-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathspgl1_old.m
1163 lines (998 loc) · 39.7 KB
/
spgl1_old.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
function [x,r,g,info] = spgl1(A, b, tau, sigma, x, options, params)
% SPGL1 sampling branch
%SPGL1 Solve regularized composite programs, including
% a) basis pursuit, basis pursuit denoise and lasso
% b) nonlinear versions of above problems, where forward model is nonlinear
% c) robust penalty on misfit, including huber and students t
%
% [x, r, g, info] = spgl1(A, b, tau, sigma, x, options, params )
%
%
% ---------------------------------------------------------------------
% Solve the regularized composite problem
%
% (GBPDN) minimize ||x|| subj to h(b - f(x)) <= sigma,
%
% or the regularized composite problem
%
% (GLASSO) minimize h(b - f(x)) subj to ||x|| <= tau.
% ---------------------------------------------------------------------
%
% INPUTS
% ======
% A is one of
% (a) an explicit m by n matrix
% (b) an implicit linear operator (SPOT) from R^n to R^m
% (c) a nonlinear function handle from R^n to R^m
%
%
% If A is linear, then it must have the signature
% y = A(x,mode) if mode == 1 then y is m-by-1;
% if mode == 2 then y is n-by-1.
%
% If A is nonlinear, then it must have the signature
% [f] = funForward(x) and
% [gv] = funForward(x, v)
% gv returns the action of the gradient of f on a vector.
%
%
% b is an m-vector.
% tau is a nonnegative scalar; see (LASSO).
% sigma if sigma != inf or != [], then spgl1 will launch into a
% root-finding mode to find the tau above that solves (BPDN).
% In this case, it's STRONGLY recommended that tau = 0.
% x0 is an n-vector estimate of the solution (possibly all
% zeros). If x0 = [], then SPGL1 determines the length n via
% n = length( A'b ) and sets x0 = zeros(n,1).
% options is a structure of options from spgSetParms. Any unset options
% are set to their default value; set options=[] to use all
% default values.
%
% OUTPUTS
% =======
% x is a solution of the problem
% r is the residual, r = b - f(x)
% g is the gradient, g = \nabla h(b - f(x))
% info is a structure with the following information:
% .tau final value of tau (see sigma above)
% .rNorm two-norm of the optimal residual
% .rErr relative error (an optimality measure)
% .gNorm Lagrange multiplier of (LASSO)
% .stat = 1 found a BPDN solution
% = 2 found a BP sol'n; exit based on small gradient
% = 3 found a BP sol'n; exit based on small residual
% = 4 found a LASSO solution
% = 5 error: too many iterations
% = 6 error: linesearch failed
% = 7 error: found suboptimal BP solution
% = 8 error: too many matrix-vector products
% .time total solution time (seconds)
% .nProdA number of function evaluations
% .nProdAt number of gradient evaluations
%
% OPTIONS
% =======
% Use the options structure to control various aspects of the algorithm:
%
% options.fid File ID to direct log output
% .verbosity 0=quiet, 1=some output, 2=more output.
% .iterations Max. number of iterations (default if 10*m).
% .bpTol Tolerance for identifying a basis pursuit solution.
% .optTol Optimality tolerance (default is 1e-4).
% .decTol Larger decTol means more frequent Newton updates.
% .subspaceMin 0=no subspace minimization, 1=subspace minimization.
% .quitPareto 0=normal execution, 1=forces an exit when the pareto curve is reached
% .minPareto Minimum number of spgl1 iterations before checking for quitPareto
% .funPenalty function handle for h(r) alone, with signature
% [f, g] = funPenalty(r)
%
%
% EXAMPLE
% =======
% m = 120; n = 512; k = 20; % m rows, n cols, k nonzeros.
% p = randperm(n); x0 = zeros(n,1); x0(p(1:k)) = sign(randn(k,1));
% A = randn(m,n); [Q,R] = qr(A',0); A = Q';
% b = A*x0 + 0.005 * randn(m,1);
% opts = spgSetParms('optTol',1e-4);
% [x,r,g,info] = spgl1(A, b, 0, 1e-3, [], opts); % Find BP sol'n.
%
% AUTHORS
% =======
% Ewout van den Berg ([email protected])
% Michael P. Friedlander ([email protected])
% Scientific Computing Laboratory (SCL)
% University of British Columbia, Canada.
% Aleksandr Aravkin ([email protected])
% CS & EOS, UBC
%
% BUGS
% ====
% Please send bug reports or comments to
% Michael P. Friedlander ([email protected])
% Ewout van den Berg ([email protected])
% 15 Apr 07: First version derived from spg.m.
% Michael P. Friedlander ([email protected]).
% Ewout van den Berg ([email protected]).
% 17 Apr 07: Added root-finding code.
% 18 Apr 07: sigma was being compared to 1/2 r'r, rather than
% norm(r), as advertised. Now immediately change sigma to
% (1/2)sigma^2, and changed log output accordingly.
% 24 Apr 07: Added quadratic root-finding code as an option.
% 24 Apr 07: Exit conditions need to guard against small ||r||
% (ie, a BP solution). Added test1,test2,test3 below.
% 15 May 07: Trigger to update tau is now based on relative difference
% in objective between consecutive iterations.
% 15 Jul 07: Added code to allow a limited number of line-search
% errors.
% 23 Feb 08: Fixed bug in one-norm projection using weights. Thanks
% to Xiangrui Meng for reporting this bug.
% 26 May 08: The simple call spgl1(A,b) now solves (BPDN) with sigma=0.
%
% 18 Feb 10: Code branched to SPGL1-SLIM to include custom features:
% -added option to force exit when Pareto curve is reached
% -included ability to handle Kaczmarz operators.
% -hacked out the linesearch fail conditions using a large limit.
% Tim Lin ([email protected]).
% 03 May 10: Added capabilities to work on distributed vectors. Added options for
% parallelized capabilities, max line-search iterations.
% 20 May 10: Made minPareto a user-configurable condition
% 20 Jul 10: Improved performance of spgLine for costly Aprod
% 17 Nov 10: Made default allowance for feasible line-search artificially large to allow for badly scaled problems
% 20 Dec 10: Added option to allow L1-projection failures to issue warning istead of error (ignorePErr)
% 27 Apr 11: Some optimizations via the following:
% -L1 projection on distributed arrays no longer uses sorting
% -disabled restoring to xBest to save memory space
% -disabled subspace minimizaiton permanately to avoid computing active set to save space
% -re-written some expressions to avoid calculating imtermediate results
% 03 May 11: Further memory optimizations, calculated many quantites in-place to avoid temporary allocation of memory, made oneProjector nested
%
% 09 July 12: Redesigned code to solve a more general class of problems,
% including (a) arbitrary differentiable misfits and (b)
% nonlinear forward models.
% Aleksandr Aravkin ([email protected]).
%
% 09 July 12: Removed Kacmarz options (not used anyway) (AA).
%
% ----------------------------------------------------------------------
% This file is part of SPGL1 (Spectral Projected-Gradient for L1).
%
% Copyright (C) 2007-2012 Ewout van den Berg, Michael P. Friedlander,
% Aleksandr Aravkin.
% Department of Computer Science, University of British Columbia, Canada.
% All rights reserved. E-mail: <{ewout78,mpf}@cs.ubc.ca>,
%
% SPGL1 is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as
% published by the Free Software Foundation; either version 2.1 of the
% License, or (at your option) any later version.
%
% SPGL1 is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
% Public License for more details.
%
% You should have received a copy of the GNU Lesser General Public
% License along with SPGL1; if not, write to the Free Software
% Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
% USA
% ----------------------------------------------------------------------
REVISION = '$Rev: 83 $';
DATE = '$Date: 2012-07-09 17:41:32 -0700 (Mon, 09 Jul 2012) $';
REVISION = REVISION(6:end-1);
DATE = DATE(35:50);
% Set to true to display debug flags
PRINT_DEBUG_FLAGS = false;
tic; % Start your watches!
m = length(b);
%----------------------------------------------------------------------
% Check arguments.
%----------------------------------------------------------------------
if ~exist('params', 'var'), params = []; end
if ~exist('options','var'), options = []; end
if ~exist('x','var'), x = []; end
if ~exist('sigma','var'), sigma = []; end
if ~exist('tau','var'), tau = []; end
if nargin < 2 || isempty(b) || isempty(A)
error('At least two arguments are required');
elseif isempty(tau) && isempty(sigma)
tau = 0;
sigma = 0;
singleTau = false;
elseif isempty(sigma) % && ~isempty(tau) <-- implied
singleTau = true;
else
if isempty(tau)
tau = 0;
end
singleTau = false;
end
%----------------------------------------------------------------------
% Grab input options and set defaults where needed.
%----------------------------------------------------------------------
defaultopts = spgSetParms(...
'fid' , 1 , ... % File ID for output
'verbosity' , 2 , ... % Verbosity level
'iterations' , 10*m , ... % Max number of iterations
'nPrevVals' , 3 , ... % Number previous func values for linesearch
'bpTol' , 1e-06 , ... % Tolerance for basis pursuit solution
'lsTol' , 1e-06 , ... % Least-squares optimality tolerance
'optTol' , 1e-04 , ... % Optimality tolerance
'decTol' , 1e-04 , ... % Req'd rel. change in primal obj. for Newton
'stepMin' , 1e-16 , ... % Minimum spectral step
'stepMax' , 1e+05 , ... % Maximum spectral step
'rootMethod' , 2 , ... % Root finding method: 2=quad,1=linear (not used).
'activeSetIt', Inf , ... % Exit with EXIT_ACTIVE_SET if nnz same for # its.
'subspaceMin', 0 , ... % Use subspace minimization
'iscomplex' , NaN , ... % Flag set to indicate complex problem
'maxMatvec' , Inf , ... % Maximum matrix-vector multiplies allowed
'weights' , 1 , ... % Weights W in ||Wx||_1
'quitPareto' , 0 , ... % Exits when pareto curve is reached
'minPareto' , 3 , ... % If quitPareto is on, the minimum number of iterations before checking for quitPareto conditions
'lineSrchIt' , 10 , ... % Maximum number of line search iterations for spgLineCurvy, originally 10 ...
'feasSrchIt' , 10000 , ... % Maximum number of feasible direction line search iteraitons, originally 10 ...
'ignorePErr' , 0 , ... % Ignores projections error by issuing a warning instead of an error ...
'project' , @NormL1_project , ...
'primal_norm', @NormL1_primal , ...
'dual_norm' , @NormL1_dual , ...
'funPenalty' , @funLS , ... % default penalty - backward compatible with spgl1
'proxy' , 0 , ... % advanced option that computes pareto curve in a user-specified way.
'restore' , 0 ... % whether to restore best previous answer. for large problems, don't want to do this.
);
options = spgSetParms(defaultopts, options);
fid = options.fid;
logLevel = options.verbosity;
maxIts = options.iterations;
nPrevVals = options.nPrevVals;
bpTol = options.bpTol;
lsTol = options.lsTol;
optTol = options.optTol;
decTol = options.decTol;
stepMin = options.stepMin;
stepMax = options.stepMax;
activeSetIt = options.activeSetIt;
subspaceMin = options.subspaceMin;
maxMatvec = max(3,options.maxMatvec);
weights = options.weights;
maxLineErrors = Inf; % Maximum number of line-search failures (DISABLED)
quitPareto = options.quitPareto;
minPareto = options.minPareto;
lineSrchIt = options.lineSrchIt;
feasSrchIt = options.feasSrchIt;
ignorePErr = options.ignorePErr;
primal_norm = options.primal_norm;
dual_norm = options.dual_norm;
params.proxy = options.proxy;
funPenalty = options.funPenalty;
% definitely don't do subspace minimiation in the non LS case
if(~strcmp(func2str(funPenalty), 'funLS'))
subspaceMin = 0;
end
pivTol = 1e-12; % Threshold for significant Newton step.
%----------------------------------------------------------------------
% Initialize local variables.
%----------------------------------------------------------------------
iter = 0; itnTotLSQR = 0; % Total SPGL1 and LSQR iterations.
nProdA = 0; nProdAt = 0;
lastFv = -inf(nPrevVals,1); % Last m function values.
nLineTot = 0; % Total no. of linesearch steps.
printTau = false;
nNewton = 0;
bNorm = funPenalty(b, params);
stat = false;
timeProject = 0;
timeMatProd = 0;
nnzIter = 0; % No. of its with fixed pattern.
nnzIdx = []; % Active-set indicator.
subspace = false; % Flag if did subspace min in current itn.
stepG = 1; % Step length for projected gradient.
testUpdateTau = 0; % Previous step did not update tau
% Determine initial x, vector length n, and see if problem is complex
explicit = ~(isa(A,'function_handle'));
if isa(A, 'opSpot') || explicit
funForward = @SpotFunForward;
linear = 1;
else
funForward = A;
linear = 0;
end
if isempty(x)
if isnumeric(A)
n = size(A,2);
realx = isreal(A) && isreal(b);
else
x = funForward(x, -b);
n = length(x);
realx = isreal(x) && isreal(b);
end
x = zeros(n,1);
else
n = length(x);
realx = isreal(x) && isreal(b);
end
if isnumeric(A), realx = realx && isreal(A); end;
% Override options when options.iscomplex flag is set
if (~isnan(options.iscomplex)), realx = (options.iscomplex == 0); end
% Check if all weights (if any) are strictly positive. In previous
% versions we also checked if the number of weights was equal to
% n. In the case of multiple measurement vectors, this no longer
% needs to apply, so the check was removed.
if ~isempty(weights)
if any(~isfinite(weights))
error('Entries in options.weights must be finite');
end
% if any(weights <= 0)
% error('Entries in options.weights must be strictly positive');
% end
else
weights = 1;
end
% Quick exit if sigma >= ||b||. Set tau = 0 to short-circuit the loop.
if bNorm <= sigma
printf('W: sigma >= ||b||. Exact solution is x = 0.\n');
tau = 0; singleTau = true;
end
% Don't do subspace minimization if x is complex.
if ~realx && subspaceMin
printf('W: Subspace minimization disabled when variables are complex.\n');
subspaceMin = false;
end
% Pre-allocate iteration info vectors
xNorm1 = zeros(min(maxIts,10000),1);
rNorm2 = zeros(min(maxIts,10000),1);
lambda = zeros(min(maxIts,10000),1);
% Exit conditions (constants).
EXIT_ROOT_FOUND = 1;
EXIT_BPSOL_FOUND = 2;
%EXIT_BPSOL2_FOUND = 3;
EXIT_LEAST_SQUARES = 3;
EXIT_OPTIMAL = 4;
EXIT_ITERATIONS = 5;
EXIT_LINE_ERROR = 6;
EXIT_SUBOPTIMAL_BP = 7;
EXIT_MATVEC_LIMIT = 8;
EXIT_ACTIVE_SET = 9; % [sic]
EXIT_AT_PARETO = 10;
%----------------------------------------------------------------------
% Log header.
%----------------------------------------------------------------------
printf('\n');
printf(' %s\n',repmat('=',1,80));
printf(' SPGL1 v.%s (%s)\n', REVISION, DATE);
printf(' %s\n',repmat('=',1,80));
printf(' %-22s: %8i %4s' ,'No. rows' ,m ,'');
printf(' %-22s: %8i\n' ,'No. columns' ,n );
printf(' %-22s: %8.2e %4s' ,'Initial tau' ,tau ,'');
printf(' %-22s: %8s' ,'Penalty ' , func2str(funPenalty));
printf('\n %-22s: %8s' ,'Regularizer' , func2str(primal_norm));
printf(' %-22s: %8.2e\n' ,'Penalty(b)' , bNorm );
printf(' %-22s: %8.2e %4s' ,'Optimality tol' , optTol ,'');
if singleTau
printf(' %-22s: %8.2e\n' ,'Target reg. norm of x' ,tau );
else
printf(' %-22s: %8.2e\n','Target objective' ,sigma );
end
printf(' %-22s: %8.2e %4s' ,'Basis pursuit tol' ,bpTol ,'');
printf(' %-22s: %8i\n' ,'Maximum iterations',maxIts );
printf('\n');
if singleTau
logB = ' %5i %13.7e %13.7e %9.2e %6.1f %6i %6i';
logH = ' %5s %13s %13s %9s %6s %6s %6s\n';
printf(logH,'Iter','Objective','Relative Error','gNorm','stepG','nnzX','nnzG');
else
logB = ' %5i %13.7e %13.7e %9.2e %9.3e %6.1f %6i %6i';
logH = ' %5s %13s %13s %9s %9s %6s %6s %6s %13s\n';
printf(logH,'Iter','Objective','Relative Error','Rel Error',...
'gNorm','stepG','nnzX','nnzG','tau');
end
% Project the starting point and evaluate function and gradient.
if isempty(x)
r = b; % r = b - Ax
[f g g2] = funCompositeR(r, funForward, funPenalty, params);
dx = project(-g, tau);
else
x = project(x,tau);
r = b - funForward(x, [], params); % r = b - f(x)
nProdA = nProdA + 1;
[f g g2] = funCompositeR(r, funForward, funPenalty, params);
dx = project(x - g, tau) - x;
end
% Compute initial steplength.
dxNorm = norm(dx,inf);
if dxNorm < (1 / stepMax)
gStep = stepMax;
else
gStep = min( stepMax, max(stepMin, 1/dxNorm) );
end
% Required for nonmonotone strategy.
lastFv(1) = f;
fBest = f;
xBest = x;
fOld = f;
dispFlag('fin Init')
clear dx
%----------------------------------------------------------------------
% MAIN LOOP.
%----------------------------------------------------------------------
while 1
%------------------------------------------------------------------
% Test exit conditions.
%------------------------------------------------------------------
% Compute quantities needed for log and exit conditions.
if(options.proxy)
gNorm = undist(dual_norm(g2,weights,params)); % originally options.dual_norm(-g,weights), but for true norms the sign should not matter
else
% for now, we assume params only used by proxy formulations
gNorm = undist(dual_norm(g,weights)); % originally options.dual_norm(-g,weights), but for true norms the sign should not matter
end
% g2Norm = undist(options.dual_norm(g2,weights,params));
rNorm = f; % rNorm and f are exactly the same.
Err = norm(x - project(x - g, tau));
rErr = Err/max(1, f);
aError1 = rNorm - sigma;
aError2 = rNorm^2 - sigma^2; % Why not?
rError1 = abs(aError1) / max(1,rNorm);
rError2 = abs(aError2) / max(1,f);
% Count number of consecutive iterations with identical support.
nnzOld = nnzIdx;
if(~options.proxy)
[nnzX,nnzG,nnzIdx,nnzDiff] = activeVars(x,g,nnzIdx,options, params);
else
[nnzX,nnzG,nnzIdx,nnzDiff] = activeVars(x,g2,nnzIdx,options, params);
end
if nnzDiff
nnzIter = 0;
end
dispFlag('fin CompConditions')
if isempty(x)
nnzX = 0;
else
nnzIter = nnzIter + 1;
if nnzIter >= activeSetIt, stat=EXIT_ACTIVE_SET; end
nnzX = sum(abs(x) >= min(.1,10*options.optTol));
end
% Single tau: Check if we're optimal.
% The 2nd condition is there to guard against large tau.
if singleTau
if rErr <= optTol || rNorm < optTol*bNorm
stat = EXIT_OPTIMAL;
end
% Multiple tau: Check if found root and/or if tau needs updating.
else
% Test if a least-squares solution has been found
if gNorm <= lsTol % removed '*rNorm'
stat = EXIT_LEAST_SQUARES;
end
if rErr <= max(optTol, rError2) || rError1 <= optTol
% The problem is nearly optimal for the current tau.
% Check optimality of the current root.
test1 = rNorm <= bpTol * bNorm;
% test2 = gNorm <= bpTol * rNorm;
test3 = rError1 <= optTol;
test4 = rNorm <= sigma;
if test4, stat=EXIT_SUBOPTIMAL_BP;end % Found suboptimal BP sol.
if test3, stat=EXIT_ROOT_FOUND; end % Found approx root.
% if test2, stat=EXIT_BPSOL2_FOUND; end % Gradient zero -> BP sol.
if test1, stat=EXIT_BPSOL1_FOUND; end % Resid minim'zd -> BP sol.
end
testRelChange1 = (abs(f - fOld) <= decTol * f);
testRelChange2 = (abs(f - fOld) <= 1e-1 * f * (abs(rNorm - sigma)));
testUpdateTau = ((testRelChange1 && rNorm > 2 * sigma) || ...
(testRelChange2 && rNorm <= 2 * sigma)) && ...
~stat && ~testUpdateTau;
if testUpdateTau
if quitPareto && iter >= minPareto, stat=EXIT_AT_PARETO;end % Chose to exit out of SPGL1 when pareto is reached
% Update tau.
tauOld = tau;
tau = max(0,tau + (aError1) / (gNorm)); % deleted rNorm from numerator. In this algorithm, ony gNorm with contain derivative information.
nNewton = nNewton + 1;
printTau = abs(tauOld - tau) >= 1e-6 * tau; % For log only.
if tau < tauOld
% The one-norm ball has decreased. Need to make sure that the
% next iterate if feasible, which we do by projecting it.
x = project(x,tau);
end
end
end
% Too many its and not converged.
if ~stat && iter >= maxIts
stat = EXIT_ITERATIONS;
end
dispFlag('fin CheckConverge')
%------------------------------------------------------------------
% Print log, update history and act on exit conditions.
%------------------------------------------------------------------
if logLevel >= 2 || singleTau || printTau || iter == 0 || stat
tauFlag = ' '; subFlag = '';
if printTau, tauFlag = sprintf(' %13.7e',tau); end
if subspace, subFlag = sprintf(' S %2i',itnLSQR); end
if singleTau
printf(logB,undist(iter),undist(rNorm),undist(rErr),undist(gNorm),log10(undist(stepG)),undist(nnzX),undist(nnzG));
if subspace
printf(' %s',subFlag);
end
else
printf(logB,undist(iter),undist(rNorm),undist(rErr),undist(rError1),undist(gNorm),log10(undist(stepG)),undist(nnzX),undist(nnzG));
if printTau || subspace
printf(' %s',[tauFlag subFlag]);
end
end
printf('\n');
end
printTau = false;
subspace = false;
% Update history info
if isempty(x)
xNorm1(iter+1) = 0;
else
xNorm1(iter+1) = primal_norm(x,weights,params);
end
rNorm2(iter+1) = rNorm;
lambda(iter+1) = gNorm;
if stat, break; end % Act on exit conditions.
%==================================================================
% Iterations begin here.
%==================================================================
iter = iter + 1;
xOld = x; fOld = f; rOld = r; % gOld update moved down to coincide with gradient update
try
%---------------------------------------------------------------
% Projected gradient step and linesearch.
%---------------------------------------------------------------
dispFlag('begin LineSrch')
[f,x,r,nLine,stepG,lnErr, localProdA] = ...
spgLineCurvy(x,gStep*g,max(lastFv),funForward, funPenalty, b,@project,tau, params);
nProdA = nProdA + localProdA;
dispFlag('fin LineSrch');
nLineTot = nLineTot + nLine;
if lnErr
% Projected backtrack failed. Retry with feasible dir'n linesearch.
dispFlag('begin FeasLineSrch')
clear x
clear r
x = xOld;
% In-place scaling of gradient and updating of x to save memory
if ~isempty(xOld)
dx = project(xOld - gStep.*g, tau) - xOld;
else
dx = project(-gStep .* g, tau);
end
gtd = dot(g,dx);
if(linear)
[f,step,r,nLine,lnErr, localProdA] = spgLine(f,dx,gtd,rOld,max(lastFv), funForward, funPenalty, params, b,feasSrchIt, linear);
else
[f,step,r,nLine,lnErr, localProdA] = spgLine(f,dx,gtd,x,max(lastFv), funForward, funPenalty, params, b,feasSrchIt, linear);
end
nProdA = nProdA + localProdA;
dispFlag('fin FeasLineSrch')
if isempty(xOld)
x = step*dx;
else
x = xOld + step*dx;
end
clear dx
x = project(x, tau);
nLineTot = nLineTot + nLine;
end
if lnErr
% Failed again. Revert to previous iterates and damp max BB step.
if maxLineErrors <= 0
stat = EXIT_LINE_ERROR;
else
stepMax = stepMax / 10;
printf(['W: Linesearch failed with error %i. '...
'Damping max BB scaling to %6.1e.\n'],lnErr,stepMax);
maxLineErrors = maxLineErrors - 1;
end
end
%---------------------------------------------------------------
% Subspace minimization (only if active-set change is small).
%---------------------------------------------------------------
doSubspaceMin = false;
if subspaceMin
g = - funForward(x, r,2);
[nnzX,nnzG,nnzIdx,nnzDiff] = activeVars(x,g,nnzOld,options);
if ~nnzDiff
if nnzX == nnzG, itnMaxLSQR = 20;
else itnMaxLSQR = 5;
end
nnzIdx = abs(x) >= optTol;
doSubspaceMin = true;
end
end
if doSubspaceMin
% LSQR parameters
damp = 1e-5;
aTol = 1e-1;
bTol = 1e-1;
conLim = 1e12;
showLSQR = 0;
ebar = sign(x(nnzIdx));
nebar = length(ebar);
Sprod = @(y,mode)LSQRprod(funForward,nnzIdx,ebar,n,x, y,mode, params);
[dxbar, istop, itnLSQR] = ...
lsqr(m,nebar,Sprod,r,damp,aTol,bTol,conLim,itnMaxLSQR,showLSQR);
itnTotLSQR = itnTotLSQR + itnLSQR;
if istop ~= 4 % LSQR iterations successful. Take the subspace step.
% Push dx back into full space: dx = Z dx.
dx = zeros(n,1);
dx(nnzIdx) = dxbar - (1/nebar)*(ebar'*dxbar)*dxbar;
% Find largest step to a change in sign.
block1 = nnzIdx & x < 0 & dx > +pivTol;
block2 = nnzIdx & x > 0 & dx < -pivTol;
alpha1 = Inf; alpha2 = Inf;
if any(block1), alpha1 = min(-x(block1) ./ dx(block1)); end
if any(block2), alpha2 = min(-x(block2) ./ dx(block2)); end
alpha = min([1 alpha1 alpha2]);
ensure(alpha >= 0);
ensure(ebar'*dx(nnzIdx) <= optTol);
% Update variables.
x = x + alpha*dx;
r = b - funForward(x,[], params);
f = funPenalty(r, params);
subspace = true;
end
end
primNorm_x = undist(primal_norm(x,weights,params));
targetNorm = tau+optTol;
if ignorePErr
if primNorm_x > targetNorm
% warning('Primal norm of projected x is larger than expected, project again to be safe')
% primNorm_x
% targetNorm
end
else
ensure(primNorm_x <= targetNorm);
end
dispFlag('fin UpdateX')
%---------------------------------------------------------------
% Update gradient and compute new Barzilai-Borwein scaling.
%---------------------------------------------------------------
% if isempty(xOld)
% s = x;
% else
% xOld = x - xOld; % in-place calculating of s
% s = xOld;
% clear xOld
% end
gOld = g;
% g = - Aprod(r,2);
[f g g2] = funCompositeR(r, funForward, funPenalty, params);
if(isempty(xOld))
xOld = x;
else
xOld = x - xOld; % xOld plays the role of s.
end
y = g - gOld;
sts = dot(xOld,xOld);
sty = dot(xOld,y);
clear xOld;
clear gOld;
%[f g g2] = funCompositeR(r, funForward, funPenalty, params);
%[f g g2] = funComposite(x, b, funForward, funPenalty, params); % MAKE SURE X IS CURRENT HERE
% [g ] = funForward(x, r, params);
%nProdAt = nProdAt + 1;
%g = - Aprod(r,2);
%y = g - gOld;
%clear gOld
% sts = norm(s)^2;
% sty = dot(s,y);
if sty <= 0, gStep = stepMax;
else gStep = min( stepMax, max(stepMin, sts/sty) );
end
dispFlag('fin CompScaling')
clear s
clear y
catch % Detect matrix-vector multiply limit error WARNING: the latest round of optimizations may have broke this, do testing to veriify
err = lasterror;
if strcmp(err.identifier,'SPGL1:MaximumMatvec')
stat = EXIT_MATVEC_LIMIT;
iter = iter - 1;
x = xOld; f = fOld; r = rOld;
break;
else
rethrow(err);
end
end
%------------------------------------------------------------------
% Update function history.
%------------------------------------------------------------------
if singleTau || f > sigma % Don't update if superoptimal.
lastFv(mod(iter,nPrevVals)+1) = undist(f);
if fBest > f
fBest = f;
xBest = x;
end
end
end % while 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Restore best solution (only if solving single problem).
if singleTau && f > fBest
if(options.restore)
rNorm = fBest;
printf('\n Restoring best iterate to objective %13.7e\n',rNorm);
x = xBest;
r = b - funForward(x,[],params);
[f g g2] = funCompositeR(r, funForward, funPenalty, params); % corrected by Hassan, old:funCompositeR(x, r,params)
if(options.proxy)
gNorm = dual_norm(g2,weights,params);
else
gNorm = dual_norm(g,weights);
end
rNorm = f;
else
printf('NOTE: solution not actually optimal, best objective value is %13.7e',fBest)
end
end
% Final cleanup before exit.
info.tau = tau;
info.rNorm = rNorm;
info.gNorm = gNorm;
info.rErr = rErr;
info.stat = stat;
info.iter = iter;
info.nProdA = nProdA;
info.nProdAt = nProdAt;
info.nNewton = nNewton;
info.timeProject = timeProject;
info.timeMatProd = timeMatProd;
info.itnLSQR = itnTotLSQR;
info.options = options;
info.timeTotal = toc;
info.xNorm1 = xNorm1(1:iter);
info.rNorm2 = rNorm2(1:iter);
info.lambda = lambda(1:iter);
% Print final output.
switch (stat)
case EXIT_OPTIMAL
printf('\n EXIT -- Optimal solution found\n')
case EXIT_ITERATIONS
printf('\n ERROR EXIT -- Too many iterations\n');
case EXIT_ROOT_FOUND
printf('\n EXIT -- Found a root\n');
% case {EXIT_BPSOL1_FOUND, EXIT_BPSOL2_FOUND}
% printf('\n EXIT -- Found a BP solution\n');
case {EXIT_LEAST_SQUARES}
printf('\n EXIT -- Found a least-squares solution\n');
case EXIT_LINE_ERROR
printf('\n ERROR EXIT -- Linesearch error (%i)\n',lnErr);
case EXIT_SUBOPTIMAL_BP
printf('\n EXIT -- Found a suboptimal BP solution\n');
case EXIT_MATVEC_LIMIT
printf('\n EXIT -- Maximum matrix-vector operations reached\n');
case EXIT_ACTIVE_SET
printf('\n EXIT -- Found a possible active set\n');
case EXIT_AT_PARETO
printf('\n EXIT -- Reached the pareto curve\n');
otherwise
error('Unknown termination condition\n');
end
printf('\n');
printf(' %-20s: %6i %6s %-20s: %6.1f\n',...
'Products with A',nProdA,'','Total time (secs)',info.timeTotal);
printf(' %-20s: %6i %6s %-20s: %6.1f\n',...
'Products with A''',nProdAt,'','Project time (secs)',timeProject);
printf(' %-20s: %6i %6s %-20s: %6.1f\n',...
'Newton iterations',nNewton,'','Mat-vec time (secs)',timeMatProd);
printf(' %-20s: %6i %6s %-20s: %6i\n', ...
'Line search its',nLineTot,'','Subspace iterations',itnTotLSQR);
printf('\n');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% NESTED FUNCTIONS. These share some vars with workspace above.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This function is only activated if a spot operator is passed in
function f = SpotFunForward(x, g, params)
if isempty(g)
f = A*x;
else
f = A'*g;
end
end
function [f g1 g2] = funCompositeR(r, funForward, funPenalty, params)
tStart = toc;
nProdAt = nProdAt + 1;
[f v] = funPenalty(r, params);
if(~params.proxy)
g1 = funForward(x, -v, params);
g2 = 0;
else
[g1 g2] = funForward(x, -v, params);
end
timeMatProd = timeMatProd + (toc - tStart);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function printf(varargin)
if logLevel > 0
fprintf(fid,varargin{:});
end
end % function printf
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function x = project(x, tau)
dispFlag('begin Project')
tStart = toc;
x = options.project(x,weights,tau,params);
timeProject = timeProject + (toc - tStart);
dispFlag('fin Project')
end % function project
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function dispFlag(flagMsg)
if PRINT_DEBUG_FLAGS
disp(flagMsg)
pause(5)
end
end % function dispFlag
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% End of nested functions.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end % function spg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PRIVATE FUNCTIONS.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [nnzX,nnzG,nnzIdx,nnzDiff] = activeVars(x,g,nnzIdx,options, params)
% Find the current active set.
% nnzX is the number of nonzero x.
% nnzG is the number of elements in nnzIdx.
% nnzIdx is a vector of primal/dual indicators.
% nnzDiff is the no. of elements that changed in the support.
xTol = min(.1,10*options.optTol);
gTol = min(.1,10*options.optTol);
if(options.proxy)
gNorm = options.dual_norm(g,options.weights, params);
else
gNorm = options.dual_norm(g,options.weights);
end
nnzOld = nnzIdx;
% Reduced costs for postive & negative parts of x.
z1 = gNorm + g;
z2 = gNorm - g;
% Primal/dual based indicators.
if(~options.proxy)
xPos = x > xTol & z1 < gTol; %g < gTol;%
xNeg = x < -xTol & z2 < gTol; %g > gTol;%
nnzIdx = xPos | xNeg;
end
% Count is based on simple primal indicator.
nnzX = sum(abs(x) >= xTol);
nnzG = sum(nnzIdx);
if isempty(nnzOld)
nnzDiff = inf;
else
nnzDiff = sum(nnzIdx ~= nnzOld);
end