Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Espresso lj separate class #2

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
149 changes: 110 additions & 39 deletions eessi/testsuite/tests/apps/espresso/espresso.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,27 +31,14 @@ def filter_scales_P3M():
]


@rfm.simple_test
class EESSI_ESPRESSO_P3M_IONIC_CRYSTALS(rfm.RunOnlyRegressionTest):

scale = parameter(filter_scales_P3M())
class EESSI_ESPRESSO(rfm.RunOnlyRegressionTest):
valid_prog_environs = ['default']
valid_systems = ['*']
time_limit = '300m'
# Need to check if QuantumESPRESSO also gets listed.
module_name = parameter(find_modules('ESPResSo'))
# device type is parameterized for an impending CUDA ESPResSo module.
device_type = parameter([DEVICE_TYPES[CPU]])

executable = 'python3 madelung.py'

default_strong_scaling_system_size = 9
default_weak_scaling_system_size = 6

benchmark_info = parameter([
('mpi.ionic_crystals.p3m', 'p3m'),
], fmt=lambda x: x[0], loggable=True)

@run_after('init')
def run_after_init(self):
"""hooks to run after init phase"""
Expand All @@ -65,27 +52,6 @@ def run_after_init(self):
# Set scales as tags
hooks.set_tag_scale(self)

@run_after('init')
def set_tag_ci(self):
""" Setting tests under CI tag. """
if (self.benchmark_info[0] in ['mpi.ionic_crystals.p3m'] and SCALES[self.scale]['num_nodes'] < 2):
self.tags.add('CI')
log(f'tags set to {self.tags}')

if (self.benchmark_info[0] == 'mpi.ionic_crystals.p3m'):
self.tags.add('ionic_crystals_p3m')

@run_after('init')
def set_executable_opts(self):
"""Set executable opts based on device_type parameter"""
num_default = 0 # If this test already has executable opts, they must have come from the command line
hooks.check_custom_executable_opts(self, num_default=num_default)
if not self.has_custom_executable_opts:
# By default we run weak scaling since the strong scaling sizes need to change based on max node size and a
# corresponding min node size has to be chozen.
self.executable_opts += ['--size', str(self.default_weak_scaling_system_size), '--weak-scaling']
utils.log(f'executable_opts set to {self.executable_opts}')

@run_after('setup')
def set_num_tasks_per_node(self):
""" Setting number of tasks per node and cpus per task in this function. This function sets num_cpus_per_task
Expand All @@ -102,14 +68,23 @@ def set_mem(self):
@deferrable
def assert_completion(self):
'''Check completion'''
cao = sn.extractsingle(r'^resulting parameters:.*cao: (?P<cao>\S+),', self.stdout, 'cao', int)
return (sn.assert_found(r'^Algorithm executed.', self.stdout) and cao)
if self.benchmark_info[0] in ['mpi.ionic_crystals.p3m']:
cao = sn.extractsingle(r'^resulting parameters:.*cao: (?P<cao>\S+),', self.stdout, 'cao', int)
return (sn.assert_found(r'^Algorithm executed.', self.stdout) and cao)
elif self.benchmark_info[0] in ['mpi.particles.lj']:
return (sn.assert_found(r'^Algorithm executed.', self.stdout))

@deferrable
def assert_convergence(self):
'''Check convergence'''
check_string = sn.assert_found(r'Final convergence met with tolerances:', self.stdout)
energy = sn.extractsingle(r'^\s+energy:\s+(?P<energy>\S+)', self.stdout, 'energy', float)
check_string = False
energy = 0.0
if self.benchmark_info[0] in ['mpi.ionic_crystals.p3m']:
check_string = sn.assert_found(r'Final convergence met with tolerances:', self.stdout)
energy = sn.extractsingle(r'^\s+energy:\s+(?P<energy>\S+)', self.stdout, 'energy', float)
elif self.benchmark_info[0] in ['mpi.particles.lj']:
check_string = sn.assert_found(r'Final convergence met with relative tolerances:', self.stdout)
energy = sn.extractsingle(r'^\s+sim_energy:\s+(?P<energy>\S+)', self.stdout, 'energy', float)
return (check_string and (energy != 0.0))

@sanity_function
Expand All @@ -123,3 +98,99 @@ def assert_sanity(self):
@performance_function('s/step')
def perf(self):
return sn.extractsingle(r'^Performance:\s+(?P<perf>\S+)', self.stdout, 'perf', float)


@rfm.simple_test
class EESSI_ESPRESSO_P3M_IONIC_CRYSTALS(EESSI_ESPRESSO):
scale = parameter(filter_scales_P3M())
time_limit = '300m'

executable = 'python3 madelung.py'

default_weak_scaling_system_size = 6

@run_after('init')
def set_tag_ci(self):
""" Setting tests under CI tag. """
if SCALES[self.scale]['num_nodes'] < 2:
self.tags.add('CI')
log(f'tags set to {self.tags}')

self.tags.add('ionic_crystals_p3m')

@run_after('init')
def set_executable_opts(self):
"""Set executable opts based on device_type parameter"""
num_default = 0 # If this test already has executable opts, they must have come from the command line
hooks.check_custom_executable_opts(self, num_default=num_default)
# By default we run weak scaling since the strong scaling sizes need to change based on max node size and a
# corresponding min node size has to be chozen.
self.executable_opts += ['--size', str(self.default_weak_scaling_system_size), '--weak-scaling']
utils.log(f'executable_opts set to {self.executable_opts}')

@run_after('setup')
def set_mem(self):
""" Setting an extra job option of memory. Here the assumption made is that HPC systems will contain at
least 1 GB per core of memory."""
mem_required_per_node = self.num_tasks_per_node * 0.9
hooks.req_memory_per_node(test=self, app_mem_req=mem_required_per_node)

@deferrable
def assert_completion(self):
'''Check completion'''
cao = sn.extractsingle(r'^resulting parameters:.*cao: (?P<cao>\S+),', self.stdout, 'cao', int)
return (sn.assert_found(r'^Algorithm executed.', self.stdout) and cao)

@deferrable
def assert_convergence(self):
'''Check convergence'''
check_string = False
energy = 0.0
check_string = sn.assert_found(r'Final convergence met with tolerances:', self.stdout)
energy = sn.extractsingle(r'^\s+energy:\s+(?P<energy>\S+)', self.stdout, 'energy', float)
return (check_string and (energy != 0.0))


@rfm.simple_test
class EESSI_ESPRESSO_LJ_PARTICLES(EESSI_ESPRESSO):
time_limit = '60m'

executable = 'python3 lj.py'

@run_after('init')
def set_tag_ci(self):
""" Setting tests under CI tag. """
if SCALES[self.scale]['num_nodes'] < 2:
self.tags.add('CI')
log(f'tags set to {self.tags}')

self.tags.add('particles_lj')

@run_after('init')
def set_executable_opts(self):
"""Allow executable opts to be overwritten from command line"""
num_default = 0 # If this test already has executable opts, they must have come from the command line
hooks.check_custom_executable_opts(self, num_default=num_default)

@run_after('setup')
def set_mem(self):
""" Setting an extra job option of memory. Here the assumption made is that HPC systems will contain at
least 1 GB per core of memory."""
mem_required_per_node = self.num_tasks_per_node * 0.9 # TODO: figure out if this is also ok for lb use case
hooks.req_memory_per_node(test=self, app_mem_req=mem_required_per_node)

@deferrable
def assert_completion(self):
'''Check completion'''
return (sn.assert_found(r'^Algorithm executed.', self.stdout))

@deferrable
def assert_convergence(self):
'''Check convergence'''
check_string = False
energy = 0.0
check_string = sn.assert_found(r'Final convergence met with relative tolerances:', self.stdout)
energy = sn.extractsingle(r'^\s+sim_energy:\s+(?P<energy>\S+)', self.stdout, 'energy', float)
return (check_string and (energy != 0.0))


161 changes: 161 additions & 0 deletions eessi/testsuite/tests/apps/espresso/src/lj.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,161 @@
#
# Copyright (C) 2018-2024 The ESPResSo project
#
# This file is part of ESPResSo.
#
# ESPResSo is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# ESPResSo is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#

import argparse
import time
import espressomd
import numpy as np

required_features = ["LENNARD_JONES"]
espressomd.assert_features(required_features)

parser = argparse.ArgumentParser(description="Benchmark LJ simulations.")
parser.add_argument("--particles-per-core", metavar="N", action="store",
type=int, default=2000, required=False,
help="Number of particles in the simulation box")
parser.add_argument("--sample-size", metavar="S", action="store",
type=int, default=30, required=False,
help="Sample size")
parser.add_argument("--volume-fraction", metavar="FRAC", action="store",
type=float, default=0.50, required=False,
help="Fraction of the simulation box volume occupied by "
"particles (range: [0.01-0.74], default: 0.50)")
args = parser.parse_args()

# process and check arguments
measurement_steps = 100
if args.particles_per_core < 16000:
measurement_steps = 200
if args.particles_per_core < 10000:
measurement_steps = 500
if args.particles_per_core < 5000:
measurement_steps = 1000
if args.particles_per_core < 1000:
measurement_steps = 2000
if args.particles_per_core < 600:
measurement_steps = 4000
if args.particles_per_core < 260:
measurement_steps = 6000
assert args.volume_fraction > 0., "volume_fraction must be a positive number"
assert args.volume_fraction < np.pi / (3. * np.sqrt(2.)), \
"volume_fraction exceeds the physical limit of sphere packing (~0.74)"

# make simulation deterministic
np.random.seed(42)


def get_reference_values_per_atom(x):
# result of a polynomial fit in the range from 0.01 to 0.55
energy = 54.2 * x**3 - 23.8 * x**2 + 4.6 * x - 0.09
pressure = 377. * x**3 - 149. * x**2 + 32.2 * x - 0.58
return energy, pressure


def get_normalized_values_per_atom(system):
energy = system.analysis.energy()["non_bonded"]
pressure = system.analysis.pressure()["non_bonded"]
N = len(system.part)
V = system.volume()
return 2. * energy / N, 2. * pressure * V / N


system = espressomd.System(box_l=[10., 10., 10.])
system.time_step = 0.01
system.cell_system.skin = 0.5

lj_eps = 1.0 # LJ epsilon
lj_sig = 1.0 # particle diameter
lj_cut = lj_sig * 2**(1. / 6.) # cutoff distance

n_proc = system.cell_system.get_state()["n_nodes"]
n_part = n_proc * args.particles_per_core
node_grid = np.array(system.cell_system.node_grid)
# volume of N spheres with radius r: N * (4/3*pi*r^3)
box_v = args.particles_per_core * 4. / 3. * \
np.pi * (lj_sig / 2.)**3 / args.volume_fraction
# box_v = (x * n) * x * x for a column
system.box_l = float((box_v)**(1. / 3.)) * node_grid
assert np.abs(n_part * 4. / 3. * np.pi * (lj_sig / 2.)**3 / np.prod(system.box_l) - args.volume_fraction) < 0.1

system.non_bonded_inter[0, 0].lennard_jones.set_params(
epsilon=lj_eps, sigma=lj_sig, cutoff=lj_cut, shift="auto")

system.part.add(pos=np.random.random((n_part, 3)) * system.box_l)

# energy minimization
max_steps = 1000
# particle forces for volume fractions between 0.1 and 0.5 follow a polynomial
target_f_max = 20. * args.volume_fraction**2
system.integrator.set_steepest_descent(
f_max=target_f_max, gamma=0.001, max_displacement=0.01 * lj_sig)
n_steps = system.integrator.run(max_steps)
assert n_steps < max_steps, f'''energy minimization failed: \
E = {system.analysis.energy()["total"] / len(system.part):.3g} per particle, \
f_max = {np.max(np.linalg.norm(system.part.all().f, axis=1)):.2g}, \
target f_max = {target_f_max:.2g}'''

# warmup
system.integrator.set_vv()
system.thermostat.set_langevin(kT=1.0, gamma=1.0, seed=42)

# tuning and equilibration
min_skin = 0.2
max_skin = 1.0
print("Tune skin: {:.3f}".format(system.cell_system.tune_skin(
min_skin=min_skin, max_skin=max_skin, tol=0.05, int_steps=100)))
print("Equilibration")
system.integrator.run(min(5 * measurement_steps, 60000))
print("Tune skin: {:.3f}".format(system.cell_system.tune_skin(
min_skin=min_skin, max_skin=max_skin, tol=0.05, int_steps=100)))
print("Equilibration")
system.integrator.run(min(10 * measurement_steps, 60000))

print("Sampling runtime...")
timings = []
energies = []
pressures = []
for i in range(args.sample_size):
tick = time.time()
system.integrator.run(measurement_steps)
tock = time.time()
t = (tock - tick) / measurement_steps
timings.append(t)
energy, pressure = get_normalized_values_per_atom(system)
energies.append(energy)
pressures.append(pressure)

sim_energy = np.mean(energies)
sim_pressure = np.mean(pressures)
ref_energy, ref_pressure = get_reference_values_per_atom(args.volume_fraction)

print("Algorithm executed. \n")
np.testing.assert_allclose(sim_energy, ref_energy, atol=0., rtol=0.1)
np.testing.assert_allclose(sim_pressure, ref_pressure, atol=0., rtol=0.1)

print("Final convergence met with relative tolerances: \n\
sim_energy: ", 0.1, "\n\
sim_pressure: ", 0.1, "\n")

header = '"mode","cores","mpi.x","mpi.y","mpi.z","particles","volume_fraction","mean","std"'
report = f'''"weak scaling",{n_proc},{node_grid[0]},{node_grid[1]},\
{node_grid[2]},{len(system.part)},{args.volume_fraction:.4f},\
{np.mean(timings):.3e},{np.std(timings,ddof=1):.3e}'''
print(header)
print(report)
print(f"Performance: {np.mean(timings):.3e}")
Loading