-
Notifications
You must be signed in to change notification settings - Fork 240
/
mendelian2.c
919 lines (837 loc) · 35.7 KB
/
mendelian2.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
/* The MIT License
Copyright (c) 2015-2024 Genome Research Ltd.
Author: Petr Danecek <[email protected]>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <getopt.h>
#include <math.h>
#include <inttypes.h>
#include <htslib/hts.h>
#include <htslib/vcf.h>
#include <htslib/kseq.h>
#include <htslib/synced_bcf_reader.h>
#include <htslib/khash_str2int.h>
#include <errno.h>
#include <ctype.h>
#include <unistd.h> // for isatty
#include "bcftools.h"
#include "regidx.h"
#include "filter.h"
// Logic of the filters: include or exclude sites which match the filters?
#define FLT_INCLUDE 1
#define FLT_EXCLUDE 2
#define MODE_ANNOTATE (1<<0) // -m a
#define MODE_COUNT (1<<1) // -m c
#define MODE_DELETE (1<<2) // -m d
#define MODE_LIST_ERR (1<<3) // -m e
#define MODE_DROP_ERR (1<<4) // -m E
#define MODE_LIST_GOOD (1<<5) // -m g
#define MODE_LIST_MISS (1<<6) // -m m
#define MODE_DROP_MISS (1<<7) // -m M
#define MODE_LIST_SKIP (1<<8) // -m s
#define MODE_DROP_SKIP (1<<9) // -m S
#define LIST_MODES (MODE_LIST_ERR|MODE_LIST_GOOD|MODE_LIST_MISS|MODE_LIST_SKIP)
#define iMOM 0
#define iDAD 1
#define iKID 2
typedef struct
{
int nno_gt, // number of rows with no FMT/GT
nnot_diploid, // FMT/GT2 not diploid
nfail, // number of -i/-e filters failed
nmiss, // number of genotypes with a missing allele in the trio
ngood, // number of good genotypes (after any -i/-e filters applied)
nmerr, // number of mendelian errors
ngood_alt, // number of error-free non-ref genotypes
nrule; // number of genotypes with no rule to apply
}
stats_t;
typedef struct
{
int idx[3]; // VCF sample index of mom,dad,kid, in that order
stats_t stats; // per trio stats collected over all sites
int fail, has_merr; // per site filtering and mendeian error info
int sex_id; // implicitly defined by rules (typically 1X=0, 2X=1), see str2sex_id
}
trio_t;
typedef struct
{
uint8_t
ploidy:4, // 0,1,2
sex_id:2, // id given by str2sex_id mapping
inherits:2; // one of the M,F,MF,. inheritance modes given as combination of 1<<iDAD,1<<iMOM bitmasks
}
rule_t;
typedef struct _args_t
{
int argc, filter_logic, regions_is_file, targets_is_file, output_type, record_cmd_line, clevel;
int regions_overlap, targets_overlap;
char *filter_str;
filter_t *filter;
char **argv, *ped_fname, *pfm, *output_fname, *fname, *regions, *targets, *rules_str, *rules_fname;
htsFile *out_fh;
bcf_srs_t *sr;
bcf_hdr_t *hdr, *hdr_out;
trio_t *trio;
int ntrio;
regitr_t *itr;
regidx_t *rules; // inheritance rules per region, unlisted assumed to have "MF" inheritance for both sexes
void *str2sex_id; // implicitly defined by rules, the default is 0="1X" (male) and 1="2X" (female)
int nsex_id; // number of sexes (expect 2 for human
rule_t *rule; // the current site's inheritance for both sexes
int mode;
int32_t *gt_arr, nmerr;
int ngt_arr;
stats_t stats; // common per-site and per-sample stats
int nref_only, nmany_als; // per-site stats
char *index_fn;
int write_index;
}
args_t;
const char *about(void)
{
return "Count Mendelian consistent / inconsistent genotypes.\n";
}
static const char *usage_text(void)
{
return
"\n"
"About: Count Mendelian consistent / inconsistent genotypes.\n"
"Usage: bcftools +mendelian2 [Options]\n"
"Common Options:\n"
" -e, --exclude EXPR Exclude sites for which the expression is true\n"
" -i, --include EXPR Include sites for which the expression is true\n"
" -o, --output FILE Output file name [stdout]\n"
" -O, --output-type u|b|v|z[0-9] u/b: un/compressed BCF, v/z: un/compressed VCF, 0-9: compression level [v]\n"
" -r, --regions REG Restrict to comma-separated list of regions\n"
" -R, --regions-file FILE Restrict to regions listed in a file\n"
" --regions-overlap 0|1|2 Include if POS in the region (0), record overlaps (1), variant overlaps (2) [1]\n"
" -t, --targets REG Similar to -r but streams rather than index-jumps\n"
" -T, --targets-file FILE Similar to -R but streams rather than index-jumps\n"
" --targets-overlap 0|1|2 Include if POS in the region (0), record overlaps (1), variant overlaps (2) [0]\n"
" --no-version Do not append version and command line to the header\n"
" -W, --write-index[=FMT] Automatically index the output files [off]\n"
"\n"
"Options:\n"
" -m, --mode c|[adeEgmMS] Output mode, the default is `-m c`. Multiple modes can be combined in VCF/BCF\n"
" output and the drop modes take precedence.\n"
" Text stats output:\n"
" c .. print counts, a text summary with the number of errors per trio\n"
" VCF/BCF output:\n"
" a .. add INFO/MERR annotation with the number of inconsistent trios\n"
" d .. delete genotypes in inconsistent trios (set to \"./.\")\n"
" e .. output sites with at least one erroneous trio\n"
" E .. drop sites with at least one erroneous trio\n"
" g .. output sites with at least one good trio (i.e. non-missing and consistent)\n"
" m .. output sites with missing genotypes in at least one trio\n"
" M .. drop sites with missing genotypes in at least one trio\n"
" S .. drop sites skipped for various reasons when collecting stats\n"
" -p, --pfm [1X:|2X:]P,F,M Sample names of child (the proband), father, mother; \"1X:\" for male pattern of chrX inheritance [2X:]\n"
" -P, --ped FILE PED file with the columns: <ignored>,proband,father,mother,sex(1:male,2:female)\n"
" --rules ASSEMBLY[?] Predefined inheritance rules, \"list\" to print available settings, \"list?\" for detailed information\n"
" --rules-file FILE Inheritance rules, run with `--rules list?` for examples\n"
"\n"
"Example:\n"
" # Print number of good, erroneous and missing genotypes\n"
" bcftools +mendelian2 in.vcf -p 1X:Child,Father,Mother -c\n"
"\n";
}
typedef struct
{
const char *alias, *about, *rules;
}
rules_predef_t;
static rules_predef_t rules_predefs[] =
{
{ .alias = "GRCh37",
.about = "Human Genome reference assembly GRCh37 / hg19, both chr naming conventions",
.rules =
" # Unlisted regions inherit from both parents (MF)\n"
" 1X X:1-60000 M\n"
" 1X X:2699521-154931043 M\n"
" 1X Y:1-59373566 F\n"
" 2X Y:1-59373566 .\n"
" 1X MT:1-16569 M\n"
" 2X MT:1-16569 M\n"
"\n"
" 1X chrX:1-60000 M\n"
" 1X chrX:2699521-154931043 M\n"
" 1X chrY:1-59373566 F\n"
" 2X chrY:1-59373566 .\n"
" 1X chrM:1-16569 M\n"
" 2X chrM:1-16569 M\n"
},
{ .alias = "GRCh38",
.about = "Human Genome reference assembly GRCh38 / hg38, both chr naming conventions",
.rules =
" # Unlisted regions inherit from both parents (MF)\n"
" 1X X:1-9999 M\n"
" 1X X:2781480-155701381 M\n"
" 1X Y:1-57227415 F\n"
" 2X Y:1-57227415 .\n"
" 1X MT:1-16569 M\n"
" 2X MT:1-16569 M\n"
"\n"
" 1X chrX:1-9999 M\n"
" 1X chrX:2781480-155701381 M\n"
" 1X chrY:1-57227415 F\n"
" 2X chrY:1-57227415 .\n"
" 1X chrMT:1-16569 M\n"
" 2X chrMT:1-16569 M\n"
},
{
.alias = NULL,
.about = NULL,
.rules = NULL,
}
};
static int parse_rules(const char *line, char **chr_beg, char **chr_end, uint32_t *beg, uint32_t *end, void *payload, void *usr)
{
args_t *args = (args_t*)usr;
// e.g
// 1X Y:1-59373566 F # son
// 2X Y:1-59373566 . # daughter
if ( line[0]=='#' ) return -1; // skip comment lines
// eat any leading spaces
char *ss = (char*) line;
while ( *ss && isspace(*ss) ) ss++;
if ( !*ss ) return -1; // skip empty lines
// sex id, e.g. 1X or 2X
char keep, *tmp, *se = ss;
while ( *se && !isspace(*se) ) se++;
if ( !*se ) error("Could not parse the sex ID in the region line: %s\n", line);
keep = *se;
*se = 0;
int sex_id = 0;
if ( khash_str2int_get(args->str2sex_id,ss,&sex_id)!=0 )
{
tmp = strdup(ss);
if ( khash_str2int_set(args->str2sex_id,tmp,args->nsex_id) < 0 ) error("Could not insert into a hash\n");
sex_id = args->nsex_id++;
}
*se = keep;
while ( *se && isdigit(*se) ) se++;
while ( *se && isspace(*se) ) se++;
ss = se;
// chromosome name, beg, end
while ( se[1] && !isspace(se[1]) ) se++;
while ( se > ss && isdigit(*se) ) se--;
if ( *se!='-' ) error("Could not parse the region: %s\n",line);
*end = strtol(se+1, &tmp, 10) - 1;
if ( tmp==se+1 ) error("Could not parse the region: %s\n",line);
while ( se > ss && *se!=':' ) se--;
*beg = strtol(se+1, &tmp, 10) - 1;
if ( tmp==se+1 ) error("Could not parse the region: %s\n",line);
*chr_beg = ss;
*chr_end = se-1;
// skip region
while ( *ss && !isspace(*ss) ) ss++;
while ( *ss && isspace(*ss) ) ss++;
rule_t *rule = (rule_t*) payload;
rule->sex_id = sex_id;
rule->inherits = 0;
rule->ploidy = 0;
// alleles inherited from mother (M), father (F), both (MF), none (.)
while ( *ss && !isspace(*ss) )
{
if ( *ss=='M' ) { rule->inherits |= 1<<iMOM; rule->ploidy++; }
else if ( *ss=='F' ) { rule->inherits |= 1<<iDAD; rule->ploidy++; }
else if ( *ss=='.' ) { rule->inherits = 0; rule->ploidy = 0; }
else error("Could not parse the region: %s\n", line);
ss++;
if ( rule->ploidy > 2 ) error("Todo: not ready for ploidy > 2: %s\n", line);
}
return 0;
}
regidx_t *init_rules(args_t *args, char *alias)
{
const rules_predef_t *rules = rules_predefs;
if ( !alias ) alias = "GRCh37";
int detailed = 0, len = strlen(alias);
if ( alias[len-1]=='?' ) { detailed = 1; alias[len-1] = 0; }
while ( rules->alias && strcasecmp(alias,rules->alias) ) rules++;
if ( !rules->alias )
{
fprintf(stderr,"\nPRE-DEFINED INHERITANCE RULES\n\n");
fprintf(stderr," * Columns are: SEX_ID CHROM:BEG-END INHERITED_FROM\n");
fprintf(stderr," * Coordinates are 1-based inclusive.\n\n");
rules = rules_predefs;
while ( rules->alias )
{
fprintf(stderr,"%s\n .. %s\n\n", rules->alias,rules->about);
if ( detailed )
fprintf(stderr,"%s\n", rules->rules);
rules++;
}
fprintf(stderr,"Run as --rules <alias> (e.g. --rules GRCh37).\n");
fprintf(stderr,"To see the detailed ploidy definition, append a question mark (e.g. --rules GRCh37?).\n");
fprintf(stderr,"\n");
exit(-1);
}
else if ( detailed )
{
fprintf(stderr,"%s", rules->rules);
exit(-1);
}
return regidx_init_string(rules->rules, parse_rules, NULL, sizeof(rule_t), args);
}
static int cmp_trios(const void *_a, const void *_b)
{
trio_t *a = (trio_t *) _a;
trio_t *b = (trio_t *) _b;
int i;
int amin = a->idx[0];
for (i=1; i<3; i++)
if ( amin > a->idx[i] ) amin = a->idx[i];
int bmin = b->idx[0];
for (i=1; i<3; i++)
if ( bmin > b->idx[i] ) bmin = b->idx[i];
if ( amin < bmin ) return -1;
if ( amin > bmin ) return 1;
return 0;
}
static void parse_ped(args_t *args, char *fname)
{
htsFile *fp = hts_open(fname, "r");
if ( !fp ) error("Could not read: %s\n", fname);
kstring_t str = {0,0,0};
if ( hts_getline(fp, KS_SEP_LINE, &str) <= 0 ) error("Empty file: %s\n", fname);
int moff = 0, *off = NULL, mtrio = 0;
do
{
// familyID sampleID paternalID maternalID sex phenotype population relationship siblings secondOrder thirdOrder children comment
// BB03 HG01884 HG01885 HG01956 2 0 ACB child 0 0 0 0
int ncols = ksplit_core(str.s,0,&moff,&off);
if ( ncols<4 ) error("Could not parse the ped file: %s\n", str.s);
int dad = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,&str.s[off[2]]);
if ( dad < 0 ) continue;
int mom = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,&str.s[off[3]]);
if ( mom < 0 ) continue;
int kid = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,&str.s[off[1]]);
if ( kid < 0 ) continue;
int sex = 0;
if ( ncols>=5 )
{
char *tmp;
sex = strtol(&str.s[off[4]],&tmp,10);
if ( tmp==&str.s[off[4]] || *tmp ) error("Could not parse the PED file, the 5th column should be numeric: %s\n",str.s);
if ( sex!=1 && sex!=2 ) sex = 0;
}
args->ntrio++;
hts_expand0(trio_t,args->ntrio,mtrio,args->trio);
trio_t *trio = &args->trio[args->ntrio-1];
trio->idx[iDAD] = dad;
trio->idx[iMOM] = mom;
trio->idx[iKID] = kid;
if ( khash_str2int_get(args->str2sex_id, sex==1 ? "1X" : "2X", &trio->sex_id)<0 )
error("Missing the sex \"%s\", it's not in the rules :-/\n",sex==1 ? "1X" : "2X");
}
while ( hts_getline(fp, KS_SEP_LINE, &str)>=0 );
// sort the sample by index so that they are accessed more or less sequentially
qsort(args->trio,args->ntrio,sizeof(trio_t),cmp_trios);
// check for duplicates
int i;
for (i=1; i<args->ntrio; i++)
{
trio_t *ta = &args->trio[i-1];
trio_t *tb = &args->trio[i];
if ( ta->idx[0]==tb->idx[0] && ta->idx[1]==tb->idx[1] && ta->idx[2]==tb->idx[2] )
error("Error: duplicate trio entries detected in the PED file: %s\n",fname);
}
fprintf(stderr,"Identified %d complete trio%s in the VCF file\n", args->ntrio,args->ntrio==1?"":"s");
free(str.s);
free(off);
if ( hts_close(fp)!=0 ) error("[%s] Error: close failed .. %s\n", __func__,fname);
}
static void init_data(args_t *args)
{
args->sr = bcf_sr_init();
if ( args->regions )
{
args->sr->require_index = 1;
bcf_sr_set_opt(args->sr,BCF_SR_REGIONS_OVERLAP,args->regions_overlap);
if ( bcf_sr_set_regions(args->sr, args->regions, args->regions_is_file)<0 ) error("Failed to read the regions: %s\n",args->regions);
}
if ( args->targets )
{
bcf_sr_set_opt(args->sr,BCF_SR_TARGETS_OVERLAP,args->targets_overlap);
if ( bcf_sr_set_targets(args->sr, args->targets, args->targets_is_file, 0)<0 ) error("Failed to read the targets: %s\n",args->targets);
}
if ( !bcf_sr_add_reader(args->sr,args->fname) ) error("Error: %s\n", bcf_sr_strerror(args->sr->errnum));
args->hdr = bcf_sr_get_header(args->sr,0);
if ( args->filter_str ) args->filter = filter_init(args->hdr, args->filter_str);
args->str2sex_id = khash_str2int_init();
if ( args->rules_fname )
args->rules = regidx_init(args->rules_fname, parse_rules, NULL, sizeof(rule_t), args);
else
args->rules = init_rules(args, args->rules_str);
if ( !args->rules ) error("Could not parse the Mendelian rules\n");
args->itr = regitr_init(args->rules);
args->rule = (rule_t*) malloc(sizeof(*args->rule)*args->nsex_id);
int i, n = 0;
char **list;
if ( args->pfm )
{
args->ntrio = 1;
args->trio = (trio_t*) calloc(1,sizeof(trio_t));
list = hts_readlist(args->pfm, 0, &n);
if ( n!=3 ) error("Expected three sample names with -t\n");
const int ped_idx[3] = {2,1,0}; // sample order is different on the command line (P,F,M) and in the code (M,F,P)
for (i=0; i<3; i++)
args->trio[0].idx[i] = bcf_hdr_id2int(args->hdr, BCF_DT_SAMPLE, list[ped_idx[i]]);
if ( args->trio[0].idx[iKID] < 0 )
{
if ( strlen(list[0])>3 && !strncasecmp(list[0],"1X:",3) )
{
args->trio[0].idx[iKID] = bcf_hdr_id2int(args->hdr, BCF_DT_SAMPLE, list[0]+3);
args->trio[0].sex_id = iDAD;
}
else if ( strlen(list[0])>3 && !strncasecmp(list[0],"2X:",3) )
{
args->trio[0].idx[iKID] = bcf_hdr_id2int(args->hdr, BCF_DT_SAMPLE, list[0]+3);
args->trio[0].sex_id = iMOM;
}
}
for (i=0; i<3; i++)
{
if ( args->trio[0].idx[i] < 0 ) error("The sample is not present: %s\n", list[ped_idx[i]]);
free(list[ped_idx[i]]);
}
free(list);
}
else
{
parse_ped(args,args->ped_fname);
if ( !args->ntrio ) error("No complete trio present\n");
}
args->hdr_out = bcf_hdr_dup(args->hdr);
if ( args->mode&MODE_ANNOTATE )
bcf_hdr_append(args->hdr_out,"##INFO=<ID=MERR,Number=1,Type=Integer,Description=\"Number of trios with Mendelian errors\">");
if ( args->record_cmd_line )
bcf_hdr_append_version(args->hdr_out, args->argc, args->argv, "bcftools_trio-dnm2");
if ( args->mode!=MODE_COUNT )
{
char wmode[8];
set_wmode(wmode,args->output_type,args->output_fname,args->clevel);
args->out_fh = hts_open(args->output_fname ? args->output_fname : "-", wmode);
if ( args->out_fh == NULL ) error("Can't write to \"%s\": %s\n", args->output_fname, strerror(errno));
if ( bcf_hdr_write(args->out_fh, args->hdr_out)!=0 ) error("[%s] Error: cannot write to %s\n", __func__,args->output_fname);
if ( init_index2(args->out_fh,args->hdr_out,args->output_fname,
&args->index_fn, args->write_index)<0 )
error("Error: failed to initialise index for %s\n",args->output_fname);
}
}
static void destroy_data(args_t *args)
{
if ( args->filter ) filter_destroy(args->filter);
regidx_destroy(args->rules);
regitr_destroy(args->itr);
khash_str2int_destroy_free(args->str2sex_id);
free(args->trio);
free(args->gt_arr);
free(args->rule);
if ( args->out_fh )
{
if ( args->write_index )
{
if ( bcf_idx_save(args->out_fh)<0 )
{
if ( hts_close(args->out_fh)!=0 ) error("Error: close failed .. %s\n", args->output_fname?args->output_fname:"stdout");
error("Error: cannot write to index %s\n", args->index_fn);
}
free(args->index_fn);
}
if ( hts_close(args->out_fh)!=0 ) error("[%s] Error: close failed .. %s\n", __func__,args->output_fname);
}
bcf_hdr_destroy(args->hdr_out);
bcf_sr_destroy(args->sr);
free(args);
}
static int test_filters(args_t *args, bcf1_t *rec)
{
uint8_t *smpl_pass;
int i,j, pass_site = filter_test(args->filter, rec, (const uint8_t**) &smpl_pass);
if ( args->filter_logic & FLT_EXCLUDE )
{
if ( pass_site )
{
if ( !smpl_pass ) return 0; // no samples, -e mode, the expression failed
pass_site = 0;
for (i=0; i<args->ntrio; i++)
{
int pass_trio = 1;
for (j=0; j<3; j++)
{
int idx = args->trio[i].idx[j];
if ( smpl_pass[idx] ) { pass_trio = 0; break; } // with -e one sample passes, the whole trio fails
}
args->trio[i].fail = pass_trio ? 0 : 1;
if ( pass_trio ) pass_site = 1;
}
return pass_site;
}
for (i=0; i<args->ntrio; i++) args->trio[i].fail = 0;
return 1;
}
if ( !pass_site ) return 0;
if ( smpl_pass )
{
pass_site = 0;
for (i=0; i<args->ntrio; i++)
{
int pass_trio = 1;
for (j=0; j<3; j++)
{
int idx = args->trio[i].idx[j];
if ( !smpl_pass[idx] ) { pass_trio = 0; break; }
}
args->trio[i].fail = pass_trio ? 0 : 1;
if ( pass_trio ) pass_site = 1;
}
return pass_site;
}
for (i=0; i<args->ntrio; i++) args->trio[i].fail = 0;
return 1;
}
static int parse_gt(int32_t *gt, int ngt, uint64_t *a, uint64_t *b)
{
*a = *b = 0;
if ( gt[0]==bcf_gt_missing || gt[0]==bcf_int32_vector_end ) return 0;
*a |= 1<<bcf_gt_allele(gt[0]);
if ( ngt==1 || gt[1]==bcf_int32_vector_end ) return 1;
if ( gt[1]==bcf_gt_missing ) return 0;
*b |= 1<<bcf_gt_allele(gt[1]);
return 2;
}
static void delete_gt(int32_t *gt, int ngt)
{
int i;
for (i=0; i<ngt; i++)
{
if ( gt[i]==bcf_int32_vector_end ) return;
gt[i] = bcf_gt_missing;
}
}
#define HAS_GOOD 1
#define HAS_MERR 2
#define HAS_MISS 4
static int collect_stats(args_t *args, bcf1_t *rec)
{
args->nmerr = 0;
int ret = 0;
int ngt = bcf_get_genotypes(args->hdr, rec, &args->gt_arr, &args->ngt_arr);
if ( ngt<0 )
{
args->stats.nno_gt++;
return ret;
}
if ( ngt!=2*bcf_hdr_nsamples(args->hdr) && ngt!=bcf_hdr_nsamples(args->hdr) )
{
args->stats.nnot_diploid++;
return ret;
}
ngt /= bcf_hdr_nsamples(args->hdr);
int i,j,itr_set = regidx_overlap(args->rules, bcf_seqname(args->hdr,rec),rec->pos,rec->pos+rec->rlen-1, args->itr);
for (i=0; i<args->nsex_id; i++)
{
args->rule[i].sex_id = i;
args->rule[i].inherits = (1<<iMOM)|(1<<iDAD);
args->rule[i].ploidy = 2;
}
while ( itr_set && regitr_overlap(args->itr) )
{
rule_t *rule = ®itr_payload(args->itr,rule_t);
args->rule[rule->sex_id] = *rule;
}
for (i=0; i<args->ntrio; i++)
{
trio_t *trio = &args->trio[i];
trio->has_merr = 0;
if ( trio->fail )
{
trio->stats.nfail++;
continue;
}
rule_t *rule = &args->rule[trio->sex_id];
if ( !rule->inherits ) { trio->stats.nrule++; continue; }
uint64_t kid1, kid2, parent, mom, dad;
int nal = parse_gt(&args->gt_arr[ngt*trio->idx[iKID]],ngt,&kid1,&kid2);
if ( nal < rule->ploidy ) { ret |= HAS_MISS; trio->stats.nmiss++; continue; }
if ( nal==1 )
{
for (j=0; j<args->nsex_id; j++)
{
if ( rule->inherits & (1<<j) ) break;
}
nal = parse_gt(&args->gt_arr[ngt*trio->idx[j]],ngt,&parent,&parent);
if ( !nal ) { ret |= HAS_MISS; trio->stats.nmiss++; continue; }
if ( parent&kid1 )
{
ret |= HAS_GOOD;
trio->stats.ngood++;
if ( parent!=1 || parent!=kid1 ) trio->stats.ngood_alt++;
continue;
}
ret |= HAS_MERR;
trio->stats.nmerr++;
trio->has_merr = 1;
args->nmerr++;
continue;
}
int nal_mom = parse_gt(&args->gt_arr[ngt*trio->idx[iMOM]],ngt,&mom,&mom);
int nal_dad = parse_gt(&args->gt_arr[ngt*trio->idx[iDAD]],ngt,&dad,&dad);
if ( (kid1&dad && kid2&mom) || (kid1&mom && kid2&dad) )
{
// both children's alleles phased
ret |= HAS_GOOD;
trio->stats.ngood++;
if ( dad!=1 || mom!=1 || (kid1|kid2)!=1 ) trio->stats.ngood_alt++;
continue;
}
if ( !nal_mom || !nal_dad ) { ret |= HAS_MISS; trio->stats.nmiss++; } // one or both parents missing
if ( !nal_mom && !nal_dad ) continue; // both parents missing
if ( !nal_mom && ((kid1|kid2)&dad) ) continue; // one parent missing but the kid is consistent with the other
if ( !nal_dad && ((kid1|kid2)&mom) ) continue;
ret |= HAS_MERR;
trio->stats.nmerr++;
trio->has_merr = 1;
args->nmerr++;
}
if ( !(args->mode&MODE_DELETE) || !(ret&HAS_MERR) ) return ret;
for (i=0; i<args->ntrio; i++)
{
trio_t *trio = &args->trio[i];
if ( !trio->has_merr ) continue;
delete_gt(&args->gt_arr[ngt*trio->idx[iKID]],ngt);
delete_gt(&args->gt_arr[ngt*trio->idx[iDAD]],ngt);
delete_gt(&args->gt_arr[ngt*trio->idx[iMOM]],ngt);
}
bcf_update_genotypes(args->hdr_out, rec, args->gt_arr, ngt*bcf_hdr_nsamples(args->hdr));
return ret;
}
static int process_record(args_t *args, bcf1_t *rec) // returns 1 to print rec, 0 to suppress printing
{
int skip_site = 0;
if ( rec->n_allele==1 || bcf_get_variant_types(rec)==VCF_REF )
{
args->nref_only++;
skip_site = 1;
}
else if ( rec->n_allele > 64 ) // we use uint64_t bitmask in collect_stats()
{
args->nmany_als++;
skip_site = 1;
}
else if ( args->filter && !test_filters(args,rec) )
{
args->stats.nfail++;
skip_site = 1;
}
if ( skip_site ) return args->mode&MODE_DROP_SKIP ? 1 : 0;
int ret = collect_stats(args, rec);
if ( ret&HAS_MERR ) args->stats.nmerr++;
if ( ret&HAS_MISS ) args->stats.nmiss++;
if ( ret&HAS_GOOD ) args->stats.ngood++;
if ( args->mode&MODE_COUNT ) return 0;
if ( args->mode&MODE_DROP_ERR && ret&HAS_MERR ) return 0;
if ( args->mode&MODE_DROP_MISS && ret&HAS_MISS ) return 0;
if ( args->mode&MODE_ANNOTATE )
{
bcf_update_info_int32(args->hdr_out,rec,"MERR",&args->nmerr,1);
}
if ( args->mode&LIST_MODES )
{
if ( args->mode&MODE_LIST_ERR && ret&HAS_MERR ) return 1;
if ( args->mode&MODE_LIST_MISS && ret&HAS_MISS ) return 1;
if ( args->mode&MODE_LIST_GOOD && ret&HAS_GOOD ) return 1;
return 0;
}
return 1;
}
static void print_stats(args_t *args)
{
if ( !(args->mode & MODE_COUNT) ) return;
FILE *log_fh = stderr;
if ( args->mode==MODE_COUNT )
{
log_fh = strcmp("-",args->output_fname) ? fopen(args->output_fname,"w") : stdout;
if ( !log_fh ) error("Error: cannot write to %s\n", args->output_fname);
}
fprintf(log_fh,"# Summary stats\n");
fprintf(log_fh,"sites_ref_only\t%d\t# sites skipped because there was no ALT allele\n", args->nref_only);
fprintf(log_fh,"sites_many_als\t%d\t# skipped because of too many ALT alleles\n", args->nmany_als);
fprintf(log_fh,"sites_fail\t%d\t# skipped because of failed -i/-e filter\n", args->stats.nfail);
fprintf(log_fh,"sites_no_GT\t%d\t# skipped because of absent FORMAT/GT field\n", args->stats.nno_gt);
fprintf(log_fh,"sites_not_diploid\t%d\t# skipped because FORMAT/GT not formatted diploid\n", args->stats.nnot_diploid);
fprintf(log_fh,"sites_missing\t%d\t# number of sites with at least one trio GT missing\n", args->stats.nmiss);
fprintf(log_fh,"sites_merr\t%d\t# number of sites with at least one Mendelian error\n", args->stats.nmerr);
fprintf(log_fh,"sites_good\t%d\t# number of sites with at least one good trio\n", args->stats.ngood);
int i;
fprintf(log_fh,"# Per-trio stats, each column corresponds to one trio. List of trios is below.\n");
fprintf(log_fh,"# The meaning of per-trio stats is the same as described above, ngood_alt is\n");
fprintf(log_fh,"# the number of good genotypes with at least one non-reference allele, and is\n");
fprintf(log_fh,"# included in the ngood counter\n");
fprintf(log_fh,"ngood");
for (i=0; i<args->ntrio; i++) fprintf(log_fh,"\t%d",args->trio[i].stats.ngood);
fprintf(log_fh,"\n");
fprintf(log_fh,"ngood_alt");
for (i=0; i<args->ntrio; i++) fprintf(log_fh,"\t%d",args->trio[i].stats.ngood_alt);
fprintf(log_fh,"\n");
fprintf(log_fh,"nmerr");
for (i=0; i<args->ntrio; i++) fprintf(log_fh,"\t%d",args->trio[i].stats.nmerr);
fprintf(log_fh,"\n");
fprintf(log_fh,"nmissing");
for (i=0; i<args->ntrio; i++) fprintf(log_fh,"\t%d",args->trio[i].stats.nmiss);
fprintf(log_fh,"\n");
fprintf(log_fh,"nfail");
for (i=0; i<args->ntrio; i++) fprintf(log_fh,"\t%d",args->trio[i].stats.nfail);
fprintf(log_fh,"\n");
fprintf(log_fh,"# List of trios. Their ids are in the same order as the values listed in the stats lines above. For\n");
fprintf(log_fh,"# example, the values for the first trio (id=1) and the third trio (id=3) are in the 2nd and the 4th\n");
fprintf(log_fh,"# column and their stats can be obtained with the unix command\n");
fprintf(log_fh,"# cat stats.txt | grep ^n | cut -f1,2,4\n");
fprintf(log_fh,"# TRIO\t[2]id\t[3]child\t[4]father\t[5]mother\n");
for (i=0; i<args->ntrio; i++)
{
trio_t *trio = &args->trio[i];
fprintf(log_fh,"TRIO\t%d\t%s\t%s\t%s\n", i+1,
bcf_hdr_int2id(args->hdr,BCF_DT_SAMPLE,trio->idx[iKID]),
bcf_hdr_int2id(args->hdr,BCF_DT_SAMPLE,trio->idx[iDAD]),
bcf_hdr_int2id(args->hdr,BCF_DT_SAMPLE,trio->idx[iMOM]));
}
if ( log_fh!=stderr && log_fh!=stdout && fclose(log_fh) ) error("Error: close failed for %s\n", args->output_fname);
}
int run(int argc, char **argv)
{
args_t *args = (args_t*) calloc(1,sizeof(args_t));
args->argc = argc; args->argv = argv;
args->output_fname = "-";
args->record_cmd_line = 1;
args->regions_overlap = 1;
args->targets_overlap = 0;
args->clevel = -1;
static struct option loptions[] =
{
{"pfm",1,0,'p'},
{"ped",1,0,'P'},
{"mode",1,0,'m'},
{"rules",1,0,1},
{"rules-file",1,0,2},
{"output",required_argument,NULL,'o'},
{"output-type",required_argument,NULL,'O'},
{"regions",1,0,'r'},
{"regions-file",1,0,'R'},
{"regions-overlap",required_argument,NULL,14},
{"targets",1,0,'t'},
{"targets-file",1,0,'T'},
{"targets-overlap",required_argument,NULL,15},
{"include",required_argument,0,'i'},
{"exclude",required_argument,0,'e'},
{"write-index",optional_argument,NULL,'W'},
{0,0,0,0}
};
int c;
char *tmp;
while ((c = getopt_long(argc, argv, "?hp:P:m:o:O:i:e:t:T:r:R:W::",loptions,NULL)) >= 0)
{
switch (c)
{
case 'e':
if ( args->filter_str ) error("Error: only one -i or -e expression can be given, and they cannot be combined\n");
args->filter_str = optarg; args->filter_logic |= FLT_EXCLUDE; break;
case 'i':
if ( args->filter_str ) error("Error: only one -i or -e expression can be given, and they cannot be combined\n");
args->filter_str = optarg; args->filter_logic |= FLT_INCLUDE; break;
case 't': args->targets = optarg; break;
case 'T': args->targets = optarg; args->targets_is_file = 1; break;
case 'r': args->regions = optarg; break;
case 'R': args->regions = optarg; args->regions_is_file = 1; break;
case 'o': args->output_fname = optarg; break;
case 'O':
switch (optarg[0]) {
case 'b': args->output_type = FT_BCF_GZ; break;
case 'u': args->output_type = FT_BCF; break;
case 'z': args->output_type = FT_VCF_GZ; break;
case 'v': args->output_type = FT_VCF; break;
default:
{
args->clevel = strtol(optarg,&tmp,10);
if ( *tmp || args->clevel<0 || args->clevel>9 ) error("The output type \"%s\" not recognised\n", optarg);
}
};
if ( optarg[1] )
{
args->clevel = strtol(optarg+1,&tmp,10);
if ( *tmp || args->clevel<0 || args->clevel>9 ) error("Could not parse argument: --compression-level %s\n", optarg+1);
}
break;
case 'm':
tmp = optarg;
while ( *tmp )
{
if ( *tmp=='+' || *tmp=='g' ) args->mode |= MODE_LIST_GOOD;
else if ( *tmp=='x' || *tmp=='e' ) args->mode |= MODE_LIST_ERR;
else if ( *tmp=='a' ) args->mode |= MODE_ANNOTATE;
else if ( *tmp=='d' ) args->mode |= MODE_DELETE;
else if ( *tmp=='c' ) args->mode |= MODE_COUNT;
else if ( *tmp=='E' ) args->mode |= MODE_DROP_ERR;
else if ( *tmp=='u' || *tmp=='m' ) args->mode |= MODE_LIST_MISS;
else if ( *tmp=='M' ) args->mode |= MODE_DROP_MISS;
else if ( *tmp=='s' ) args->mode |= MODE_LIST_SKIP;
else if ( *tmp=='S' ) args->mode |= MODE_DROP_SKIP;
else error("The argument \"%c\" not recognised: --mode %s\n", *tmp,optarg);
tmp++;
}
break;
case 'P': args->ped_fname = optarg; break;
case 'p': args->pfm = optarg; break;
case 1 : args->rules_str = optarg; break;
case 2 : args->rules_fname = optarg; break;
case 'W':
if (!(args->write_index = write_index_parse(optarg)))
error("Unsupported index format '%s'\n", optarg);
break;
case 'h':
case '?':
default: error("%s",usage_text()); break;
}
}
if ( optind==argc )
{
if ( !isatty(fileno((FILE *)stdin)) ) args->fname = "-"; // reading from stdin
else { error("%s", usage_text()); }
}
else if ( optind+1!=argc ) error("%s", usage_text());
else args->fname = argv[optind];
if ( !args->ped_fname && !args->pfm ) error("Missing the -p or -P option\n");
if ( args->ped_fname && args->pfm ) error("Expected only -p or -P option, not both\n");
if ( !args->mode ) args->mode = MODE_COUNT;
init_data(args);
while ( bcf_sr_next_line(args->sr) )
{
bcf1_t *rec = bcf_sr_get_line(args->sr,0);
if ( !process_record(args, rec) ) continue;
if ( bcf_write(args->out_fh, args->hdr_out, rec)!=0 ) error("[%s] Error: cannot write to %s\n", __func__,args->output_fname);
}
print_stats(args);
destroy_data(args);
return 0;
}