Skip to content

This issue was moved to a discussion.

You can continue the conversation there. Go to discussion →

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Foglio 15] Esercizio 2 #124

Closed
Elia-Belli opened this issue Dec 8, 2023 · 3 comments
Closed

[Foglio 15] Esercizio 2 #124

Elia-Belli opened this issue Dec 8, 2023 · 3 comments

Comments

@Elia-Belli
Copy link
Member

immagine

@Elia-Belli
Copy link
Member Author

Per ottenere le basi di $U,V$ riduco a scala le matrici che hanno come colonne i vettori dei rispettivi Span, le riduco a scala e l'indice delle colonne dei pivot ottenute ci indicano i vettori linearmente indipendenti anche delle matrici di partenza:

$$\begin{pmatrix}1 & 0 & 2\\ 1 & 1 & -1\\ 1 & 0 & 2\\ 1 & 1 & -1\end{pmatrix}\to\begin{pmatrix}1 & 0 & 2\\ 0 & 1 & -3\\ 0 & 0 & 0\\ 0 & 0 & 0\end{pmatrix}\Rightarrow U=Span((1,1,1,1),(0,1,0,1))$$

$$\begin{pmatrix}2&2&2\\ 1&3&-1\\ -2&-2&-2\\ -1&-3&1\end{pmatrix}\to\begin{pmatrix}2&2&2\\ 0&2&-2\\ 0&0&0\\ 0 & 0 & 0\end{pmatrix}\Rightarrow V=Span((2,1,-2,-1),(2,3,-2,-3))$$

Facciamo la stessa cosa per i generatori di $U+V$ (ci conviene usare i vettori delle basi per averne 2 in meno):

$$\begin{pmatrix}1&0&2&2\\ 1&1&1&3\\ 1&0&-2&-2\\ 1&1&-1&-3\end{pmatrix}\to\begin{pmatrix}1&0&2&2\\ 0&1&-1&1\\ 0&0&-4&-4\\ 0&0&0&-4\end{pmatrix}\Rightarrow U+V=Span((1,1,1,1),(0,1,0,1),(2,1,-2,-1),(2,3,-2,-3))$$

Dalla cardinalità delle basi osserviamo la dimensione dei sottospazi e dal teorema della dimensione notiamo che $U\cap V=\underline 0$:

$$dim \ (U\cap V)=dim\ U+dim\ V-dim(U+W)=2+2-4=0$$

Quindi i sottospazi $U,V$ sono in somma diretta

@CiottoloMaggico
Copy link

image

@Elia-Belli
Copy link
Member Author

Soluzione Ufficiale

immagine
immagine

@sapienzastudentsnetwork sapienzastudentsnetwork locked and limited conversation to collaborators Dec 15, 2023
@Elia-Belli Elia-Belli converted this issue into discussion #286 Dec 15, 2023

This issue was moved to a discussion.

You can continue the conversation there. Go to discussion →

Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants