-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
113 lines (93 loc) · 3.4 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from flask import Flask, render_template, request, redirect, jsonify, \
url_for, flash
from load import init
from Song import Song
from forms import SongForm, FeedbackForm
# TODO:
#
# * add about page and write author info
# * add feedback form page and give link to it on predict.html
# from sqlalchemy import create_engine, asc, desc, \
# from sqlalchemy.orm import sessionmaker
# from sqlalchemy.ext.serializer import loads, dumps
# from database_setup import Base, Things
# import random
# import string
# import logging
# import json
# import httplib2
# import requests
app = Flask(__name__)
app.config['SECRET_KEY'] = 'a51865b544b38a55894ce28f59f5b5fc'
# global vars for easy reusability
global model, graph, sc
# initialize these variables
model, graph = init()
# Connect to database and create database session
# engine = create_engine('sqlite:///flaskstarter.db')
# Base.metadata.bind = engine
# DBSession = sessionmaker(bind=engine)
# session = DBSession()
# Display all things
@app.route("/", methods=['GET', 'POST'])
def home():
form = SongForm()
if request.method == 'POST':
artist = form.artist.data
song = form.song.data
choice = form.choice.data
return redirect(url_for('predict', artist=artist, song=song,
choice=choice))
return render_template('index_copy.html', form=form,
legend='Predict Song!',
title=' ')
@app.route("/about", methods=['GET'])
def about():
form = FeedbackForm()
if request.method == 'POST':
name = form.name.data
message = form.message.data
email = form.email.data
return render_template('about.html', form=form)
@app.route("/feedback")
def feedback_date():
name = request.args.get('name')
email = request.args.get('email')
message = request.args.get('message')
return about()
@app.route("/predict")
def predict():
try:
choice = request.args.get('choice')
artist = request.args.get('artist')
song = request.args.get('song')
user_song = Song(artist=artist, song=song, choice=choice)
# Get data in format for machine learning model
data = user_song.data
song_features = user_song.song_features
(song_name, artist_name, song_url, popularity, preview_url,
preview_img_urls) = user_song.extract_trackinfo()
print(song_url)
# print(data)
# print(data[0])
with graph.as_default():
# perform the prediction
pred = model.predict(data)
pred = "{0:.3f}".format(pred[0][0] * 100)
# Multipling pred by 100 to get %
# pred = str(pred[0][0] * 100)
# pred = pred * 100
# print(pred)
return render_template('predict_copy.html',
song_name=song_name,
artist_name=artist_name,
song_url=song_url,
preview_img_urls=preview_img_urls,
popularity=popularity, preview_url=preview_url,
pred=pred, song_features=song_features,
title='Prediction')
except Exception:
return render_template('500.html')
if __name__ == '__main__':
# app.debug = True
app.run(host='0.0.0.0', port=8000)