{\mathbin{\raisebox{0.5ex}{$\centerdot$}}}%
{\mathbin{\raisebox{0.25ex}{$\scriptstyle\,\centerdot\,$}}}%
{\mathbin{\raisebox{0.1ex}{$\scriptscriptstyle\,\centerdot\,$}}}
}
%%% Path reversal %%%
\newcommand{\opp}[1]{\mathord{{#1}^{-1}}}
\let\rev\opp
%%% Transport (covariant) %%%
\newcommand{\trans}[2]{\ensuremath{{#1}_{*}\mathopen{}\left({#2}\right)\mathclose{}}\xspace}
\let\Trans\trans
%\newcommand{\Trans}[2]{\ensuremath{{#1}_{*}\left({#2}\right)}\xspace}
\newcommand{\transf}[1]{\ensuremath{{#1}_{*}}\xspace} % Without argument
%\newcommand{\transport}[2]{\ensuremath{\mathsf{transport}_{*} \: {#2}\xspace}}
\newcommand{\transfib}[3]{\ensuremath{\mathsf{transport}^{#1}(#2,#3)\xspace}}
\newcommand{\Transfib}[3]{\ensuremath{\mathsf{transport}^{#1}\Big(#2,\, #3\Big)\xspace}}
\newcommand{\transfibf}[1]{\ensuremath{\mathsf{transport}^{#1}\xspace}}
%%% 2D transport
\newcommand{\transtwo}[2]{\ensuremath{\mathsf{transport}^2\mathopen{}\left({#1},{#2}\right)\mathclose{}}\xspace}
%%% Constant transport
\newcommand{\transconst}[3]{\ensuremath{\mathsf{transportconst}}^{#1}_{#2}(#3)\xspace}
\newcommand{\transconstf}{\ensuremath{\mathsf{transportconst}}\xspace}
%%% Map on paths %%%
\newcommand{\mapfunc}[1]{\ensuremath{\mathsf{ap}_{#1}}\xspace} % Without argument
\newcommand{\map}[2]{\ensuremath{{#1}\mathopen{}\left({#2}\right)\mathclose{}}\xspace}
\let\Ap\map
%\newcommand{\Ap}[2]{\ensuremath{{#1}\left({#2}\right)}\xspace}
\newcommand{\mapdepfunc}[1]{\ensuremath{\mathsf{apd}_{#1}}\xspace} % Without argument
% \newcommand{\mapdep}[2]{\ensuremath{{#1}\llparenthesis{#2}\rrparenthesis}\xspace}
\newcommand{\mapdep}[2]{\ensuremath{\mapdepfunc{#1}\mathopen{}\left(#2\right)\mathclose{}}\xspace}
\let\apfunc\mapfunc
\let\ap\map
\let\apdfunc\mapdepfunc
\let\apd\mapdep
%%% 2D map on paths
\newcommand{\aptwofunc}[1]{\ensuremath{\mathsf{ap}^2_{#1}}\xspace}
\newcommand{\aptwo}[2]{\ensuremath{\aptwofunc{#1}\mathopen{}\left({#2}\right)\mathclose{}}\xspace}
\newcommand{\apdtwofunc}[1]{\ensuremath{\mathsf{apd}^2_{#1}}\xspace}
\newcommand{\apdtwo}[2]{\ensuremath{\apdtwofunc{#1}\mathopen{}\left(#2\right)\mathclose{}}\xspace}
%%% Identity functions %%%
\newcommand{\idfunc}[1][]{\ensuremath{\mathsf{id}_{#1}}\xspace}
%%% Homotopies (written infix) %%%
\newcommand{\htpy}{\sim}
%%% Other meanings of \sim
\newcommand{\bisim}{\sim} % bisimulation
\newcommand{\eqr}{\sim} % an equivalence relation
%%% Equivalence types %%%
\newcommand{\eqv}[2]{\ensuremath{#1 \simeq #2}\xspace}
\newcommand{\eqvspaced}[2]{\ensuremath{#1 \;\simeq\; #2}\xspace}
\newcommand{\eqvsym}{\simeq} % infix symbol
\newcommand{\texteqv}[2]{\ensuremath{\mathsf{Equiv}(#1,#2)}\xspace}
\newcommand{\isequiv}{\ensuremath{\mathsf{isequiv}}}
\newcommand{\qinv}{\ensuremath{\mathsf{qinv}}}
\newcommand{\ishae}{\ensuremath{\mathsf{ishae}}}
\newcommand{\linv}{\ensuremath{\mathsf{linv}}}
\newcommand{\rinv}{\ensuremath{\mathsf{rinv}}}
\newcommand{\biinv}{\ensuremath{\mathsf{biinv}}}
\newcommand{\lcoh}[3]{\mathsf{lcoh}_{#1}(#2,#3)}
\newcommand{\rcoh}[3]{\mathsf{rcoh}_{#1}(#2,#3)}
\newcommand{\hfib}[2]{{\mathsf{fib}}_{#1}(#2)}
%%% Map on total spaces %%%
\newcommand{\total}[1]{\ensuremath{\mathsf{total}(#1)}}
%%% Universe types %%%
%\newcommand{\type}{\ensuremath{\mathsf{Type}}\xspace}
\newcommand{\UU}{\ensuremath{\mathcal{U}}\xspace}
\let\bbU\UU
\let\type\UU
% Universes of truncated types
\newcommand{\typele}[1]{\ensuremath{{#1}\text-\mathsf{Type}}\xspace}
\newcommand{\typeleU}[1]{\ensuremath{{#1}\text-\mathsf{Type}_\UU}\xspace}
\newcommand{\typelep}[1]{\ensuremath{{(#1)}\text-\mathsf{Type}}\xspace}
\newcommand{\typelepU}[1]{\ensuremath{{(#1)}\text-\mathsf{Type}_\UU}\xspace}
\let\ntype\typele
\let\ntypeU\typeleU
\let\ntypep\typelep
\let\ntypepU\typelepU
\renewcommand{\set}{\ensuremath{\mathsf{Set}}\xspace}
\newcommand{\setU}{\ensuremath{\mathsf{Set}_\UU}\xspace}
\newcommand{\prop}{\ensuremath{\mathsf{Prop}}\xspace}
\newcommand{\propU}{\ensuremath{\mathsf{Prop}_\UU}\xspace}
%Pointed types
\newcommand{\pointed}[1]{\ensuremath{#1_\bullet}}
%%% Ordinals and cardinals
\newcommand{\card}{\ensuremath{\mathsf{Card}}\xspace}
\newcommand{\ord}{\ensuremath{\mathsf{Ord}}\xspace}
\newcommand{\ordsl}[2]{{#1}_{/#2}}
%%% Univalence
\newcommand{\ua}{\ensuremath{\mathsf{ua}}\xspace} % the inverse of idtoeqv
\newcommand{\idtoeqv}{\ensuremath{\mathsf{idtoeqv}}\xspace}
\newcommand{\univalence}{\ensuremath{\mathsf{univalence}}\xspace} % the full axiom
%%% Truncation levels
\newcommand{\iscontr}{\ensuremath{\mathsf{isContr}}}
\newcommand{\contr}{\ensuremath{\mathsf{contr}}} % The path to the center of contraction
\newcommand{\isset}{\ensuremath{\mathsf{isSet}}}
\newcommand{\isprop}{\ensuremath{\mathsf{isProp}}}
% h-propositions
% \newcommand{\anhprop}{a mere proposition\xspace}
% \newcommand{\hprops}{mere propositions\xspace}
%%% Homotopy fibers %%%
%\newcommand{\hfiber}[2]{\ensuremath{\mathsf{hFiber}(#1,#2)}\xspace}
\let\hfiber\hfib
%%% Bracket/squash/truncation types %%%
% \newcommand{\brck}[1]{\textsf{mere}(#1)}
% \newcommand{\Brck}[1]{\textsf{mere}\Big(#1\Big)}
% \newcommand{\trunc}[2]{\tau_{#1}(#2)}
% \newcommand{\Trunc}[2]{\tau_{#1}\Big(#2\Big)}
% \newcommand{\truncf}[1]{\tau_{#1}}
%\newcommand{\trunc}[2]{\Vert #2\Vert_{#1}}
\newcommand{\trunc}[2]{\mathopen{}\left\Vert #2\right\Vert_{#1}\mathclose{}}
\newcommand{\ttrunc}[2]{\bigl\Vert #2\bigr\Vert_{#1}}
\newcommand{\Trunc}[2]{\Bigl\Vert #2\Bigr\Vert_{#1}}
\newcommand{\truncf}[1]{\Vert \blank \Vert_{#1}}
\newcommand{\tproj}[3][]{\mathopen{}\left|#3\right|_{#2}^{#1}\mathclose{}}
\newcommand{\tprojf}[2][]{|\blank|_{#2}^{#1}}
\def\pizero{\trunc0}
%\newcommand{\brck}[1]{\trunc{-1}{#1}}
%\newcommand{\Brck}[1]{\Trunc{-1}{#1}}
%\newcommand{\bproj}[1]{\tproj{-1}{#1}}
%\newcommand{\bprojf}{\tprojf{-1}}
\newcommand{\brck}[1]{\trunc{}{#1}}
\newcommand{\bbrck}[1]{\ttrunc{}{#1}}
\newcommand{\Brck}[1]{\Trunc{}{#1}}
\newcommand{\bproj}[1]{\tproj{}{#1}}
\newcommand{\bprojf}{\tprojf{}}
% Big parentheses
\newcommand{\Parens}[1]{\Bigl(#1\Bigr)}
% Projection and extension for truncations
\let\extendsmb\ext
\newcommand{\extend}[1]{\extendsmb(#1)}
%
%%% The empty type
\newcommand{\emptyt}{\ensuremath{\mathbf{0}}\xspace}
%%% The unit type
\newcommand{\unit}{\ensuremath{\mathbf{1}}\xspace}
\newcommand{\ttt}{\ensuremath{\star}\xspace}
%%% The two-element type
\newcommand{\bool}{\ensuremath{\mathbf{2}}\xspace}
\newcommand{\btrue}{{1_{\bool}}}
\newcommand{\bfalse}{{0_{\bool}}}
%%% Injections into binary sums and pushouts
\newcommand{\inlsym}{{\mathsf{inl}}}
\newcommand{\inrsym}{{\mathsf{inr}}}
\newcommand{\inl}{\ensuremath\inlsym\xspace}
\newcommand{\inr}{\ensuremath\inrsym\xspace}
%%% The segment of the interval
\newcommand{\seg}{\ensuremath{\mathsf{seg}}\xspace}
%%% Free groups
\newcommand{\freegroup}[1]{F(#1)}
\newcommand{\freegroupx}[1]{F'(#1)} % the "other" free group
%%% Glue of a pushout
\newcommand{\glue}{\mathsf{glue}}
%%% Circles and spheres
\newcommand{\Sn}{\mathbb{S}}
\newcommand{\base}{\ensuremath{\mathsf{base}}\xspace}
\newcommand{\lloop}{\ensuremath{\mathsf{loop}}\xspace}
\newcommand{\surf}{\ensuremath{\mathsf{surf}}\xspace}
%%% Suspension
\newcommand{\susp}{\Sigma}
\newcommand{\north}{\mathsf{N}}
\newcommand{\south}{\mathsf{S}}
\newcommand{\merid}{\mathsf{merid}}
%%% Blanks (shorthand for lambda abstractions)
\newcommand{\blank}{\mathord{\hspace{1pt}\text{--}\hspace{1pt}}}
%%% Nameless objects
\newcommand{\nameless}{\mathord{\hspace{1pt}\underline{\hspace{1ex}}\hspace{1pt}}}
%%% Some decorations
%\newcommand{\bbU}{\ensuremath{\mathbb{U}}\xspace}
% \newcommand{\bbB}{\ensuremath{\mathbb{B}}\xspace}
\newcommand{\bbP}{\ensuremath{\mathbb{P}}\xspace}
%%% Some categories
\newcommand{\uset}{\ensuremath{\mathcal{S}et}\xspace}
\newcommand{\ucat}{\ensuremath{{\mathcal{C}at}}\xspace}
\newcommand{\urel}{\ensuremath{\mathcal{R}el}\xspace}
\newcommand{\uhilb}{\ensuremath{\mathcal{H}ilb}\xspace}
\newcommand{\utype}{\ensuremath{\mathcal{T}\!ype}\xspace}
% Pullback corner
\newbox\pbbox
\setbox\pbbox=\hbox{\xy \POS(65,0)\ar@{-} (0,0) \ar@{-} (65,65)\endxy}
\def\pb{\save[]+<3.5mm,-3.5mm>*{\copy\pbbox} \restore}
% Macros for the categories chapter
\newcommand{\inv}[1]{{#1}^{-1}}
\newcommand{\idtoiso}{\ensuremath{\mathsf{idtoiso}}\xspace}
\newcommand{\isotoid}{\ensuremath{\mathsf{isotoid}}\xspace}
\newcommand{\op}{^{\mathrm{op}}}
\newcommand{\y}{\ensuremath{\mathbf{y}}\xspace}
\newcommand{\dgr}[1]{{#1}^{\dagger}}
\newcommand{\unitaryiso}{\mathrel{\cong^\dagger}}
\newcommand{\cteqv}[2]{\ensuremath{#1 \simeq #2}\xspace}
\newcommand{\cteqvsym}{\simeq} % Symbol for equivalence of categories
%%% Natural numbers
\newcommand{\N}{\ensuremath{\mathbb{N}}\xspace}
%\newcommand{\N}{\textbf{N}}
\let\nat\N
\newcommand{\natp}{\ensuremath{\nat'}\xspace} % alternative nat in induction chapter
\newcommand{\zerop}{\ensuremath{0'}\xspace} % alternative zero in induction chapter
\newcommand{\suc}{\mathsf{succ}}
\newcommand{\sucp}{\ensuremath{\suc'}\xspace} % alternative suc in induction chapter
\newcommand{\add}{\mathsf{add}}
\newcommand{\ack}{\mathsf{ack}}
\newcommand{\ite}{\mathsf{iter}}
\newcommand{\assoc}{\mathsf{assoc}}
\newcommand{\dbl}{\ensuremath{\mathsf{double}}}
\newcommand{\dblp}{\ensuremath{\dbl'}\xspace} % alternative double in induction chapter
%%% Lists
\newcommand{\lst}[1]{\mathsf{List}(#1)}
\newcommand{\nil}{\mathsf{nil}}
\newcommand{\cons}{\mathsf{cons}}
%%% Vectors of given length, used in induction chapter
\newcommand{\vect}[2]{\ensuremath{\mathsf{Vec}_{#1}(#2)}\xspace}
%%% Integers
\newcommand{\Z}{\ensuremath{\mathbb{Z}}\xspace}
\newcommand{\Zsuc}{\mathsf{succ}}
\newcommand{\Zpred}{\mathsf{pred}}
%%% Rationals
\newcommand{\Q}{\ensuremath{\mathbb{Q}}\xspace}
%%% Function extensionality
\newcommand{\funext}{\mathsf{funext}}
\newcommand{\happly}{\mathsf{happly}}
%%% A naturality lemma
\newcommand{\com}[3]{\mathsf{swap}_{#1,#2}(#3)}
%%% Code/encode/decode
\newcommand{\code}{\ensuremath{\mathsf{code}}\xspace}
\newcommand{\encode}{\ensuremath{\mathsf{encode}}\xspace}
\newcommand{\decode}{\ensuremath{\mathsf{decode}}\xspace}
% Function definition with domain and codomain
\newcommand{\function}[4]{\left\{\begin{array}{rcl}#1 &
\longrightarrow & #2 \\ #3 & \longmapsto & #4 \end{array}\right.}
%%% Cones and cocones
\newcommand{\cone}[2]{\mathsf{cone}_{#1}(#2)}
\newcommand{\cocone}[2]{\mathsf{cocone}_{#1}(#2)}
% Apply a function to a cocone
\newcommand{\composecocone}[2]{#1\circ#2}
\newcommand{\composecone}[2]{#2\circ#1}
%%% Diagrams
\newcommand{\Ddiag}{\mathscr{D}}
%%% (pointed) mapping spaces
\newcommand{\Map}{\mathsf{Map}}
%%% The interval
\newcommand{\interval}{\ensuremath{I}\xspace}
\newcommand{\izero}{\ensuremath{0_{\interval}}\xspace}
\newcommand{\ione}{\ensuremath{1_{\interval}}\xspace}
%%% Arrows
\newcommand{\epi}{\ensuremath{\twoheadrightarrow}}
\newcommand{\mono}{\ensuremath{\rightarrowtail}}
%%% Sets
\newcommand{\bin}{\ensuremath{\mathrel{\widetilde{\in}}}}
%%% Semigroup structure
\newcommand{\semigroupstrsym}{\ensuremath{\mathsf{SemigroupStr}}}
\newcommand{\semigroupstr}[1]{\ensuremath{\mathsf{SemigroupStr}}(#1)}
\newcommand{\semigroup}[0]{\ensuremath{\mathsf{Semigroup}}}
%%% Macros for the formal type theory
\newcommand{\emptyctx}{\ensuremath{\cdot}}
\newcommand{\production}{\vcentcolon\vcentcolon=}
\newcommand{\conv}{\downarrow}
\newcommand{\ctx}{\ensuremath{\mathsf{ctx}}}
\newcommand{\wfctx}[1]{#1\ \ctx}
\newcommand{\oftp}[3]{#1 \vdash #2 : #3}
\newcommand{\jdeqtp}[4]{#1 \vdash #2 \jdeq #3 : #4}
\newcommand{\judg}[2]{#1 \vdash #2}
\newcommand{\tmtp}[2]{#1 \mathord{:} #2}
% rule names
\newcommand{\form}{\textsc{form}}
\newcommand{\intro}{\textsc{intro}}
\newcommand{\elim}{\textsc{elim}}
\newcommand{\comp}{\textsc{comp}}
\newcommand{\uniq}{\textsc{uniq}}
\newcommand{\Weak}{\mathsf{Wkg}}
\newcommand{\Vble}{\mathsf{Vble}}
\newcommand{\Exch}{\mathsf{Exch}}
\newcommand{\Subst}{\mathsf{Subst}}
%%% Macros for HITs
\newcommand{\cc}{\mathsf{c}}
\newcommand{\pp}{\mathsf{p}}
\newcommand{\cct}{\widetilde{\mathsf{c}}}
\newcommand{\ppt}{\widetilde{\mathsf{p}}}
\newcommand{\Wtil}{\ensuremath{\widetilde{W}}\xspace}
%%% Macros for n-types
\newcommand{\istype}[1]{\mathsf{is}\mbox{-}{#1}\mbox{-}\mathsf{type}}
\newcommand{\nplusone}{\ensuremath{(n+1)}}
\newcommand{\nminusone}{\ensuremath{(n-1)}}
\newcommand{\fact}{\mathsf{fact}}
%%% Macros for homotopy
\newcommand{\kbar}{\overline{k}} % Used in van Kampen's theorem
%%% Macros for induction
\newcommand{\natw}{\ensuremath{\mathbf{N^w}}\xspace}
\newcommand{\zerow}{\ensuremath{0^\mathbf{w}}\xspace}
\newcommand{\sucw}{\ensuremath{\mathbf{s^w}}\xspace}
\newcommand{\nalg}{\nat\mathsf{Alg}}
\newcommand{\nhom}{\nat\mathsf{Hom}}
\newcommand{\ishinitw}{\mathsf{isHinit}_{\mathsf{W}}}
\newcommand{\ishinitn}{\mathsf{isHinit}_\nat}
\newcommand{\w}{\mathsf{W}}
\newcommand{\walg}{\w\mathsf{Alg}}
\newcommand{\whom}{\w\mathsf{Hom}}
%%% Macros for real numbers
\newcommand{\RC}{\ensuremath{\mathbb{R}_\mathsf{c}}\xspace} % Cauchy
\newcommand{\RD}{\ensuremath{\mathbb{R}_\mathsf{d}}\xspace} % Dedekind
\newcommand{\R}{\ensuremath{\mathbb{R}}\xspace} % Either
\newcommand{\barRD}{\ensuremath{\bar{\mathbb{R}}_\mathsf{d}}\xspace} % Dedekind completion of Dedekind
\newcommand{\close}[1]{\sim_{#1}} % Relation of closeness
\newcommand{\closesym}{\mathord\sim}
\newcommand{\rclim}{\mathsf{lim}} % HIT constructor for Cauchy reals
\newcommand{\rcrat}{\mathsf{rat}} % Embedding of rationals into Cauchy reals
\newcommand{\rceq}{\mathsf{eq}_{\RC}} % HIT path constructor
\newcommand{\CAP}{\mathcal{C}} % The type of Cauchy approximations
\newcommand{\Qp}{\Q_{+}}
\newcommand{\apart}{\mathrel{\#}} % apartness
\newcommand{\dcut}{\mathsf{isCut}} % Dedekind cut
\newcommand{\cover}{\triangleleft} % inductive cover
\newcommand{\intfam}[3]{(#2, \lam{#1} #3)} % family of rational intervals
% Macros for the Cauchy reals construction
\newcommand{\bsim}{\frown}
\newcommand{\bbsim}{\smile}
\newcommand{\hapx}{\diamondsuit\approx}
\newcommand{\hapname}{\diamondsuit}
\newcommand{\hapxb}{\heartsuit\approx}
\newcommand{\hapbname}{\heartsuit}
\newcommand{\tap}[1]{\bullet\approx_{#1}\triangle}
\newcommand{\tapname}{\triangle}
\newcommand{\tapb}[1]{\bullet\approx_{#1}\square}
\newcommand{\tapbname}{\square}
%%% Macros for surreals
\newcommand{\NO}{\ensuremath{\mathsf{No}}\xspace}
\newcommand{\surr}[2]{\{\,#1\,\big|\,#2\,\}}
\newcommand{\LL}{\mathcal{L}}
\newcommand{\RR}{\mathcal{R}}
\newcommand{\noeq}{\mathsf{eq}_{\NO}} % HIT path constructor
\newcommand{\ble}{\trianglelefteqslant}
\newcommand{\blt}{\vartriangleleft}
\newcommand{\bble}{\sqsubseteq}
\newcommand{\bblt}{\sqsubset}
\newcommand{\hle}{\diamondsuit\preceq}
\newcommand{\hlt}{\diamondsuit\prec}
\newcommand{\hlname}{\diamondsuit}
\newcommand{\hleb}{\heartsuit\preceq}
\newcommand{\hltb}{\heartsuit\prec}
\newcommand{\hlbname}{\heartsuit}
% \newcommand{\tle}{(\bullet\preceq\triangle)}
% \newcommand{\tlt}{(\bullet\prec\triangle)}
\newcommand{\tle}{\triangle\preceq}
\newcommand{\tlt}{\triangle\prec}
\newcommand{\tlname}{\triangle}
% \newcommand{\tleb}{(\bullet\preceq\square)}
% \newcommand{\tltb}{(\bullet\prec\square)}
\newcommand{\tleb}{\square\preceq}
\newcommand{\tltb}{\square\prec}
\newcommand{\tlbname}{\square}
%%% Macros for set theory
\newcommand{\vset}{\mathsf{set}} % point constructor for cummulative hierarchy V
\def\cd{\tproj0}
\newcommand{\inj}{\ensuremath{\mathsf{inj}}} % type of injections
\newcommand{\acc}{\ensuremath{\mathsf{acc}}} % accessibility
\newcommand{\atMostOne}{\mathsf{atMostOne}}
\newcommand{\power}[1]{\mathcal{P}(#1)} % power set
\newcommand{\powerp}[1]{\mathcal{P}_+(#1)} % inhabited power set
%%%% THEOREM ENVIRONMENTS %%%%
% Hyperref includes the command \autoref{...} which is like \ref{...}
% except that it automatically inserts the type of the thing you're
% referring to, e.g. it produces "Theorem 3.8" instead of just "3.8"
% (and makes the whole thing a hyperlink). This saves a slight amount
% of typing, but more importantly it means that if you decide later on
% that 3.8 should be a Lemma or a Definition instead of a Theorem, you
% don't have to change the name in all the places you referred to it.
% The following hack improves on this by using the same counter for
% all theorem-type environments, so that after Theorem 1.1 comes
% Corollary 1.2 rather than Corollary 1.1. This makes it much easier
% for the reader to find a particular theorem when flipping through
% the document.
\makeatletter
\def\defthm#1#2#3{%
%% Ensure all theorem types are numbered with the same counter
\newaliascnt{#1}{thm}
\newtheorem{#1}[#1]{#2}
\aliascntresetthe{#1}
%% This command tells cleveref's \cref what to call things
\crefname{#1}{#2}{#3}}
% Now define a bunch of theorem-type environments.
\newtheorem{thm}{Theorem}[section]
\crefname{thm}{Theorem}{Theorems}
%\defthm{prop}{Proposition} % Probably we shouldn't use "Proposition" in this way
\defthm{cor}{Corollary}{Corollaries}
\defthm{lem}{Lemma}{Lemmas}
\defthm{axiom}{Axiom}{Axioms}
% Since definitions and theorems in type theory are synonymous, should
% we actually use the same theoremstyle for them?
\theoremstyle{definition}
\defthm{defn}{Definition}{Definitions}
\theoremstyle{remark}
\defthm{rmk}{Remark}{Remarks}
\defthm{eg}{Example}{Examples}
\defthm{egs}{Examples}{Examples}
\defthm{notes}{Notes}{Notes}
% Number exercises within chapters, with their own counter.
\newtheorem{ex}{Exercise}[chapter]
\crefname{ex}{Exercise}{Exercises}
% Display format for sections
\crefformat{section}{\S#2#1#3}
\Crefformat{section}{Section~#2#1#3}
\crefrangeformat{section}{\S\S#3#1#4--#5#2#6}
\Crefrangeformat{section}{Sections~#3#1#4--#5#2#6}
\crefmultiformat{section}{\S\S#2#1#3}{ and~#2#1#3}{, #2#1#3}{ and~#2#1#3}
\Crefmultiformat{section}{Sections~#2#1#3}{ and~#2#1#3}{, #2#1#3}{ and~#2#1#3}
\crefrangemultiformat{section}{\S\S#3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}{, #3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}
\Crefrangemultiformat{section}{Sections~#3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}{, #3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}
% Display format for appendices
\crefformat{appendix}{Appendix~#2#1#3}
\Crefformat{appendix}{Appendix~#2#1#3}
\crefrangeformat{appendix}{Appendices~#3#1#4--#5#2#6}
\Crefrangeformat{appendix}{Appendices~#3#1#4--#5#2#6}
\crefmultiformat{appendix}{Appendices~#2#1#3}{ and~#2#1#3}{, #2#1#3}{ and~#2#1#3}
\Crefmultiformat{appendix}{Appendices~#2#1#3}{ and~#2#1#3}{, #2#1#3}{ and~#2#1#3}
\crefrangemultiformat{appendix}{Appendices~#3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}{, #3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}
\Crefrangemultiformat{appendix}{Appendices~#3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}{, #3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}
\crefname{part}{Part}{Parts}
% Number subsubsections
\setcounter{secnumdepth}{5}
% Display format for figures
\crefname{figure}{Figure}{Figures}
% Use cleveref instead of hyperref's \autoref
\let\autoref\cref
%%%% EQUATION NUMBERING %%%%
% The following hack uses the single theorem counter to number
% equations as well, so that we don't have both Theorem 1.1 and
% equation (1.1).
\let\c@equation\c@thm
\numberwithin{equation}{section}
%%%% ENUMERATE NUMBERING %%%%
% Number the first level of enumerates as (i), (ii), ...
\renewcommand{\theenumi}{(\roman{enumi})}
\renewcommand{\labelenumi}{\theenumi}
%%%% MARGINS %%%%
% This is a matter of personal preference, but I think the left
% margins on enumerates and itemizes are too wide.
\setitemize[1]{leftmargin=2em}
\setenumerate[1]{leftmargin=*}
% Likewise that they are too spaced out.
\setitemize[1]{itemsep=-0.2em}
\setenumerate[1]{itemsep=-0.2em}
%%% Notes %%%
\def\noteson{%
\gdef\note##1{\mbox{}\marginpar{\color{blue}\textasteriskcentered\ ##1}}}
\gdef\notesoff{\gdef\note##1{\null}}
\noteson
\newcommand{\Coq}{\textsc{Coq}\xspace}
\newcommand{\Agda}{\textsc{Agda}\xspace}
\newcommand{\NuPRL}{\textsc{NuPRL}\xspace}
%%%% CITATIONS %%%%
% \let \cite \citep
%%%% INDEX %%%%
\newcommand{\footstyle}[1]{{\hyperpage{#1}}n} % If you index something that is in a footnote
\newcommand{\defstyle}[1]{\textbf{\hyperpage{#1}}} % Style for pageref to a definition
\newcommand{\indexdef}[1]{\index{#1|defstyle}} % Index a definition
\newcommand{\indexfoot}[1]{\index{#1|footstyle}} % Index a term in a footnote
\newcommand{\indexsee}[2]{\index{#1|see{#2}}} % Index "see also"
%%%% Standard phrasing or spelling of common phrases %%%%
\newcommand{\ZF}{Zermelo--Fraenkel}
\newcommand{\CZF}{Constructive \ZF{} Set Theory}
\newcommand{\LEM}[1]{\ensuremath{\mathsf{LEM}_{#1}}\xspace}
\newcommand{\choice}[1]{\ensuremath{\mathsf{AC}_{#1}}\xspace}
%%%% MISC %%%%
\newcommand{\mentalpause}{\medskip} % Use for "mental" pause, instead of \smallskip or \medskip
%% Use \symlabel instead of \label to mark a pageref that you need in the index of symbols
\newcounter{symindex}
\newcommand{\symlabel}[1]{\refstepcounter{symindex}\label{#1}}
% Local Variables:
% mode: latex
% TeX-master: "hott-online"
% End: