-
Notifications
You must be signed in to change notification settings - Fork 446
/
cram_io.h
742 lines (633 loc) · 20.7 KB
/
cram_io.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
/*
Copyright (c) 2012-2014 Genome Research Ltd.
Author: James Bonfield <[email protected]>
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the names Genome Research Ltd and Wellcome Trust Sanger
Institute nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY GENOME RESEARCH LTD AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL GENOME RESEARCH LTD OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*! \file
* Include cram.h instead.
*
* This is an internal part of the CRAM system and is automatically included
* when you #include cram.h.
*
* Implements the low level CRAM I/O primitives.
* This includes basic data types such as byte, int, ITF-8,
* maps, bitwise I/O, etc.
*/
#ifndef _CRAM_IO_H_
#define _CRAM_IO_H_
#define ITF8_MACROS
#include <stdint.h>
#include <cram/misc.h>
#ifdef __cplusplus
extern "C" {
#endif
/**@{ ----------------------------------------------------------------------
* ITF8 encoding and decoding.
*
* Also see the itf8_get and itf8_put macros.
*/
/*! INTERNAL: Converts two characters into an integer for use in switch{} */
#define CRAM_KEY(a,b) (((a)<<8)|((b)))
/*! Reads an integer in ITF-8 encoding from 'fd' and stores it in
* *val.
*
* @return
* Returns the number of bytes read on success;
* -1 on failure
*/
int itf8_decode(cram_fd *fd, int32_t *val);
#ifndef ITF8_MACROS
/*! Reads an integer in ITF-8 encoding from 'cp' and stores it in
* *val.
*
* @return
* Returns the number of bytes read on success;
* -1 on failure
*/
int itf8_get(char *cp, int32_t *val_p);
/*! Stores a value to memory in ITF-8 format.
*
* @return
* Returns the number of bytes required to store the number.
* This is a maximum of 5 bytes.
*/
int itf8_put(char *cp, int32_t val);
#else
/*
* Macro implementations of the above
*/
#define itf8_get(c,v) (((uc)(c)[0]<0x80)?(*(v)=(uc)(c)[0],1):(((uc)(c)[0]<0xc0)?(*(v)=(((uc)(c)[0]<<8)|(uc)(c)[1])&0x3fff,2):(((uc)(c)[0]<0xe0)?(*(v)=(((uc)(c)[0]<<16)|((uc)(c)[1]<<8)|(uc)(c)[2])&0x1fffff,3):(((uc)(c)[0]<0xf0)?(*(v)=(((uc)(c)[0]<<24)|((uc)(c)[1]<<16)|((uc)(c)[2]<<8)|(uc)(c)[3])&0x0fffffff,4):(*(v)=(((uc)(c)[0]&0x0f)<<28)|((uc)(c)[1]<<20)|((uc)(c)[2]<<12)|((uc)(c)[3]<<4)|((uc)(c)[4]&0x0f),5)))))
#define itf8_put(c,v) ((!((v)&~0x7f))?((c)[0]=(v),1):(!((v)&~0x3fff))?((c)[0]=((v)>>8)|0x80,(c)[1]=(v)&0xff,2):(!((v)&~0x1fffff))?((c)[0]=((v)>>16)|0xc0,(c)[1]=((v)>>8)&0xff,(c)[2]=(v)&0xff,3):(!((v)&~0xfffffff))?((c)[0]=((v)>>24)|0xe0,(c)[1]=((v)>>16)&0xff,(c)[2]=((v)>>8)&0xff,(c)[3]=(v)&0xff,4):((c)[0]=0xf0|(((v)>>28)&0xff),(c)[1]=((v)>>20)&0xff,(c)[2]=((v)>>12)&0xff,(c)[3]=((v)>>4)&0xff,(c)[4]=(v)&0xf,5))
#define itf8_size(v) ((!((v)&~0x7f))?1:(!((v)&~0x3fff))?2:(!((v)&~0x1fffff))?3:(!((v)&~0xfffffff))?4:5)
#endif
int ltf8_get(char *cp, int64_t *val_p);
int ltf8_put(char *cp, int64_t val);
/* Version of itf8_get that checks it hasn't run out of input */
extern const int itf8_bytes[16];
extern const int ltf8_bytes[256];
static inline int safe_itf8_get(const char *cp, const char *endp,
int32_t *val_p) {
const unsigned char *up = (unsigned char *)cp;
if (endp - cp < 5 &&
(cp >= endp || endp - cp < itf8_bytes[up[0]>>4])) {
*val_p = 0;
return 0;
}
if (up[0] < 0x80) {
*val_p = up[0];
return 1;
} else if (up[0] < 0xc0) {
*val_p = ((up[0] <<8) | up[1]) & 0x3fff;
return 2;
} else if (up[0] < 0xe0) {
*val_p = ((up[0]<<16) | (up[1]<< 8) | up[2]) & 0x1fffff;
return 3;
} else if (up[0] < 0xf0) {
*val_p = (((uint32_t)up[0]<<24) | (up[1]<<16) | (up[2]<<8) | up[3]) & 0x0fffffff;
return 4;
} else {
uint32_t uv = (((uint32_t)up[0] & 0x0f)<<28) | (up[1]<<20) | (up[2]<<12) | (up[3]<<4) | (up[4] & 0x0f);
*val_p = uv < 0x80000000UL ? uv : -((int32_t) (0xffffffffUL - uv)) - 1;
return 5;
}
}
static inline int safe_ltf8_get(const char *cp, const char *endp,
int64_t *val_p) {
unsigned char *up = (unsigned char *)cp;
if (endp - cp < 9 &&
(cp >= endp || endp - cp < ltf8_bytes[up[0]])) return 0;
if (up[0] < 0x80) {
*val_p = up[0];
return 1;
} else if (up[0] < 0xc0) {
*val_p = (((uint64_t)up[0]<< 8) |
(uint64_t)up[1]) & (((1LL<<(6+8)))-1);
return 2;
} else if (up[0] < 0xe0) {
*val_p = (((uint64_t)up[0]<<16) |
((uint64_t)up[1]<< 8) |
(uint64_t)up[2]) & ((1LL<<(5+2*8))-1);
return 3;
} else if (up[0] < 0xf0) {
*val_p = (((uint64_t)up[0]<<24) |
((uint64_t)up[1]<<16) |
((uint64_t)up[2]<< 8) |
(uint64_t)up[3]) & ((1LL<<(4+3*8))-1);
return 4;
} else if (up[0] < 0xf8) {
*val_p = (((uint64_t)up[0]<<32) |
((uint64_t)up[1]<<24) |
((uint64_t)up[2]<<16) |
((uint64_t)up[3]<< 8) |
(uint64_t)up[4]) & ((1LL<<(3+4*8))-1);
return 5;
} else if (up[0] < 0xfc) {
*val_p = (((uint64_t)up[0]<<40) |
((uint64_t)up[1]<<32) |
((uint64_t)up[2]<<24) |
((uint64_t)up[3]<<16) |
((uint64_t)up[4]<< 8) |
(uint64_t)up[5]) & ((1LL<<(2+5*8))-1);
return 6;
} else if (up[0] < 0xfe) {
*val_p = (((uint64_t)up[0]<<48) |
((uint64_t)up[1]<<40) |
((uint64_t)up[2]<<32) |
((uint64_t)up[3]<<24) |
((uint64_t)up[4]<<16) |
((uint64_t)up[5]<< 8) |
(uint64_t)up[6]) & ((1LL<<(1+6*8))-1);
return 7;
} else if (up[0] < 0xff) {
*val_p = (((uint64_t)up[1]<<48) |
((uint64_t)up[2]<<40) |
((uint64_t)up[3]<<32) |
((uint64_t)up[4]<<24) |
((uint64_t)up[5]<<16) |
((uint64_t)up[6]<< 8) |
(uint64_t)up[7]) & ((1LL<<(7*8))-1);
return 8;
} else {
*val_p = (((uint64_t)up[1]<<56) |
((uint64_t)up[2]<<48) |
((uint64_t)up[3]<<40) |
((uint64_t)up[4]<<32) |
((uint64_t)up[5]<<24) |
((uint64_t)up[6]<<16) |
((uint64_t)up[7]<< 8) |
(uint64_t)up[8]);
return 9;
}
}
/*! Pushes a value in ITF8 format onto the end of a block.
*
* This shouldn't be used for high-volume data as it is not the fastest
* method.
*
* @return
* Returns the number of bytes written
*/
int itf8_put_blk(cram_block *blk, int val);
/*! Pulls a literal 32-bit value from a block.
*
* @returns the number of bytes decoded;
* -1 on failure.
*/
int int32_get_blk(cram_block *b, int32_t *val);
/*! Pushes a literal 32-bit value onto the end of a block.
*
* @return
* Returns 0 on success;
* -1 on failure.
*/
int int32_put_blk(cram_block *blk, int32_t val);
/**@}*/
/**@{ ----------------------------------------------------------------------
* CRAM blocks - the dynamically growable data block. We have code to
* create, update, (un)compress and read/write.
*
* These are derived from the deflate_interlaced.c blocks, but with the
* CRAM extension of content types and IDs.
*/
/*! Allocates a new cram_block structure with a specified content_type and
* id.
*
* @return
* Returns block pointer on success;
* NULL on failure
*/
cram_block *cram_new_block(enum cram_content_type content_type,
int content_id);
/*! Reads a block from a cram file.
*
* @return
* Returns cram_block pointer on success;
* NULL on failure
*/
cram_block *cram_read_block(cram_fd *fd);
/*! Writes a CRAM block.
*
* @return
* Returns 0 on success;
* -1 on failure
*/
int cram_write_block(cram_fd *fd, cram_block *b);
/*! Frees a CRAM block, deallocating internal data too.
*/
void cram_free_block(cram_block *b);
/*! Uncompress a memory block using Zlib.
*
* @return
* Returns 0 on success;
* -1 on failure
*/
char *zlib_mem_inflate(char *cdata, size_t csize, size_t *size);
/*! Uncompresses a CRAM block, if compressed.
*
* @return
* Returns 0 on success;
* -1 on failure
*/
int cram_uncompress_block(cram_block *b);
/*! Compresses a block.
*
* Compresses a block using one of two different zlib strategies. If we only
* want one choice set strat2 to be -1.
*
* The logic here is that sometimes Z_RLE does a better job than Z_FILTERED
* or Z_DEFAULT_STRATEGY on quality data. If so, we'd rather use it as it is
* significantly faster.
*
* @return
* Returns 0 on success;
* -1 on failure
*/
int cram_compress_block(cram_fd *fd, cram_block *b, cram_metrics *metrics,
int method, int level);
cram_metrics *cram_new_metrics(void);
char *cram_block_method2str(enum cram_block_method m);
char *cram_content_type2str(enum cram_content_type t);
/*
* Find an external block by its content_id
*/
static inline cram_block *cram_get_block_by_id(cram_slice *slice, int id) {
if (slice->block_by_id && id >= 0 && id < 1024) {
return slice->block_by_id[id];
} else {
int i;
for (i = 0; i < slice->hdr->num_blocks; i++) {
cram_block *b = slice->block[i];
if (b && b->content_type == EXTERNAL && b->content_id == id)
return b;
}
}
return NULL;
}
/* --- Accessor macros for manipulating blocks on a byte by byte basis --- */
/* Block size and data pointer. */
#define BLOCK_SIZE(b) ((b)->byte)
#define BLOCK_DATA(b) ((b)->data)
/* Returns the address one past the end of the block */
#define BLOCK_END(b) (&(b)->data[(b)->byte])
/* Request block to be at least 'l' bytes long */
#define BLOCK_RESIZE(b,l) \
do { \
while((b)->alloc <= (l)) { \
(b)->alloc = (b)->alloc ? (b)->alloc*1.5 : 1024; \
(b)->data = realloc((b)->data, (b)->alloc); \
} \
} while(0)
/* Make block exactly 'l' bytes long */
#define BLOCK_RESIZE_EXACT(b,l) \
do { \
(b)->alloc = (l); \
(b)->data = realloc((b)->data, (b)->alloc); \
} while(0)
/* Ensure the block can hold at least another 'l' bytes */
#define BLOCK_GROW(b,l) BLOCK_RESIZE((b), BLOCK_SIZE((b)) + (l))
/* Append string 's' of length 'l' */
#define BLOCK_APPEND(b,s,l) \
do { \
BLOCK_GROW((b),(l)); \
memcpy(BLOCK_END((b)), (s), (l)); \
BLOCK_SIZE((b)) += (l); \
} while (0)
/* Append as single character 'c' */
#define BLOCK_APPEND_CHAR(b,c) \
do { \
BLOCK_GROW((b),1); \
(b)->data[(b)->byte++] = (c); \
} while (0)
/* Append a single unsigned integer */
#define BLOCK_APPEND_UINT(b,i) \
do { \
unsigned char *cp; \
BLOCK_GROW((b),11); \
cp = &(b)->data[(b)->byte]; \
(b)->byte += append_uint32(cp, (i)) - cp; \
} while (0)
static inline unsigned char *append_uint32(unsigned char *cp, uint32_t i) {
uint32_t j;
if (i == 0) {
*cp++ = '0';
return cp;
}
if (i < 100) goto b1;
if (i < 10000) goto b3;
if (i < 1000000) goto b5;
if (i < 100000000) goto b7;
if ((j = i / 1000000000)) {*cp++ = j + '0'; i -= j*1000000000; goto x8;}
if ((j = i / 100000000)) {*cp++ = j + '0'; i -= j*100000000; goto x7;}
b7:if ((j = i / 10000000)) {*cp++ = j + '0'; i -= j*10000000; goto x6;}
if ((j = i / 1000000)) {*cp++ = j + '0', i -= j*1000000; goto x5;}
b5:if ((j = i / 100000)) {*cp++ = j + '0', i -= j*100000; goto x4;}
if ((j = i / 10000)) {*cp++ = j + '0', i -= j*10000; goto x3;}
b3:if ((j = i / 1000)) {*cp++ = j + '0', i -= j*1000; goto x2;}
if ((j = i / 100)) {*cp++ = j + '0', i -= j*100; goto x1;}
b1:if ((j = i / 10)) {*cp++ = j + '0', i -= j*10; goto x0;}
if (i) *cp++ = i + '0';
return cp;
x8: *cp++ = i / 100000000 + '0', i %= 100000000;
x7: *cp++ = i / 10000000 + '0', i %= 10000000;
x6: *cp++ = i / 1000000 + '0', i %= 1000000;
x5: *cp++ = i / 100000 + '0', i %= 100000;
x4: *cp++ = i / 10000 + '0', i %= 10000;
x3: *cp++ = i / 1000 + '0', i %= 1000;
x2: *cp++ = i / 100 + '0', i %= 100;
x1: *cp++ = i / 10 + '0', i %= 10;
x0: *cp++ = i + '0';
return cp;
}
static inline unsigned char *append_sub32(unsigned char *cp, uint32_t i) {
*cp++ = i / 100000000 + '0', i %= 100000000;
*cp++ = i / 10000000 + '0', i %= 10000000;
*cp++ = i / 1000000 + '0', i %= 1000000;
*cp++ = i / 100000 + '0', i %= 100000;
*cp++ = i / 10000 + '0', i %= 10000;
*cp++ = i / 1000 + '0', i %= 1000;
*cp++ = i / 100 + '0', i %= 100;
*cp++ = i / 10 + '0', i %= 10;
*cp++ = i + '0';
return cp;
}
static inline unsigned char *append_uint64(unsigned char *cp, uint64_t i) {
uint64_t j;
if (i <= 0xffffffff)
return append_uint32(cp, i);
if ((j = i/1000000000) > 1000000000) {
cp = append_uint32(cp, j/1000000000);
j %= 1000000000;
cp = append_sub32(cp, j);
} else {
cp = append_uint32(cp, i / 1000000000);
}
cp = append_sub32(cp, i % 1000000000);
return cp;
}
#define BLOCK_UPLEN(b) \
(b)->comp_size = (b)->uncomp_size = BLOCK_SIZE((b))
/**@}*/
/**@{ ----------------------------------------------------------------------
* Reference sequence handling
*/
/*! Loads a reference set from fn and stores in the cram_fd.
*
* @return
* Returns 0 on success;
* -1 on failure
*/
int cram_load_reference(cram_fd *fd, char *fn);
/*! Generates a lookup table in refs based on the SQ headers in SAM_hdr.
*
* Indexes references by the order they appear in a BAM file. This may not
* necessarily be the same order they appear in the fasta reference file.
*
* @return
* Returns 0 on success;
* -1 on failure
*/
int refs2id(refs_t *r, SAM_hdr *bfd);
void refs_free(refs_t *r);
/*! Returns a portion of a reference sequence from start to end inclusive.
*
* The returned pointer is owned by the cram_file fd and should not be freed
* by the caller. It is valid only until the next cram_get_ref is called
* with the same fd parameter (so is thread-safe if given multiple files).
*
* To return the entire reference sequence, specify start as 1 and end
* as 0.
*
* @return
* Returns reference on success;
* NULL on failure
*/
char *cram_get_ref(cram_fd *fd, int id, int start, int end);
void cram_ref_incr(refs_t *r, int id);
void cram_ref_decr(refs_t *r, int id);
/**@}*/
/**@{ ----------------------------------------------------------------------
* Containers
*/
/*! Creates a new container, specifying the maximum number of slices
* and records permitted.
*
* @return
* Returns cram_container ptr on success;
* NULL on failure
*/
cram_container *cram_new_container(int nrec, int nslice);
void cram_free_container(cram_container *c);
/*! Reads a container header.
*
* @return
* Returns cram_container on success;
* NULL on failure or no container left (fd->err == 0).
*/
cram_container *cram_read_container(cram_fd *fd);
/*! Writes a container structure.
*
* @return
* Returns 0 on success;
* -1 on failure
*/
int cram_write_container(cram_fd *fd, cram_container *h);
/*! Flushes a container to disk.
*
* Flushes a completely or partially full container to disk, writing
* container structure, header and blocks. This also calls the encoder
* functions.
*
* @return
* Returns 0 on success;
* -1 on failure
*/
int cram_flush_container(cram_fd *fd, cram_container *c);
int cram_flush_container_mt(cram_fd *fd, cram_container *c);
/**@}*/
/**@{ ----------------------------------------------------------------------
* Compression headers; the first part of the container
*/
/*! Creates a new blank container compression header
*
* @return
* Returns header ptr on success;
* NULL on failure
*/
cram_block_compression_hdr *cram_new_compression_header(void);
/*! Frees a cram_block_compression_hdr */
void cram_free_compression_header(cram_block_compression_hdr *hdr);
/**@}*/
/**@{ ----------------------------------------------------------------------
* Slices and slice headers
*/
/*! Frees a slice header */
void cram_free_slice_header(cram_block_slice_hdr *hdr);
/*! Frees a slice */
void cram_free_slice(cram_slice *s);
/*! Creates a new empty slice in memory, for subsequent writing to
* disk.
*
* @return
* Returns cram_slice ptr on success;
* NULL on failure
*/
cram_slice *cram_new_slice(enum cram_content_type type, int nrecs);
/*! Loads an entire slice.
*
* FIXME: In 1.0 the native unit of slices within CRAM is broken
* as slices contain references to objects in other slices.
* To work around this while keeping the slice oriented outer loop
* we read all slices and stitch them together into a fake large
* slice instead.
*
* @return
* Returns cram_slice ptr on success;
* NULL on failure
*/
cram_slice *cram_read_slice(cram_fd *fd);
/**@}*/
/**@{ ----------------------------------------------------------------------
* CRAM file definition (header)
*/
/*! Reads a CRAM file definition structure.
*
* @return
* Returns file_def ptr on success;
* NULL on failure
*/
cram_file_def *cram_read_file_def(cram_fd *fd);
/*! Writes a cram_file_def structure to cram_fd.
*
* @return
* Returns 0 on success;
* -1 on failure
*/
int cram_write_file_def(cram_fd *fd, cram_file_def *def);
/*! Frees a cram_file_def structure. */
void cram_free_file_def(cram_file_def *def);
/**@}*/
/**@{ ----------------------------------------------------------------------
* SAM header I/O
*/
/*! Reads the SAM header from the first CRAM data block.
*
* Also performs minimal parsing to extract read-group
* and sample information.
*
* @return
* Returns SAM hdr ptr on success;
* NULL on failure
*/
SAM_hdr *cram_read_SAM_hdr(cram_fd *fd);
/*! Writes a CRAM SAM header.
*
* @return
* Returns 0 on success;
* -1 on failure
*/
int cram_write_SAM_hdr(cram_fd *fd, SAM_hdr *hdr);
/**@}*/
/**@{ ----------------------------------------------------------------------
* The top-level cram opening, closing and option handling
*/
/*! Opens a CRAM file for read (mode "rb") or write ("wb").
*
* The filename may be "-" to indicate stdin or stdout.
*
* @return
* Returns file handle on success;
* NULL on failure.
*/
cram_fd *cram_open(const char *filename, const char *mode);
/*! Opens an existing stream for reading or writing.
*
* @return
* Returns file handle on success;
* NULL on failure.
*/
cram_fd *cram_dopen(struct hFILE *fp, const char *filename, const char *mode);
/*! Closes a CRAM file.
*
* @return
* Returns 0 on success;
* -1 on failure
*/
int cram_close(cram_fd *fd);
/*
* Seek within a CRAM file.
*
* Returns 0 on success
* -1 on failure
*/
int cram_seek(cram_fd *fd, off_t offset, int whence);
/*
* Flushes a CRAM file.
* Useful for when writing to stdout without wishing to close the stream.
*
* Returns 0 on success
* -1 on failure
*/
int cram_flush(cram_fd *fd);
/*! Checks for end of file on a cram_fd stream.
*
* @return
* Returns 0 if not at end of file
* 1 if we hit an expected EOF (end of range or EOF block)
* 2 for other EOF (end of stream without EOF block)
*/
int cram_eof(cram_fd *fd);
/*! Sets options on the cram_fd.
*
* See CRAM_OPT_* definitions in cram_structs.h.
* Use this immediately after opening.
*
* @return
* Returns 0 on success;
* -1 on failure
*/
int cram_set_option(cram_fd *fd, enum hts_fmt_option opt, ...);
/*! Sets options on the cram_fd.
*
* See CRAM_OPT_* definitions in cram_structs.h.
* Use this immediately after opening.
*
* @return
* Returns 0 on success;
* -1 on failure
*/
int cram_set_voption(cram_fd *fd, enum hts_fmt_option opt, va_list args);
/*!
* Attaches a header to a cram_fd.
*
* This should be used when creating a new cram_fd for writing where
* we have an SAM_hdr already constructed (eg from a file we've read
* in).
*
* @return
* Returns 0 on success;
* -1 on failure
*/
int cram_set_header(cram_fd *fd, SAM_hdr *hdr);
#ifdef __cplusplus
}
#endif
#endif /* _CRAM_IO_H_ */