-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathold_main.py
executable file
·424 lines (317 loc) · 16.7 KB
/
old_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import multiprocessing as mp
# import jax as jnp
import os
from itertools import repeat
import numpy as np
from shared_functions import timerD
os.environ.setdefault('TF_CPP_MIN_LOG_LEVEL', '3')
import tensorflow as tf
from tensorflow.python.layers.base import Layer
for gpu in tf.config.list_physical_devices("GPU"):
tf.config.experimental.set_memory_growth(gpu, True)
def get_analogy_file_path():
return get_file(URL="https://raw.githubusercontent.com/nicholas-leonard/word2vec/master/questions-words.txt")
def open_analogy_file():
return open(get_analogy_file_path())
def prepare_glove(name="6B"):
curr_files = os.listdir()
os.system("mkdir -p data/glove")
if len(os.listdir(f"data/glove")) < 3:
os.system("wget http://nlp.stanford.edu/data/glove.6B.zip")
os.system(f"mv glove.{name}.zip data/glove")
os.system(f"unzip data/glove/glove.{name}.zip")
new_files = [file for file in os.listdir() if file not in curr_files]
for file in new_files:
os.system(f"mv {file} data/glove")
def q_smp_N(func, args, N):
return mp.Pool(N).starmap(func, args)
def q_smp(func, args):
return mp.Pool(mp.cpu_count()).starmap(func, args)
def q_mp(func, arg):
return mp.Pool(mp.cpu_count()).map(func, arg)
def mp_load_file(glove_file, index, in_dict):
line: str = glove_file[index]
data = line.split()
word, vector = data[0], np.array(data[1:], dtype=np.float32)
in_dict[word] = vector
def mp_load_file_two_arrays(glove_file, index, N, in_words_list):
line: str = glove_file[index]
data = line.split()
word, vector = data[0], np.array(data[1:N + 1], dtype=np.float32)
# in_words_list.append([word, vector])
in_words_list.append(word)
def mp_load_file_two_arrays2(glove_file, proc_count, N):
batch_size = int(len(glove_file) / N)
lines = glove_file[proc_count * batch_size:(proc_count + 1) * batch_size]
words = ["" for _ in range(len(lines))]
vectors = [[0.0 for __ in range(len(lines[0].split()) - 1)] for _ in range(len(lines))]
words, vectors = np.array(words, dtype=object), np.zeros_like(vectors, dtype=np.float32)
for index, line in enumerate(lines):
data = line.split()
word, vector = data[0], np.array(data[1:], dtype=np.float32)
words[index] = word
vectors[index] = vector
# vectors[index] = vector[:]
return words, np.squeeze(vectors)
def slice_file(glove_file, index, N):
line: str = glove_file[index]
data = line.split()
return ' '.join(data[:N + 1])
def prepare_arguments(*x):
args = []
for index in range(len(x)):
try: # A more precise check, but expensive check
iter(x[index])
args.append(x[index])
except:
args.append(repeat(x[index]))
return zip(*args)
def prep_embeddings_mp(glove_file, proc_count, N):
batch_size = int(len(glove_file) / N)
lines = glove_file[proc_count * batch_size:(proc_count + 1) * batch_size]
words = ["" for _ in range(len(lines))]
vectors = [[0.0 for __ in range(len(lines[0].split()) - 1)] for _ in range(len(lines))]
words, vectors = np.array(words, dtype=object), np.zeros_like(vectors, dtype=np.float32)
return words, np.squeeze(vectors)
# Slices up the the glovefiles into separate files of words and vectors
def prepare_embeddings_files(n=300, glove_size=6):
new_folder = f"data/glove/{glove_size}B.{n}d"
os.system(f"mkdir -p {new_folder}")
vector_path = f"{new_folder}/glove.{glove_size}B.{n}d.vectors"
word_path = f"{new_folder}/glove.{glove_size}B.{n}d.words"
glove_path = f"{new_folder}/glove.{glove_size}B.{n}d.txt"
# word_npy_path = f"{new_folder}/glove.{glove_size}B.{n}d.words.npy"
vector_npy_path = f"{new_folder}/glove.{glove_size}B.{n}d.vectors.npy"
word_path_sorted = f"{new_folder}/glove.{glove_size}B.{n}d.words_sorted"
vector_npy_path_sorted = f"{new_folder}/glove.{glove_size}B.{n}d.vectors_sorted.npy"
# print(len(open(glove_path).readlines()))
# exit()
###################################################################################################
###################################################################################################
if not os.path.exists(vector_path) or not os.path.exists(word_path):
fW = open(word_path, "w")
fV = open(vector_path, "w")
for line in open(glove_path):
data = line.split(' ')
print(data[0][0], end='\r')
word, vector = ''.join(data[0]), np.array(data[1:], dtype=np.float32)
fW.write(f"{word}\n")
for each in vector:
fV.write(f"{str(each)} ")
fV.write("\n")
timerD(f"Preparing {vector_path.rsplit('/', 1)[1]} and {word_path.rsplit('/', 1)[1]}")
# if not os.path.exists(word_npy_path):
# timerD(f"Preparing {word_npy_path}")
# word_lines = open(word_path).readlines()
# word_array = ["" for _ in range(len(word_lines))]
# for index, line in enumerate(word_lines):
# print(f"{index / len(word_lines) * 100:2.1f}%", end='\r')
# word_array[index] = np.array(line.split(), dtype=object)[0]
# np.save(word_npy_path, word_array, allow_pickle=True)
if not os.path.exists(vector_npy_path):
vector_lines = open(vector_path).readlines()
vector_array = [[0.0 for __ in range(n)] for _ in range(len(vector_lines))]
for index, line in enumerate(vector_lines):
print(f"{index / len(vector_lines) * 100:2.1f}%", end='\r')
vector_array[index] = np.array(line.split(), dtype=np.float32)[:]
np.save(vector_npy_path, vector_array, allow_pickle=True)
timerD(f"Preparing {vector_npy_path}")
if not os.path.exists(vector_npy_path_sorted) or not os.path.exists(word_path_sorted):
a = np.array(open(word_path).read().split())
b = np.load(vector_npy_path, allow_pickle=True)
a, b = zip([a, b])
a, b = np.concatenate([*a]), np.concatenate([*b])
a, b = zip(*sorted(((zip(a, b)))))
b = np.array(b, dtype=object)
# np.save(vector_npy_path_sorted, b, allow_pickle=True)
clean_b = []
fW = open(word_path_sorted, "w")
for index, (q, w) in enumerate(zip(a, b)):
if len(w) == n:
fW.write(f"{q}\n")
clean_b.append(b[index])
np.save(vector_npy_path_sorted, clean_b, allow_pickle=True)
timerD(f"Sorting and saving to {word_path_sorted.rsplit('/', 1)[1]} and {vector_npy_path_sorted.rsplit('/', 1)[1]}")
def load_embeddings(n=300, glove_size=6):
new_folder = f"data/glove/{glove_size}B.{n}d"
os.system(f"mkdir -p {new_folder}")
vector_path = f"{new_folder}/glove.{glove_size}B.{n}d.vectors.npy"
word_path = f"{new_folder}/glove.{glove_size}B.{n}d.words.npy"
word_path = f"{new_folder}/glove.{glove_size}B.{n}d.words"
glove_path = f"{new_folder}/glove.{glove_size}B.{n}d.txt"
word_path_sorted = f"{new_folder}/glove.{glove_size}B.{n}d.words_sorted"
vector_npy_path_sorted = f"{new_folder}/glove.{glove_size}B.{n}d.vectors_sorted.npy"
###################################################################################################
###################################################################################################
if glove_size >= 6:
prepare_embeddings_files(n=n, glove_size=glove_size)
else:
if not os.path.exists(vector_path) or not os.path.exists(word_path):
glove = open(glove_path).readlines()
process_count = mp.cpu_count()
args = zip(repeat(glove), range(process_count), repeat(process_count))
results = q_smp_N(mp_load_file_two_arrays2, args, process_count)
# Combine MP results and split into word and vector lists
a, b = zip(*results)
a, b = np.concatenate([*a]), np.concatenate([*b])
a, b = zip(*sorted(((zip(a, b)))))
word_array, vector_array = np.array(a), np.array(b)
fW = open(word_path_sorted, "w")
for word in word_array:
fW.write(f"{word}\n")
if not os.path.exists(vector_npy_path_sorted): np.save(vector_npy_path_sorted, vector_array, allow_pickle=True)
if not os.path.exists(word_path_sorted): np.save(word_path_sorted, word_array, allow_pickle=True)
###################################################################################################
###################################################################################################
a = np.array(open(word_path_sorted).read().split())
b = np.load(vector_npy_path_sorted, allow_pickle=True)
# Create a dict with pointers to vector_list
c = {str(a[idx]): b[idx] for idx in range(len(a))}
word_array, vector_array, word_vector_dict = np.array(a, dtype=object), np.array(b), c
return word_array, vector_array, word_vector_dict
def get_file(URL, path="data"):
file_name = URL.rsplit("/", 1)[1]
if not os.path.exists(file_name):
os.system(f"wget {URL}")
os.system(f"mv {file_name} {path}/")
return f"{path}/{file_name}"
def get_work_load(in_file, N=mp.cpu_count()):
batch_size = int(len(in_file) / N)
return in_file[N * batch_size:(N + 1) * batch_size]
def mp_split(array, index):
return array[index].split()
# Splits and gets the last element in lower case
def analogy_answer_splitter(array, index):
return array[index].split()[-1].lower()
def mp_split_vectors(array, index, in_dict):
each = array[index].split()
return [in_dict[e] for e in each]
def get_vectors(array, in_dict):
return [in_dict[e.lower()] for e in array]
def get_index_vectors(array, index, in_dict):
return [in_dict[w.lower()] for w in array[index].split()]
def score_if_same(array, array2, index):
return array[index] == array2[index]
def get_analogy_vector(array, index, in_dict):
vectors = [in_dict[w.lower()] for w in array[index].split()]
result = vectors[1] - vectors[0] + vectors[2]
return result
class AnalogyIndiceLayer(Layer):
def __init__(self):
super(AnalogyIndiceLayer, self).__init__()
@tf.function(experimental_compile=True)
def call(self, inputs, training=False):
# Like a TF functional model
x = tf.subtract(inputs[0], inputs[1])
x = tf.abs(x)
x = tf.reduce_sum(x, axis=1)
x = tf.argmin(x) # Can be easily changed to grab the K-nearest
return x
def convert_to_tensors(curr, dtype=tf.float32):
return tf.convert_to_tensor(curr, dtype=dtype)
def calculate_analogy_vectors(in_dict, vector_list, glove_size, n, limit=None):
analogy_path = get_file(URL="https://raw.githubusercontent.com/nicholas-leonard/word2vec/master/questions-words.txt")
file_path = f"data/glove/{glove_size}B.{n}d/float32_analogy_vectors.npy"
###################################################################################################
###################################################################################################
if not os.path.exists(file_path):
file = [line for line in open(analogy_path).readlines() if len(line.split()) == 4]
vectors = q_smp(get_index_vectors, zip(repeat(file), range(len(file)), repeat(in_dict)))
np.save(file_path, np.array(vectors, dtype=np.float32), allow_pickle=True)
timerD("Creating float32_analogy_vectors.npy")
###################################################################################################
###################################################################################################
vectors = np.load(file_path, allow_pickle=True)
vectors = vectors[:limit] # Limit the amount of vectors, for debugging
predicted_vectors: np.ndarray = vectors[:, 1] - vectors[:, 0] + vectors[:, 2]
convert_to_tensors(predicted_vectors)
convert_to_tensors(vector_list)
currT, bT = q_mp(convert_to_tensors, predicted_vectors), convert_to_tensors(vector_list)
# timerD("Converting data to tensors")
tf_layer = AnalogyIndiceLayer()
locs = list(map(lambda x: tf_layer((x, bT)).numpy(), currT))
return locs
def get_analogy_answers():
analogy_path = get_file(URL="https://raw.githubusercontent.com/nicholas-leonard/word2vec/master/questions-words.txt")
file_path = "data/analogy_answers.txt"
###################################################################################################
###################################################################################################
if not os.path.exists(file_path) or True:
file = [line for line in open(analogy_path).readlines() if len(line.split()) == 4]
analogy_answers = q_smp(analogy_answer_splitter, zip(repeat(file), range(len(file))))
with open(file_path, "w") as f:
for line in analogy_answers:
f.write(f"{line}\n")
###################################################################################################
###################################################################################################
analogy_answers = open(file_path).read().splitlines()
return analogy_answers
if __name__ == '__main__':
os.system("clear")
timerD("Importing libraries")
# prepare_embeddings_files(glove_size=6)
# prepare_embeddings_files(glove_size=840)
# exit()
words = ["car", "automobile", "truck", "bus", "limo", "jeep", "boat", "canoe", "dinghy", "motorboat", "yacht", "catamaran"]
n, glove_size = 50, 6
# n, glove_size = 100, 6
# n, glove_size = 200, 6
# n, glove_size = 300, 6
# n, glove_size = 300, 42
# n, glove_size = 300, 840
ns = [50, 100, 200]
for n in ns:
timerD(f"Running {glove_size}B.{n}d...")
limit = None # Reduces the amount of words done, for debugging. Set to None for the full dataset.
# n, glove_size = 300, 6
# limit = 5
word_list, vector_list, word_vector_dict = load_embeddings(n=n, glove_size=glove_size)
# print(*word_list,sep='\n')
# exit()
predicted_analogy_indices = calculate_analogy_vectors(word_vector_dict, vector_list, glove_size, n, limit=limit)
# timerD(f"Predicting analogy indices")
predicted_analogies = word_list[predicted_analogy_indices]
analogy_answers = get_analogy_answers()
# timerD("Loading analogy answers")
args = zip(repeat(predicted_analogies), repeat(analogy_answers), range(len(predicted_analogies)))
true_if_correct = q_smp(score_if_same, args)
number_correct = np.sum(true_if_correct)
percent_correct = f"{number_correct / len(predicted_analogies) * 100:2.1f}"
timerD(f"Checking accuracy. Results (correct/total): {number_correct} / {len(predicted_analogies)} ({percent_correct}%)")
analogies = open_analogy_file().readlines()
categories = []
for idx, each in enumerate(analogies):
if len(each.split()) != 4:
category_name = each.split()[1]
categories.append([category_name, idx])
categorized = []
for i in range(len(categories)):
if i < len(categories) - 1:
idx0, idx1 = categories[i][1], categories[i + 1][1]
t0, t1 = analogy_answers[idx0:idx1], predicted_analogies[idx0:idx1]
else:
idx0 = categories[i][1]
t0, t1 = analogy_answers[idx0:], predicted_analogies[idx0:]
args = zip(repeat(t0), repeat(t1), range(len(t0)))
number_correct = np.sum(q_smp(score_if_same, args))
percent_correct = f"{number_correct / len(t1) * 100:02.1f}"
category_name = categories[i][0]
print(f"{category_name:>30}, Accuracy: {percent_correct}% ({number_correct}/{len(t1)})")
start_indexes = list(map(lambda x: x[1], categories))
predictions_dir = f"data/predictions"
os.system(f"mkdir -p {predictions_dir}")
incorrect_predictions_path = f"{predictions_dir}/wrong_predictions-glove_{glove_size}B-{n}d-{percent_correct}_percent_correct.txt"
if not os.path.exists(incorrect_predictions_path):
lines_to_write = []
for index, (a, b, c) in enumerate(zip(predicted_analogies, analogy_answers, true_if_correct)):
for category in categories:
if category[1] == index:
cat = f"\n Errors in {category[0]}:"
lines_to_write.append(f"{cat}\n")
# print(cat)
if not c:
pretty = f"{a:>20} | {b:<20}"
lines_to_write.append(f"{pretty}\n")
# print(pretty)
open(incorrect_predictions_path, 'w').writelines(lines_to_write)
timerD(f"Exiting...", show_total_time_elapsed=True)