-
Notifications
You must be signed in to change notification settings - Fork 1
/
ellipsoid_fit_tnm.m
148 lines (140 loc) · 4.64 KB
/
ellipsoid_fit_tnm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
function [ center, radii, evecs, evals, v ] = ellipsoid_fit_tnm( X, flag, equals )
%
% Fit an ellispoid/sphere to a set of xyz data points:
%
% [center, radii, evecs, pars ] = ellipsoid_fit( X )
% [center, radii, evecs, pars ] = ellipsoid_fit( [x y z] );
% [center, radii, evecs, pars ] = ellipsoid_fit( X, 1 );
% [center, radii, evecs, pars ] = ellipsoid_fit( X, 2, 'xz' );
% [center, radii, evecs, pars ] = ellipsoid_fit( X, 3 );
%
% Parameters:
% * X, [x y z] - Cartesian data, n x 3 matrix or three n x 1 vectors
% * flag - 0 fits an arbitrary ellipsoid (default),
% - 1 fits an ellipsoid with its axes along [x y z] axes
% - 2 followed by, say, 'xy' fits as 1 but also x_rad = y_rad
% - 3 fits a sphere
%
% Output:
% * center - ellispoid center coordinates [xc; yc; zc]
% * ax - ellipsoid radii [a; b; c]
% * evecs - ellipsoid radii directions as columns of the 3x3 matrix
% * v - the 9 parameters describing the ellipsoid algebraically:
% Ax^2 + By^2 + Cz^2 + 2Dxy + 2Exz + 2Fyz + 2Gx + 2Hy + 2Iz = 1
%
% Author:
% Yury Petrov, Northeastern University, Boston, MA
%
error( nargchk( 1, 3, nargin ) ); % check input arguments
if nargin == 1
flag = 0; % default to a free ellipsoid
end
if flag == 2 && nargin == 2
equals = 'xy';
end
if size( X, 2 ) ~= 3
error( 'Input data must have three columns!' );
else
x = X( :, 1 );
y = X( :, 2 );
z = X( :, 3 );
end
% need nine or more data points
if length( x ) < 9 && flag == 0
error( 'Must have at least 9 points to fit a unique ellipsoid' );
end
if length( x ) < 6 && flag == 1
error( 'Must have at least 6 points to fit a unique oriented ellipsoid' );
end
if length( x ) < 5 && flag == 2
error( 'Must have at least 5 points to fit a unique oriented ellipsoid with two axes equal' );
end
if length( x ) < 3 && flag == 3
error( 'Must have at least 4 points to fit a unique sphere' );
end
if flag == 0
% fit ellipsoid in the form Ax^2 + By^2 + Cz^2 + 2Dxy + 2Exz + 2Fyz + 2Gx + 2Hy + 2Iz = 1
D = [ x .* x, ...
y .* y, ...
z .* z, ...
2 * x .* y, ...
2 * x .* z, ...
2 * y .* z, ...
2 * x, ...
2 * y, ...
2 * z ]; % ndatapoints x 9 ellipsoid parameters
elseif flag == 1
% fit ellipsoid in the form Ax^2 + By^2 + Cz^2 + 2Gx + 2Hy + 2Iz = 1
D = [ x .* x, ...
y .* y, ...
z .* z, ...
2 * x, ...
2 * y, ...
2 * z ]; % ndatapoints x 6 ellipsoid parameters
elseif flag == 2
% fit ellipsoid in the form Ax^2 + By^2 + Cz^2 + 2Gx + 2Hy + 2Iz = 1,
% where A = B or B = C or A = C
if strcmp( equals, 'yz' ) || strcmp( equals, 'zy' )
D = [ y .* y + z .* z, ...
x .* x, ...
2 * x, ...
2 * y, ...
2 * z ];
elseif strcmp( equals, 'xz' ) || strcmp( equals, 'zx' )
D = [ x .* x + z .* z, ...
y .* y, ...
2 * x, ...
2 * y, ...
2 * z ];
else
D = [ x .* x + y .* y, ...
z .* z, ...
2 * x, ...
2 * y, ...
2 * z ];
end
else
% fit sphere in the form A(x^2 + y^2 + z^2) + 2Gx + 2Hy + 2Iz = 1
D = [ x .* x + y .* y + z .* z, ...
2 * x, ...
2 * y, ...
2 * z ]; % ndatapoints x 4 sphere parameters
end
% solve the normal system of equations
v = ( D' * D ) \ ( D' * ones( size( x, 1 ), 1 ) );
% find the ellipsoid parameters
if flag == 0
% form the algebraic form of the ellipsoid
A = [ v(1) v(4) v(5) v(7); ...
v(4) v(2) v(6) v(8); ...
v(5) v(6) v(3) v(9); ...
v(7) v(8) v(9) -1 ];
% find the center of the ellipsoid
center = -A( 1:3, 1:3 ) \ [ v(7); v(8); v(9) ];
% form the corresponding translation matrix
T = eye( 4 );
T( 4, 1:3 ) = center';
% translate to the center
R = T * A * T';
% solve the eigenproblem
[ evecs evals ] = eig( R( 1:3, 1:3 ) / -R( 4, 4 ) );
radii = sqrt( 1 ./ diag( evals ) );
else
if flag == 1
v = [ v(1) v(2) v(3) 0 0 0 v(4) v(5) v(6) ];
elseif flag == 2
if strcmp( equals, 'xz' ) || strcmp( equals, 'zx' )
v = [ v(1) v(2) v(1) 0 0 0 v(3) v(4) v(5) ];
elseif strcmp( equals, 'yz' ) || strcmp( equals, 'zy' )
v = [ v(2) v(1) v(1) 0 0 0 v(3) v(4) v(5) ];
else % xy
v = [ v(1) v(1) v(2) 0 0 0 v(3) v(4) v(5) ];
end
else
v = [ v(1) v(1) v(1) 0 0 0 v(2) v(3) v(4) ];
end
center = ( -v( 7:9 ) ./ v( 1:3 ) )';
gam = 1 + ( v(7)^2 / v(1) + v(8)^2 / v(2) + v(9)^2 / v(3) );
radii = ( sqrt( gam ./ v( 1:3 ) ) )';
evecs = eye( 3 );
end