-
Notifications
You must be signed in to change notification settings - Fork 240
/
abuf.c
861 lines (798 loc) · 32.8 KB
/
abuf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
/* The MIT License
Copyright (c) 2021-2024 Genome Research Ltd.
Author: Petr Danecek <[email protected]>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include <assert.h>
#include <strings.h>
#include <htslib/vcf.h>
#include <ctype.h>
#include "bcftools.h"
#include "abuf.h"
#include "rbuf.h"
typedef enum
{
M_FIRST, M_SUM
}
merge_rule_t;
typedef struct
{
kstring_t ref, alt;
int ial; // the index of the original ALT allele, 1-based
int beg, end; // 0-based inclusive offsets to ref,alt
int plen; // the ref,alt prefix length, eg plen=1 for C>CA
}
atom_t;
typedef struct
{
bcf1_t *rec;
int nori, nout; // number of ALTs in the input, and VCF rows on output
uint8_t *tbl; // nori columns, nout rows; indicates allele contribution to output rows, see "The atomization works as follows" below
uint8_t *overlaps; // is the star allele needed for this variant?
atom_t **atoms;
int matoms, mtbl, moverlaps;
char *info_tag;
}
split_t;
struct _abuf_t
{
abuf_opt_t mode;
split_t split;
atom_t *atoms;
int natoms, matoms;
const bcf_hdr_t *hdr;
bcf_hdr_t *out_hdr;
bcf1_t **vcf; // dimensions stored in rbuf
rbuf_t rbuf;
kstring_t tmps;
void *tmp, *tmp2;
int32_t *gt, *tmpi;
int ngt, mgt, ntmpi, mtmpi, mtmp, mtmp2;
int star_allele;
};
abuf_t *abuf_init(const bcf_hdr_t *hdr, abuf_opt_t mode)
{
if ( mode!=SPLIT ) error("todo\n");
abuf_t *buf = (abuf_t*) calloc(1,sizeof(abuf_t));
buf->hdr = hdr;
buf->out_hdr = (bcf_hdr_t*) hdr;
buf->mode = mode;
buf->star_allele = 1;
rbuf_init(&buf->rbuf, 0);
return buf;
}
void abuf_destroy(abuf_t *buf)
{
int i;
for (i=0; i<buf->matoms; i++)
{
free(buf->atoms[i].ref.s);
free(buf->atoms[i].alt.s);
}
free(buf->atoms);
free(buf->split.atoms);
free(buf->split.overlaps);
free(buf->split.tbl);
for (i=0; i<buf->rbuf.m; i++)
if ( buf->vcf[i] ) bcf_destroy(buf->vcf[i]);
free(buf->vcf);
free(buf->gt);
free(buf->tmpi);
free(buf->tmp);
free(buf->tmp2);
free(buf->tmps.s);
free(buf);
}
void abuf_set(abuf_t *buf, abuf_opt_t key, void *value)
{
if ( key==BCF_HDR ) { buf->out_hdr = *((bcf_hdr_t**)value); return; }
if ( key==INFO_TAG )
{
buf->split.info_tag = *((char**)value);
bcf_hdr_printf(buf->out_hdr,"##INFO=<ID=%s,Number=1,Type=String,Description=\"Original variant. Format: CHR|POS|REF|ALT|USED_ALT_IDX\">",buf->split.info_tag);
return;
}
if ( key==STAR_ALLELE ) { buf->star_allele = *((int*)value); return; }
}
/*
Split alleles into primitivs, e.g.
CC>TT becomes C>T,C>T
GCGT>GTGA becomes C>T,T>A
There is no sequence alignment, just trimming and hungry matching
from left side.
*/
static void _atomize_allele(abuf_t *buf, bcf1_t *rec, int ial)
{
// Trim identical sequence from right
char *ref = rec->d.allele[0];
char *alt = rec->d.allele[ial];
int rlen = strlen(ref);
int alen = strlen(alt);
while ( rlen>1 && alen>1 && ref[rlen-1]==alt[alen-1] ) rlen--, alen--;
int Mlen = rlen > alen ? rlen : alen;
atom_t *atom = NULL;
int i;
for (i=0; i<Mlen; i++)
{
char refb = i<rlen ? ref[i] : '-';
char altb = i<alen ? alt[i] : '-';
if ( refb!=altb )
{
if ( refb=='-' || altb=='-' )
{
assert(atom);
if ( altb!='-' ) kputc(altb, &atom->alt);
if ( refb!='-' ) { kputc(refb, &atom->ref); atom->end++; }
continue;
}
buf->natoms++;
hts_expand0(atom_t,buf->natoms,buf->matoms,buf->atoms);
atom = &buf->atoms[buf->natoms-1];
atom->ref.l = 0;
atom->alt.l = 0;
kputc(refb, &atom->ref);
kputc(altb, &atom->alt);
atom->beg = atom->end = i;
atom->ial = ial;
if ( rlen!=alen && (i+1>=rlen || i+1>=alen) ) // the next base is an indel combined with SNV, e.g. C>GGG?
{
buf->natoms++;
hts_expand0(atom_t,buf->natoms,buf->matoms,buf->atoms);
atom = &buf->atoms[buf->natoms-1];
atom->ref.l = 0;
atom->alt.l = 0;
kputc(refb, &atom->ref);
kputc(refb, &atom->alt);
atom->beg = atom->end = i;
atom->ial = ial;
atom->plen = 1;
}
continue;
}
if ( i+1>=rlen || i+1>=alen ) // is the next base an indel?
{
buf->natoms++;
hts_expand0(atom_t,buf->natoms,buf->matoms,buf->atoms);
atom = &buf->atoms[buf->natoms-1];
atom->ref.l = 0;
atom->alt.l = 0;
kputc(refb, &atom->ref);
kputc(altb, &atom->alt);
atom->beg = atom->end = i;
atom->ial = ial;
}
}
}
static int _atoms_inconsistent(const atom_t *a, const atom_t *b)
{
if ( a->beg < b->beg ) return -1;
if ( a->beg > b->beg ) return 1;
int rcmp = strcasecmp(a->ref.s,b->ref.s);
if ( rcmp ) return rcmp;
return strcasecmp(a->alt.s,b->alt.s);
}
// returns
// 0 .. identical beg,ref,alt
// 1 .. non-overlapping variants, but record may overlap (A>AT vs A>C)
// 2 .. overlapping (conflicting) variants
static int _atoms_overlap(const atom_t *a, const atom_t *b)
{
if ( a->beg < b->beg ) return 2;
if ( a->beg > b->beg ) return 2;
// consider SNV followed by DEL as not overlapping
// CC > C a.plen=1 (ref,alt prefix len=1)
// C > T b.plen=0 (ref,alt prefix len=0)
if ( a->plen && a->plen >= b->ref.l ) return 1;
if ( b->plen && b->plen >= a->ref.l ) return 1;
int rcmp = strcasecmp(a->ref.s,b->ref.s);
if ( rcmp ) return 2;
// consider SNV followed by INS as not overlapping
// A > AT a.plen=1 (ref,alt prefix len=1)
// A > C b.plen=0 (ref,alt prefix len=0)
if ( a->plen && a->plen >= b->alt.l ) return 1;
if ( b->plen && b->plen >= a->alt.l ) return 1;
rcmp = strcasecmp(a->alt.s,b->alt.s);
if ( rcmp ) return 2;
return 0;
}
/*
For reproducibility of tests on different platforms, we need to guarantee the same order of identical
atoms originating from different source ALTs. Even though they are consistent, different values can be
picked for VCF annotations as currently the values from the one that comes first are used.
*/
static int _cmp_atoms(const void *aptr, const void *bptr)
{
const atom_t *a = (const atom_t*) aptr;
const atom_t *b = (const atom_t*) bptr;
int rcmp = _atoms_inconsistent(a,b);
if ( rcmp ) return rcmp;
if ( a->ial < b->ial ) return -1;
if ( a->ial > b->ial ) return 1;
return 0;
}
static void _split_table_init(abuf_t *buf, bcf1_t *rec, int natoms)
{
buf->split.rec = rec;
buf->split.nori = rec->n_allele - 1;
buf->split.nout = 0;
hts_expand(uint8_t,buf->split.nori*natoms,buf->split.mtbl,buf->split.tbl);
hts_expand(atom_t*,natoms,buf->split.matoms,buf->split.atoms);
hts_expand(uint8_t,natoms,buf->split.moverlaps,buf->split.overlaps);
memset(buf->split.overlaps,0,sizeof(*buf->split.overlaps)*natoms);
}
static void _split_table_new(abuf_t *buf, atom_t *atom)
{
int i, iout = buf->split.nout++;
buf->split.atoms[iout] = atom;
uint8_t *ptr = buf->split.tbl + iout*buf->split.nori;
for (i=0; i<buf->split.nori; i++) ptr[i] = 0;
ptr[atom->ial-1] = 1;
}
static void _split_table_overlap(abuf_t *buf, int iout, atom_t *atom)
{
uint8_t *ptr = buf->split.tbl + iout*buf->split.nori;
int olap = _atoms_overlap(atom,buf->split.atoms[iout]);
ptr[atom->ial-1] = olap > 1 ? 2 : 1;
// The test test/atomize.split.5.vcf shows why we sometimes can and sometimes
// cannot remove the star allele like this
// buf->split.overlaps[iout] = olap > 1 ? 1 : 0;
// I forgot the details of the code, so don't immediately see
// if this could be made smarter
buf->split.overlaps[iout] = 1;
}
#if 0
static void _split_table_print(abuf_t *buf)
{
int i,j;
for (i=0; i<buf->split.nout; i++)
{
atom_t *atom = buf->split.atoms[i];
uint8_t *ptr = buf->split.tbl + i*buf->split.nori;
fprintf(stderr,"%d\t%s\t%s",(int)buf->split.rec->pos+1+atom->beg,atom->ref.s,atom->alt.s);
for (j=0; j<buf->split.nori; j++) fprintf(stderr,"\t%d",(int)ptr[j]);
fprintf(stderr,"\n");
}
}
static void _split_table_print_atoms(abuf_t *buf)
{
int i;
for (i=0; i<buf->natoms; i++)
{
atom_t *atom = &buf->atoms[i];
fprintf(stderr,"atom%d %p: ialt=%d %s>%s %d-%d\n",i,atom,atom->ial,atom->ref.s,atom->alt.s,atom->beg,atom->end);
}
}
#endif
static inline uint8_t _has_star_allele(abuf_t *buf, int iout)
{
if ( !buf->star_allele ) return 0;
return buf->split.overlaps[iout];
}
static inline int _split_table_get_ial(abuf_t *buf, int irow, int ial)
{
if ( !ial ) return ial;
return buf->split.tbl[irow*buf->split.nori + ial - 1];
}
static void _split_table_set_chrom_qual(abuf_t *buf)
{
int iout,j;
bcf1_t *rec = buf->split.rec;
for (iout=0; iout<buf->split.nout; iout++)
{
rbuf_expand0(&buf->rbuf, bcf1_t*, buf->rbuf.n+1, buf->vcf);
j = rbuf_append(&buf->rbuf);
if ( !buf->vcf[j] ) buf->vcf[j] = bcf_init1();
bcf1_t *out = buf->vcf[j];
bcf_clear1(out);
atom_t *atom = buf->split.atoms[iout];
out->rid = rec->rid;
out->pos = rec->pos + atom->beg;
bcf_update_id(buf->out_hdr, out, rec->d.id);
const char *als[3];
als[0] = atom->ref.s;
als[1] = atom->alt.s;
als[2] = "*";
int nals = _has_star_allele(buf,iout) ? 3 : 2;
bcf_update_alleles(buf->out_hdr, out, als, nals);
if ( bcf_float_is_missing(rec->qual) )
bcf_float_set_missing(out->qual);
else
out->qual = rec->qual;
bcf_update_filter(buf->out_hdr, out, rec->d.flt, rec->d.n_flt);
}
}
int copy_string_field(char *src, int isrc, int src_len, kstring_t *dst, int idst);
static void _split_table_set_info(abuf_t *buf, bcf_info_t *info, merge_rule_t mode)
{
const char *tag = bcf_hdr_int2id(buf->hdr,BCF_DT_ID,info->key);
int type = bcf_hdr_id2type(buf->hdr,BCF_HL_INFO,info->key);
int len = bcf_hdr_id2length(buf->hdr,BCF_HL_INFO,info->key);
if ( len==BCF_VL_G ) return; // todo: Number=G INFO tags
if ( type==BCF_HT_LONG ) return; // todo: 64bit integers
bcf1_t *rec = buf->split.rec;
int mtmp = ( type==BCF_HT_INT || type==BCF_HT_REAL ) ? buf->mtmp/4 : buf->mtmp;
int nval = bcf_get_info_values(buf->hdr,rec,tag,&buf->tmp,&mtmp,type);
if ( type==BCF_HT_INT || type==BCF_HT_REAL ) buf->mtmp = mtmp*4;
// Check for incorrect number of values. Note this check does not consider all values missing
// and will remove annotations that don't pass.
if ( type==BCF_HT_INT || type==BCF_HT_REAL )
{
if ( (len==BCF_VL_A && nval != rec->n_allele - 1) || (len==BCF_VL_R && nval != rec->n_allele) ) return;
}
if ( buf->mtmp2 < buf->mtmp )
{
buf->tmp2 = realloc(buf->tmp2, buf->mtmp);
if ( !buf->tmp2 ) error("Failed to alloc %d bytes\n", buf->mtmp);
buf->mtmp2 = buf->mtmp;
}
const int num_size = 4;
assert( num_size==sizeof(int32_t) && num_size==sizeof(float) );
int32_t missing = bcf_int32_missing;
void *missing_ptr = (void*)&missing;
if ( type==BCF_HT_REAL ) bcf_float_set_missing(*((float*)missing_ptr));
int32_t vector_end = bcf_int32_vector_end;
void *vector_end_ptr = (void*)&vector_end;
if ( type==BCF_HT_REAL ) bcf_float_set_vector_end(*((float*)vector_end_ptr));
int iout,i;
for (iout=0; iout<buf->split.nout; iout++)
{
bcf1_t *out = buf->vcf[rbuf_kth(&buf->rbuf,iout)];
int star_allele = _has_star_allele(buf,iout);
int ret = 0;
if ( len==BCF_VL_FIXED || len==BCF_VL_VAR )
ret = bcf_update_info(buf->out_hdr, out, tag, type==BCF_HT_FLAG ? NULL : buf->tmp, nval, type);
else if ( len==BCF_VL_A && type!=BCF_HT_STR )
{
int iori = buf->split.atoms[iout]->ial - 1;
assert( iori<nval );
if ( !memcmp(vector_end_ptr,buf->tmp+num_size*iori,num_size) )
memcpy(buf->tmp2,missing_ptr,num_size);
else
memcpy(buf->tmp2,buf->tmp+num_size*iori,num_size);
if ( star_allele )
memcpy(buf->tmp2+num_size,missing_ptr,num_size);
ret = bcf_update_info(buf->out_hdr, out, tag, buf->tmp2, 1 + star_allele, type);
}
else if ( len==BCF_VL_A && type==BCF_HT_STR )
{
int iori = buf->split.atoms[iout]->ial - 1;
kstring_t dst;
dst.l = 0; dst.m = buf->mtmp2; dst.s = (char*)buf->tmp2;
kputc('.',&dst);
if ( star_allele ) kputs(",.",&dst);
copy_string_field(buf->tmp, iori, nval, &dst, 0);
if ( star_allele ) copy_string_field(".", 0, 1, &dst, 1);
buf->mtmp2 = dst.m;
buf->tmp2 = dst.s;
ret = bcf_update_info(buf->out_hdr, out, tag, buf->tmp2, dst.l, type);
}
else if ( len==BCF_VL_R && type!=BCF_HT_STR )
{
memcpy(buf->tmp2,buf->tmp,num_size); // REF contributes to all records
int iori = buf->split.atoms[iout]->ial;
assert( iori<nval && iori<=buf->split.nori );
if ( !memcmp(vector_end_ptr,buf->tmp+num_size*iori,num_size) )
memcpy(buf->tmp2+num_size,missing_ptr,num_size);
else
memcpy(buf->tmp2+num_size,buf->tmp+num_size*iori,num_size);
if ( type==BCF_HT_INT && mode==M_SUM )
{
uint8_t *tbl = buf->split.tbl + iout*buf->split.nori;
for (i=iori; i<buf->split.nori; i++)
{
if ( tbl[i]==1 ) ((int32_t*)buf->tmp2)[1] += ((int32_t*)buf->tmp)[i+1];
}
}
if ( star_allele )
memcpy(buf->tmp2+2*num_size,missing_ptr,num_size);
ret = bcf_update_info(buf->out_hdr, out, tag, buf->tmp2, 2 + star_allele, type);
}
else if ( len==BCF_VL_R && type==BCF_HT_STR )
{
int iori = buf->split.atoms[iout]->ial - 1;
kstring_t dst;
dst.l = 0; dst.m = buf->mtmp2; dst.s = (char*)buf->tmp2;
kputs(".,.",&dst);
if ( star_allele ) kputs(",.",&dst);
copy_string_field(buf->tmp, 0, nval, &dst, 0);
copy_string_field(buf->tmp, iori+1, nval, &dst, 1);
if ( star_allele ) copy_string_field(".", 0, 1, &dst, 2);
buf->mtmp2 = dst.m;
buf->tmp2 = dst.s;
ret = bcf_update_info(buf->out_hdr, out, tag, buf->tmp2, dst.l, type);
}
if ( ret!=0 ) error("An error occurred while updating INFO/%s (errcode=%d)\n",tag,ret);
}
}
static void _split_table_set_history(abuf_t *buf)
{
int i,j,ret;
bcf1_t *rec = buf->split.rec;
// Don't update if the tag already exists. This is to prevent -a from overwriting -m
int m = 0;
char *tmp = NULL;
ret = bcf_get_info_string(buf->hdr,rec,buf->split.info_tag,&tmp,&m);
free(tmp);
if ( ret>0 ) return;
buf->tmps.l = 0;
ksprintf(&buf->tmps,"%s|%"PRIhts_pos"|%s|",bcf_seqname(buf->hdr,rec),rec->pos+1,rec->d.allele[0]);
for (i=1; i<rec->n_allele; i++)
{
kputs(rec->d.allele[i],&buf->tmps);
if ( i+1<rec->n_allele ) kputc(',',&buf->tmps);
else kputc(',',&buf->tmps);
}
int len = buf->tmps.l;
buf->tmps.s[buf->tmps.l-1] = '|';
for (i=0; i<buf->split.nout; i++)
{
buf->tmps.l = len;
bcf1_t *out = buf->vcf[rbuf_kth(&buf->rbuf,i)];
uint8_t *ptr = buf->split.tbl + i*buf->split.nori;
for (j=0; j<buf->split.nori; j++)
{
if ( ptr[j]!=1 ) continue;
kputw(j+1,&buf->tmps);
kputc(',',&buf->tmps);
}
buf->tmps.s[--buf->tmps.l] = 0;
if ( (ret=bcf_update_info_string(buf->out_hdr, out, buf->split.info_tag, buf->tmps.s))!=0 )
error("An error occurred while updating INFO/%s (errcode=%d)\n",buf->split.info_tag,ret);
}
}
static void _split_table_set_gt(abuf_t *buf)
{
int nsmpl = bcf_hdr_nsamples(buf->hdr);
if ( !nsmpl ) return;
bcf1_t *rec = buf->split.rec;
buf->ngt = bcf_get_genotypes(buf->hdr, rec, &buf->gt, &buf->mgt);
if ( buf->ngt<=0 ) return;
else
hts_expand(int32_t,buf->ngt,buf->mtmpi,buf->tmpi);
int iout,i,j;
for (iout=0; iout<buf->split.nout; iout++)
{
bcf1_t *out = buf->vcf[rbuf_kth(&buf->rbuf,iout)];
int star_allele = _has_star_allele(buf,iout);
int max_ploidy = buf->ngt/nsmpl;
int32_t *src = buf->gt, *dst = buf->tmpi;
for (i=0; i<nsmpl; i++)
{
for (j=0; j<max_ploidy; j++)
{
if ( src[j]==bcf_int32_vector_end || bcf_gt_is_missing(src[j]) )
{
dst[j] = src[j];
continue;
}
int iori = bcf_gt_allele(src[j]);
if ( iori<0 || iori>=rec->n_allele )
error("Out-of-bounds genotypes at %s:%"PRIhts_pos"\n",bcf_seqname(buf->hdr,rec),rec->pos+1);
int ial = _split_table_get_ial(buf,iout,iori);
if ( ial==2 && !star_allele )
{
dst[j] = bcf_gt_missing;
if ( bcf_gt_is_phased(src[j]) ) dst[j] |= 1;
}
else
dst[j] = bcf_gt_is_phased(src[j]) ? bcf_gt_phased(ial) : bcf_gt_unphased(ial);
}
src += max_ploidy;
dst += max_ploidy;
}
bcf_update_genotypes(buf->out_hdr,out,buf->tmpi,buf->ngt);
}
}
static void _split_table_set_format(abuf_t *buf, bcf_fmt_t *fmt, merge_rule_t mode)
{
int nsmpl = bcf_hdr_nsamples(buf->hdr);
if ( !nsmpl ) return;
const char *tag = bcf_hdr_int2id(buf->hdr,BCF_DT_ID,fmt->id);
if ( tag[0]=='G' && tag[1]=='T' && !tag[2] ) // FORMAT/GT
{
_split_table_set_gt(buf);
return;
}
int type = bcf_hdr_id2type(buf->hdr,BCF_HL_FMT,fmt->id);
int len = bcf_hdr_id2length(buf->hdr,BCF_HL_FMT,fmt->id);
if ( type==BCF_HT_STR && len==BCF_VL_G ) return; // possible todo: Number=G for strings
if ( type==BCF_HT_LONG ) return; // todo: 64bit integers
const int num_size = 4;
assert( num_size==sizeof(int32_t) && num_size==sizeof(float) );
int32_t missing = bcf_int32_missing;
void *missing_ptr = (void*)&missing;
if ( type==BCF_HT_REAL ) bcf_float_set_missing(*((float*)missing_ptr));
int32_t vector_end = bcf_int32_vector_end;
void *vector_end_ptr = (void*)&vector_end;
if ( type==BCF_HT_REAL ) bcf_float_set_vector_end(*((float*)vector_end_ptr));
bcf1_t *rec = buf->split.rec;
int mtmp = ( type==BCF_HT_INT || type==BCF_HT_REAL ) ? buf->mtmp/num_size : buf->mtmp; // number of items
int nval = bcf_get_format_values(buf->hdr,rec,tag,&buf->tmp,&mtmp,type);
if ( type==BCF_HT_INT || type==BCF_HT_REAL ) buf->mtmp = mtmp*num_size; // number of bytes
if ( type==BCF_HT_INT || type==BCF_HT_REAL )
{
if ( len==BCF_VL_G && nval!=nsmpl*rec->n_allele && nval!=nsmpl*rec->n_allele*(rec->n_allele+1)/2 ) return; // not haploid nor diploid
// Check for incorrect number of values. Note this check does not consider all values missing
// and will remove annotations that don't pass.
if ( (len==BCF_VL_A && nval != nsmpl*(rec->n_allele - 1)) || (len==BCF_VL_R && nval != nsmpl*rec->n_allele) ) return;
}
// Increase buffer size to accommodate star allele
int nval1 = nval / nsmpl;
mtmp = buf->mtmp;
if ( type==BCF_HT_INT || type==BCF_HT_REAL )
{
if ( (len==BCF_VL_A || len==BCF_VL_R) && mtmp < num_size*nsmpl*(nval1+1) ) mtmp = num_size*nsmpl*(nval1+1); // +1 for the possibility of the star allele
else if ( len==BCF_VL_G && mtmp < num_size*nsmpl*(nval1+3) ) mtmp = num_size*nsmpl*(nval1+3);
}
else if ( type==BCF_HT_STR )
{
if ( (len==BCF_VL_A || len==BCF_VL_R) && mtmp < nsmpl*(nval1+2) ) mtmp = nsmpl*(nval1+2); // +2 for the possibility of the star allele, ",."
else if ( len==BCF_VL_G && mtmp < nsmpl*(nval1+6) ) mtmp = nsmpl*(nval1+6);
}
if ( buf->mtmp2 < mtmp )
{
buf->tmp2 = realloc(buf->tmp2, mtmp);
if ( !buf->tmp2 ) error("Failed to alloc %d bytes\n", mtmp);
buf->mtmp2 = mtmp;
}
int iout, i, j;
for (iout=0; iout<buf->split.nout; iout++)
{
int star_allele = _has_star_allele(buf,iout);
bcf1_t *out = buf->vcf[rbuf_kth(&buf->rbuf,iout)];
int ret = 0;
if ( len==BCF_VL_FIXED || len==BCF_VL_VAR )
ret = bcf_update_format(buf->out_hdr, out, tag, buf->tmp, nval, type);
else if ( len==BCF_VL_A && type!=BCF_HT_STR )
{
int iori = buf->split.atoms[iout]->ial - 1;
assert( iori<nval );
for (i=0; i<nsmpl; i++)
{
void *src = buf->tmp + nval1*num_size*i;
void *dst = buf->tmp2 + num_size*i*(star_allele+1);
if ( !memcmp(vector_end_ptr,src+iori*num_size,num_size) )
memcpy(dst,missing_ptr,num_size);
else
memcpy(dst,src+iori*num_size,num_size);
if ( star_allele )
memcpy(dst+num_size,missing_ptr,num_size);
}
ret = bcf_update_format(buf->out_hdr, out, tag, buf->tmp2, nsmpl*(star_allele+1), type);
}
else if ( (len==BCF_VL_A || len==BCF_VL_R) && type==BCF_HT_STR )
{
int ioff = len==BCF_VL_R ? 1 : 0;
int iori = buf->split.atoms[iout]->ial - 1;
int nval1_dst = star_allele ? nval1 + 2 : nval1;
memset(buf->tmp2,0,nval1_dst*nsmpl);
for (i=0; i<nsmpl; i++)
{
kstring_t dst;
dst.l = 0; dst.m = nval1_dst; dst.s = (char*)buf->tmp2 + nval1_dst*i;
kputc_('.',&dst);
if ( star_allele ) kputsn_(",.",2,&dst);
if ( len==BCF_VL_R )
{
kputsn_(",.",2,&dst);
copy_string_field(buf->tmp+nval1*i, 0, nval1, &dst, 0);
}
copy_string_field(buf->tmp+nval1*i, iori+ioff, nval1, &dst, 0+ioff);
if ( star_allele ) copy_string_field(".", 0, 1, &dst, 1+ioff);
}
ret = bcf_update_format(buf->out_hdr, out, tag, buf->tmp2, nval1_dst*nsmpl, type);
}
else if ( len==BCF_VL_R && type!=BCF_HT_STR )
{
int iori = buf->split.atoms[iout]->ial;
assert( iori<=nval );
for (i=0; i<nsmpl; i++)
{
void *src = buf->tmp + nval1*num_size*i;
void *dst = buf->tmp2 + num_size*i*(star_allele+2);
memcpy(dst,src,num_size);
memcpy(dst+num_size,src+iori*num_size,num_size);
if ( type==BCF_HT_INT && mode==M_SUM )
{
uint8_t *tbl = buf->split.tbl + iout*buf->split.nori;
for (j=iori; j<buf->split.nori; j++)
if ( tbl[j]==1 ) ((int32_t*)dst)[1] += ((int32_t*)src)[j+1];
}
if ( star_allele )
memcpy(dst+num_size*2,missing_ptr,num_size);
}
ret = bcf_update_format(buf->out_hdr, out, tag, buf->tmp2, nsmpl*(star_allele+2), type);
}
else if ( len==BCF_VL_G && type!=BCF_HT_STR )
{
int iori = buf->split.atoms[iout]->ial;
int i01 = bcf_alleles2gt(0,iori);
int i11 = bcf_alleles2gt(iori,iori);
assert( iori<nval );
#define BRANCH(type_t, is_missing, is_vector_end, set_missing, set_vector_end) { \
for (i=0; i<nsmpl; i++) \
{ \
type_t *src = (type_t*)buf->tmp + i*nval1; \
type_t *dst = (type_t*)buf->tmp2 + i*3*(1+star_allele); \
int n=0; /* determine ploidy of this genotype */ \
while ( n<nval1 && !(is_vector_end) ) { n++; src++; } \
src = (type_t*)buf->tmp + i*nval1; \
memcpy(dst++,src,sizeof(type)); \
int nmiss = 0, nend = 0; \
if ( n==rec->n_allele ) /* haploid */ \
{ \
memcpy(dst++,src+iori,sizeof(type)); \
if ( star_allele ) { nmiss = 1; nend = 3; } \
else nend = 1; \
} \
else if ( n==nval1 ) \
{ \
memcpy(dst++,src+i01,sizeof(type)); \
memcpy(dst++,src+i11,sizeof(type)); \
if ( star_allele ) nmiss = 3; \
} \
else if ( n==1 && is_missing ) \
{ \
if ( star_allele ) nend = 5; \
else nend = 2; \
} \
else \
error("Incorrect number of values at %s:%"PRIhts_pos" .. tag=FORMAT/%s Number=G nAlleles=%d nValues=%d, %d-th sample\n", \
bcf_seqname(buf->hdr,rec),rec->pos+1,tag,rec->n_allele,n,i+1); \
for (j=0; j<nmiss; j++) { set_missing; dst++; } \
for (j=0; j<nend; j++) { set_vector_end; dst++; } \
} \
}
switch (type)
{
case BCF_HT_INT: BRANCH(int32_t, *src==bcf_int32_missing, *src==bcf_int32_vector_end, *dst=bcf_int32_missing, *dst=bcf_int32_vector_end); break;
case BCF_HT_REAL: BRANCH(float, bcf_float_is_missing(*src), bcf_float_is_vector_end(*src), bcf_float_set_missing(*dst), bcf_float_set_vector_end(*dst)); break;
default: error("Unexpected case: %d\n", type);
}
#undef BRANCH
ret = bcf_update_format(buf->out_hdr, out, tag, buf->tmp2, 3*(1+star_allele)*nsmpl, type);
}
if ( ret!=0 ) error("An error occurred while updating FORMAT/%s (errcode=%d)\n",tag,ret);
}
}
static inline int _is_acgtn(char *seq)
{
while ( *seq )
{
char c = toupper(*seq);
if ( c!='A' && c!='C' && c!='G' && c!='T' && c!='N' ) return 0;
seq++;
}
return 1;
}
/*
The atomization works as follows:
- Atomize each alternate allele separately by leaving out sequence identical to the reference. No
alignment is performed, just greedy trimming of the end, then from left. This operation returns
a list of atoms (atom_t) which carry fragments of REF,ALT and their positions as 0-based offsets
to the original REF allele
- Sort atoms by POS, REF and ALT. Each unique atom (POS+REF+ALT) forms a new VCF record, each
with a single ALT.
- For each new VCF record determine how to translate the original allele index (iori) to this new
record:
- 1: the original allele matches the atom
- 0: the original allele does not overlap this atom or the overlapping part matches the REF
allele
- 2 (or equivalently "."): there is a mismatch between the original allele and the atom
The mapping is encoded in a table with columns corresponding to the original ALTs and rows
to the new POS+ALTs (atoms). The table is initialized to 0, then we set 1's for matching
atoms and 2's for overlapping mismatching atoms.
Note that different ALT alleles can result in the same atom (the same output line) and this code
does not know how to reconcile possibly conflicting VCF annotations. This could be improved
and merge logic provided, similarly to `merge -l`. For example, the allelic depths (AD) should
be summed for the same atomized output allele. However, this level of complexity is not addressed
in this initial draft. Higher priority for now is to provide the inverse "join" operation.
Update 2021-04-09:
Tags QS,AD are now automatically incremented as they should be, for both INFO and FORMAT.
Note that the code will fail on missing values (todo) and it needs to be generalized and
made customizable.
*/
void _abuf_split(abuf_t *buf, bcf1_t *rec)
{
int i,j;
if ( rec->n_allele < 2 )
{
rbuf_expand0(&buf->rbuf, bcf1_t*, buf->rbuf.n+1, buf->vcf);
int j = rbuf_append(&buf->rbuf);
if ( buf->vcf[j] ) bcf_destroy(buf->vcf[j]);
buf->vcf[j] = bcf_dup(rec);
return;
}
for (i=0; i<rec->n_allele; i++)
{
if ( _is_acgtn(rec->d.allele[i]) ) continue;
rbuf_expand0(&buf->rbuf, bcf1_t*, buf->rbuf.n+1, buf->vcf);
int j = rbuf_append(&buf->rbuf);
if ( buf->vcf[j] ) bcf_destroy(buf->vcf[j]);
buf->vcf[j] = bcf_dup(rec);
return;
}
buf->natoms = 0;
for (i=1; i<rec->n_allele; i++) _atomize_allele(buf,rec,i);
qsort(buf->atoms,buf->natoms,sizeof(*buf->atoms),_cmp_atoms);
_split_table_init(buf,rec,buf->natoms);
for (i=0; i<buf->natoms; i++)
{
if ( i && _atoms_inconsistent(&buf->atoms[i-1],&buf->atoms[i])==0 ) continue;
_split_table_new(buf, &buf->atoms[i]); // add a new unique output atom
}
for (i=0; i<buf->natoms; i++)
{
// Looping over sorted list of all atoms with possible duplicates from different source ALT alleles
atom_t *atom = &buf->atoms[i];
for (j=0; j<buf->split.nout; j++)
{
atom_t *out = buf->split.atoms[j];
if ( atom == out ) continue; // table already set to 1
if ( atom->beg > out->end ) continue; // cannot overlap this output atom
if ( atom->end < out->beg ) break; // this atom is ahead of all subsequent output records
_split_table_overlap(buf, j, atom);
}
}
// _split_table_print(buf);
// _split_table_print_atoms(buf);
assert( !buf->rbuf.n ); // all records should be flushed first in the SPLIT mode
// Create the output records, transferring all annotations:
// CHROM-QUAL
_split_table_set_chrom_qual(buf);
// INFO
for (i=0; i<rec->n_info; i++)
{
// this implementation of merging rules is temporary: generalize and made customizable through the API
merge_rule_t mode = M_FIRST;
const char *tag = bcf_hdr_int2id(buf->hdr,BCF_DT_ID,rec->d.info[i].key);
if ( !strcmp(tag,"QS") || !strcmp(tag,"AD") ) mode = M_SUM;
_split_table_set_info(buf, &rec->d.info[i], mode);
}
// Set INFO tag showing the original record
if ( buf->split.info_tag )
_split_table_set_history(buf);
// FORMAT
for (i=0; i<rec->n_fmt; i++)
{
// this implementation of merging rules is temporary: generalize and made customizable through the API
merge_rule_t mode = M_FIRST;
const char *tag = bcf_hdr_int2id(buf->hdr,BCF_DT_ID,rec->d.fmt[i].id);
if ( !strcmp(tag,"QS") || !strcmp(tag,"AD") ) mode = M_SUM;
_split_table_set_format(buf, &rec->d.fmt[i], mode);
}
// Check that at least one FORMAT field was added, if not, the number of samples must be set manually
for (i=0; i<buf->split.nout; i++)
{
bcf1_t *out = buf->vcf[rbuf_kth(&buf->rbuf,i)];
if ( !out->n_sample ) out->n_sample = rec->n_sample;
}
}
void abuf_push(abuf_t *buf, bcf1_t *rec)
{
bcf_unpack(rec, BCF_UN_ALL);
if ( buf->mode==SPLIT ) _abuf_split(buf,rec);
}
bcf1_t *abuf_flush(abuf_t *buf, int flush_all)
{
int i;
if ( buf->rbuf.n==0 ) return NULL;
if ( flush_all ) goto ret;
ret:
i = rbuf_shift(&buf->rbuf);
return buf->vcf[i];
}