-
Notifications
You must be signed in to change notification settings - Fork 1
/
trainer.py
executable file
·143 lines (107 loc) · 5.44 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import gc
import os
import pandas as pd
from tqdm import tqdm
from utils.metric import get_rd
def train(args, model, train_dataloader, test_dataloader, optimizer, scheduler, device):
losses = []
epohcs = args.epochs
best_test_loss = float('inf')
best_epoch = 0
for epoch in tqdm(range(epohcs)):
torch.cuda.empty_cache()
gc.collect()
model.train()
train_loss_list = []
test_loss_list = []
print("Epoch:", epoch)
for idx, batch in enumerate(train_dataloader):
torch.cuda.empty_cache()
gc.collect()
labels = batch.pop("labels").to(device)
flattened_patches = batch.pop("flattened_patches").to(device)
attention_mask = batch.pop("attention_mask").to(device)
if args.phase == 1:
loss = model(flattened_patches = flattened_patches,
attention_mask = attention_mask,
labels=labels)
else:
loss = model.forward_phase_2(flattened_patches = flattened_patches,
attention_mask = attention_mask,
labels=labels,
batch_size = args.batch_size)
print("Loss:", loss.item())
train_loss_list.append(loss.item())
loss.backward()
optimizer.step()
optimizer.zero_grad()
scheduler.step()
train_loss = sum(train_loss_list) / len(train_dataloader)
del loss
del flattened_patches
del attention_mask
del labels
torch.cuda.empty_cache()
gc.collect()
model.eval()
for idx, batch in enumerate(test_dataloader):
labels = batch.pop("labels").to(device)
flattened_patches = batch.pop("flattened_patches").to(device)
attention_mask = batch.pop("attention_mask").to(device)
loss = model(flattened_patches = flattened_patches,
attention_mask = attention_mask,
labels=labels)
test_loss_list.append(loss.item())
del loss
del flattened_patches
del attention_mask
del labels
test_loss = sum(test_loss_list) / len(test_dataloader)
losses.append({'epoch' : epoch, 'train_loss': train_loss ,'test_loss' : test_loss})
if test_loss < best_test_loss:
best_test_loss = test_loss
best_epoch = epoch
torch.save({'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict()},
f'{args.model_save_path}/phase_{args.phase}_best_model.pth')
summary = pd.DataFrame(losses)
summary.to_csv(f'{args.model_save_path}/summary.csv')
torch.save({'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict()},
f'{args.model_save_path}/phase_{args.phase}_{epoch}_model_state_dict.pth')
print(f"Best model saved with test loss {best_test_loss} at epoch {best_epoch}")
def inference(args, model, dataset, dataloader, processor, device):
if args.inference_type == 'QA':
accuracy_list = {'img':[], 'type':[], 'pred':[], 'label':[]}
for idx, batch in enumerate(dataloader):
labels = batch.pop("labels").to(device)
flattened_patches = batch.pop("flattened_patches").to(device)
attention_mask = batch.pop("attention_mask").to(device)
chart_type = batch.pop("type")
predictions = model.generate(flattened_patches= flattened_patches,
attention_mask=attention_mask,)
pred = processor.batch_decode(predictions, skip_special_tokens=True)
label = processor.batch_decode(labels, skip_special_tokens=True)
accuracy_list['img'].append(dataset[idx]['img_name'])
accuracy_list['type'].append(chart_type[0])
accuracy_list['pred'].append(pred[0])
accuracy_list['label'].append(label[0])
result_df = pd.DataFrame(accuracy_list)
rd_df, failed = get_rd(result_df)
rd_df.to_csv(os.path.join(args.result_path, 'prediction.csv'))
else:
accuracy_list = {'img':[], 'pred':[]}
for idx, batch in enumerate(dataloader):
flattened_patches = batch.pop("flattened_patches").to(device)
attention_mask = batch.pop("attention_mask").to(device)
predictions = model.generate(flattened_patches= flattened_patches,
attention_mask=attention_mask)
pred = processor.batch_decode(predictions, skip_special_tokens=True)
accuracy_list['img'].append(dataset[idx]['img_name'])
accuracy_list['pred'].append(pred[0])
result_df = pd.DataFrame(accuracy_list)
result_df.to_csv(os.path.join(args.result_path, 'opencqa_prediction.csv'))