-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdualformer.py
508 lines (451 loc) · 22.3 KB
/
dualformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import torch
import math
import numpy as np
import torch.nn as nn
from mmcv.runner import load_checkpoint
from mmaction.utils import get_root_logger
from ..builder import BACKBONES
from timm.models.layers import DropPath, trunc_normal_
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class LWAttention(nn.Module):
"""
LW-MSA: Local Window-based MSA
"""
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., local_size=(1, 1, 1)):
super(LWAttention, self).__init__()
self.dim = dim
self.num_heads = num_heads
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.local_size = local_size
def forward(self, x, D, H, W):
# x: shape (B, N, C), B is the batch size, N is the number of tokens, C is the channel number
# D, H, W: resolution of input feature map
B, N, C = x.shape
nd, nh, nw = D // self.local_size[0], H // self.local_size[1], W // self.local_size[2]
nl = nd * nh * nw # the number of local windows
x = x.reshape(B, nd, self.local_size[0], nh, self.local_size[1],
nw, self.local_size[2], C).permute(0, 1, 3, 5, 2, 4, 6, 7)
qkv = self.qkv(x).reshape(B, nl, -1, 3, self.num_heads,
C // self.num_heads).permute(3, 0, 1, 4, 2, 5)
# B, hw, n_head, prod(local_size), head_dim
q, k, v = qkv[0], qkv[1], qkv[2]
# B, hw, n_head, prod(local_size), prod(local_size)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
attn = (attn @ v).transpose(2, 3).reshape(
B, nd, nh, nw, self.local_size[0], self.local_size[1], self.local_size[2], C)
x = attn.permute(0, 1, 4, 2, 5, 3, 6, 7).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class GPAttention(nn.Module):
"""
GP-MSA: Global Pyramid-based MSA.
"""
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.,
fine_pysize=(8, 7, 7), coarse_pysize=(4, 4, 4), resolution=(16, 56, 56), stage=0):
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.resolution = resolution
self.stage = stage
self.fine_pysize = fine_pysize
self.fine_kernel_size = [rs // ts for rs,
ts in zip(resolution, fine_pysize)]
if np.prod(self.fine_kernel_size) > 1:
# Fine-grained level pyramid
self.sr = nn.Conv3d(
dim, dim, kernel_size=self.fine_kernel_size, stride=self.fine_kernel_size, groups=dim)
self.norm = nn.LayerNorm(dim)
# Coarse-grained level pyramid, only used in the first two stages
# We factorize the 3d conv in pyramid downsampling to 2D+1D conv (spatially and temporally separable)
self.coarse_pysize = coarse_pysize
self.coarse_kernel_size = [rs // ts \
for rs, ts in zip(resolution, coarse_pysize)]
lr_kernel1 = [1, 7, 7]
lr_kernel2 = [rs // ts \
for rs, ts in zip(self.coarse_kernel_size, lr_kernel1)]
if self.stage == 0:
# Deprecated implementation since using conv3d with kernel 1,14,14 and 4,1,1 is very slow
# self.lr = nn.Sequential(nn.Conv3d(dim, dim, kernel_size=(1, 14, 14), stride=(1, 14, 14), groups=dim),
# nn.BatchNorm3d(dim),
# nn.ReLU(inplace=True),
# nn.Conv3d(dim, dim, kernel_size=(4, 1, 1), stride=(4, 1, 1), groups=dim))
#
# Current implementation: in practice, using kernel 1,7,7 and 4,2,2 is ~30% faster than the above method
self.lr = nn.Sequential(nn.Conv3d(dim, dim, kernel_size=lr_kernel1, stride=lr_kernel1, groups=dim),
nn.BatchNorm3d(dim),
nn.ReLU(inplace=True),
nn.Conv3d(dim, dim, kernel_size=lr_kernel2, stride=lr_kernel2, groups=dim))
elif self.stage == 1:
self.lr = nn.Sequential(nn.Conv3d(dim, dim, kernel_size=lr_kernel1, stride=lr_kernel1, groups=dim),
nn.BatchNorm3d(dim),
nn.ReLU(inplace=True),
nn.Conv3d(dim, dim, kernel_size=lr_kernel2, stride=lr_kernel2, groups=dim))
def forward(self, x, D, H, W):
# x: shape (B, N, C), B is the batch size, N is the number of tokens, C is the channel number
# D, H, W: resolution of input feature map
B, N, C = x.shape
q = self.q(x).reshape(
B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
if np.prod(self.fine_kernel_size) > 1:
x_ = x.permute(0, 2, 1).reshape(B, C, D, H, W)
if self.stage < 2: # two levels of pyramids
x__ = self.lr(x_).reshape(B, C, -1).permute(0, 2, 1)
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
x_ = torch.cat([x_, x__], dim=1)
else: # only the fine-grained level
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
x_ = self.norm(x_)
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads,
C // self.num_heads).permute(2, 0, 3, 1, 4)
else:
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C //
self.num_heads).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class DualFormerBlock(nn.Module):
def __init__(self, dim, num_heads, resolution=(16, 7, 7), mlp_ratio=4., qkv_bias=False, qk_scale=None,
drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,
fine_pysize=(8, 7, 7), coarse_pysize=(4, 4, 4), local_size=(1, 1, 1), stage=0):
super().__init__()
if local_size == (1, 1, 1):
self.attn = GPAttention(dim, num_heads, qkv_bias,
qk_scale, attn_drop, drop,
fine_pysize, coarse_pysize, resolution, stage)
else:
self.attn = LWAttention(dim, num_heads, qkv_bias,
qk_scale, attn_drop, drop, local_size)
self.norm1 = norm_layer(dim)
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
act_layer=act_layer, drop=drop)
def forward(self, x, D, H, W):
b = x.shape[0]
x = x + self.drop_path(self.attn(self.norm1(x), D, H, W))
x = x + self.drop_path(self.mlp(self.norm2(x)))
# This reshape is for gradcam visualization
x = x.reshape(b, D, H, W, -1).permute(0, 4, 1, 2, 3)
return x
# Borrow from PVT and Twins-SVT
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, video_size=(32, 224, 224), patch_size=(2, 4, 4), in_chans=3, embed_dim=768):
super().__init__()
self.video_size = video_size
self.patch_size = patch_size
assert video_size[0] % patch_size[0] == 0 and video_size[1] % patch_size[1] == 0, \
f"video_size {video_size} should be divided by patch_size {patch_size}."
self.proj = nn.Conv3d(in_chans, embed_dim,
kernel_size=patch_size, stride=patch_size)
self.norm = nn.LayerNorm(embed_dim)
def forward(self, x):
# x: shape [B, C, D, H, W]
B, C, D, H, W = x.shape
x = self.proj(x).flatten(2).transpose(1, 2) # [B, N, C]
x = self.norm(x) # [B, N, C]
D, H, W = D // self.patch_size[0], H // self.patch_size[1], W // self.patch_size[2]
return x, (D, H, W)
class PosCNN(nn.Module):
# PEG from https://arxiv.org/abs/2102.10882
# We change the original conv to depth-wise conv for improving efficiency
def __init__(self, in_chans, embed_dim=768, s=1):
super(PosCNN, self).__init__()
self.proj = nn.Sequential(
nn.Conv3d(in_chans, embed_dim, 3, s, 1, bias=True, groups=embed_dim), )
self.s = s
def forward(self, x, D, H, W):
# x: shape (B, N, C), B is the batch size, N is the number of tokens, C is the channel number
B, N, C = x.shape
feat_token = x
cnn_feat = feat_token.transpose(1, 2).view(B, C, D, H, W)
if self.s == 1:
x = self.proj(cnn_feat) + cnn_feat
else:
x = self.proj(cnn_feat)
x = x.flatten(2).transpose(1, 2)
return x # [B, N, C]
# The code template is built on three transformers, including PVT, Twins and Swin.
# We really appreciate the code template provided by them.
# PVT: https://github.com/whai362/PVT.git
# Twins: https://github.com/Meituan-AutoML/Twins
# Swin Transformer: https://github.com/SwinTransformer/Video-Swin-Transformer
@BACKBONES.register_module()
class DualFormer(nn.Module):
def __init__(self,
pretrained=None, # pretrained model path.
pretrained2d=True, # True if the pretrained model is trained on image datasets.
video_size=(32, 224, 224), # Input video size, RGB not included.
patch_size=(2, 4, 4), # The 3D patch size.
in_chans=3, # Input channels. Default: RGB - 3.
num_classes=1000, # The number of classes for recognition.
embed_dims=[64, 128, 256, 512], # Hidden dimensionality in different stages.
num_heads=[1, 2, 4, 8], # The number of heads in different stages.
mlp_ratios=[4, 4, 4, 4], # The MLP expansion rate in different stages.
qkv_bias=False, # Whether adding bias to qkv.
qk_scale=None, # Whether scaling on qk.
drop_rate=0., # Dropout rate.
attn_drop_rate=0., # Dropout rate on attention values.
drop_path_rate=0., # Drop path rate.
norm_layer=nn.LayerNorm, # The norm layer.
depths=[2, 2, 10, 4], # The number of blocks in each stage.
local_sizes=[(8, 7, 7), (8, 7, 7), (8, 7, 7)], # local window size
fine_pysizes=[(8, 7, 7), (8, 7, 7), (8, 7, 7), (8, 7, 7)], # Fine-grained pyramid size
coarse_pysizes=[(4, 4, 4), (4, 4, 4), (4, 4, 4), (4, 4, 4)], # Coarse-grained pyramid size
temporal_pooling=[-1, 1, 1, 1]): # temporal pooling rate in pos_embed
super().__init__()
self.pretrained = pretrained
self.pretrained2d = pretrained2d
self.num_classes = num_classes
self.depths = depths
# patch_embed
self.patch_embeds = nn.ModuleList()
self.pos_drops = nn.ModuleList()
self.blocks = nn.ModuleList()
self.local_sizes = local_sizes
self.fine_pysizes = fine_pysizes
temporal_pooling[0] = patch_size[0]
self.temporal_pooling = temporal_pooling
temporal_pooling_rate = 1
vs = video_size
self.nvs = []
spatial_pooling = (4, 2, 2, 2)
for i in range(len(depths)):
vs = (vs[0] // temporal_pooling[i], vs[1] //
spatial_pooling[i], vs[2] // spatial_pooling[i])
self.nvs.append(vs)
for i in range(len(depths)):
if i == 0:
self.patch_embeds.append(PatchEmbed(
video_size, patch_size, in_chans, embed_dims[i]))
else:
new_video_size = (
video_size[0] // temporal_pooling_rate,
video_size[1] // patch_size[1] // 2 ** (i - 1),
video_size[2] // patch_size[2] // 2 ** (i - 1))
self.patch_embeds.append(PatchEmbed(new_video_size,
(self.temporal_pooling[i], 2, 2),
embed_dims[i - 1],
embed_dims[i]))
self.nvs.append(new_video_size)
self.pos_drops.append(nn.Dropout(p=drop_rate))
temporal_pooling_rate *= self.temporal_pooling[i]
dpr = [x.item() for x in torch.linspace(0, drop_path_rate,
sum(depths))] # stochastic depth decay rule
cur = 0
for k in range(len(depths)):
_block = nn.ModuleList([DualFormerBlock(dim=embed_dims[k],
num_heads=num_heads[k],
mlp_ratio=mlp_ratios[k],
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[cur + i],
norm_layer=norm_layer,
fine_pysize=fine_pysizes[k],
coarse_pysize=coarse_pysizes[k],
resolution=self.nvs[k],
local_size=(1, 1, 1) \
if i % 2 == 1 else local_sizes[k],
stage=k)
for i in range(depths[k])])
self.blocks.append(_block)
cur += depths[k]
self.norm = norm_layer(embed_dims[-1])
self.pos_block = nn.ModuleList(
[PosCNN(embed_dim, embed_dim) for embed_dim in embed_dims]
)
# self.init_weights(pretrained) # done by mmaction2, do not need this line
def reset_drop_path(self, drop_path_rate):
dpr = [x.item() for x in torch.linspace(
0, drop_path_rate, sum(self.depths))]
cur = 0
for k in range(len(self.depths)):
for i in range(self.depths[k]):
self.blocks[k][i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[k]
def init_weights(self, pretrained=None):
"""Initialize the weights in backbone.
Args:
pretrained (str, optional): Path to pre-trained weights.
Defaults to None.
"""
def _init_weights(m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1.0)
m.bias.data.zero_()
if pretrained:
self.pretrained = pretrained
if isinstance(self.pretrained, str):
self.apply(_init_weights)
logger = get_root_logger()
logger.info(f'load model from: {self.pretrained}')
if self.pretrained2d:
# Inflate 2D model into 3D model.
self.inflate_weights(logger)
else:
# Directly load 3D model.
load_checkpoint(self, self.pretrained,
strict=False, logger=logger)
elif self.pretrained is None:
self.apply(_init_weights)
else:
raise TypeError('pretrained must be a str or None')
def inflate_weights(self, logger=None):
"""
Inflate the 2d parameters to 3d.
"""
state_dict = torch.load(self.pretrained, map_location='cpu')
# Inflate patch embedding layer
patch_embed_weight_keys = [
k for k in state_dict.keys() if "patch_embeds" in k and "proj.weight" in k]
for i, k in enumerate(patch_embed_weight_keys):
if i >= len(self.depths):
continue
state_dict[k] = state_dict[k].unsqueeze(2).repeat(
1, 1, self.temporal_pooling[i], 1, 1) / self.temporal_pooling[i]
# Inflate the PEG
pos_block_keys = [k for k in state_dict.keys(
) if "pos_block" in k and "weight" in k]
for i, k in enumerate(pos_block_keys):
if i >= len(self.depths):
continue
state_dict[k] = state_dict[k].unsqueeze(2).repeat(
1, 1, 3, 1, 1) / 3
# Inflate the fine-grained level of each GP-MSA layer
sr_proj_keys = [k for k in state_dict.keys() if "sr.weight" in k]
for i, k in enumerate(sr_proj_keys):
if int(k[7]) >= len(self.depths):
continue
expansion = self.nvs[int(k[7])][0] // self.fine_pysizes[int(k[7])][0]
state_dict[k] = state_dict[k].unsqueeze(2).repeat(
1, 1, expansion, 1, 1) / expansion
# Inflate the coarse-grained level of each GP-MSA layer
lr_keys = [k for k in state_dict.keys() if "attn.lr.0.weight" in k]
for i, k in enumerate(lr_keys):
state_dict[k] = state_dict[k].unsqueeze(2)
lr_keys = [k for k in self.state_dict().keys()
if "attn.lr.3.weight" in k]
for i, k in enumerate(lr_keys):
temp = k.split('.')
if int(temp[1]) == 0: # stage 0
state_dict[k] = torch.ones_like(self.state_dict()[k]) / (4*2*2) # divided by kernel size
elif int(temp[1]) == 1: # stage 1
state_dict[k] = torch.ones_like(self.state_dict()[k]) / (4*1*1) # divided by kernel size
else:
print(temp) # should be rewritten when using coarse-grained levels at stage 2 or 3
lr_keys = [k for k in self.state_dict().keys()
if "attn.lr.3.bias" in k]
for i, k in enumerate(lr_keys):
state_dict[k] = torch.zeros_like(self.state_dict()[k]) # bias is initialized by 0
msg = self.load_state_dict(state_dict, strict=False)
logger.info(msg)
logger.info(f"=> loaded successfully '{self.pretrained}'")
del state_dict
torch.cuda.empty_cache()
def forward_features(self, x):
# x: [b, c, d, h, w]
B = x.shape[0]
for i in range(len(self.depths)):
x, (D, H, W) = self.patch_embeds[i](x) # [B, N, C], (D, H, W)
x = self.pos_drops[i](x)
for j, blk in enumerate(self.blocks[i]):
x = blk(x, D, H, W)
x = x.reshape(B, -1, D*H*W).permute(0, 2, 1) # for gradcam
if j == 0:
x = self.pos_block[i](x, D, H, W) # PEG here
x = x.reshape(B, D, H, W, -1).permute(0, 4, 1, 2, 3)
x = self.norm(x.permute(0, 2, 3, 4, 1)).permute(0, 4, 1, 2, 3)
return x # [B, C, D, H, W]
def forward(self, x):
x = self.forward_features(x)
return x
# For testing
# def DualFormer_Tiny(video_size):
# return DualFormer(
# pretrained='checkpoints/pretrained_2d/dualformer_tiny_new.pth',
# pretrained2d=True,
# video_size=video_size,
# patch_size=(2, 4, 4),
# in_chans=3,
# num_classes=1000,
# qk_scale=None,
# drop_rate=0.,
# attn_drop_rate=0.,
# drop_path_rate=0.1,
# embed_dims=[64, 128, 256, 512],
# num_heads=[2, 4, 8, 16],
# mlp_ratios=[4, 4, 4, 4],
# qkv_bias=True,
# norm_layer=partial(nn.LayerNorm, eps=1e-6),
# depths=[2, 2, 10, 4],
# local_sizes=[(8, 7, 7), (8, 7, 7), (8, 7, 7), (8, 7, 7)],
# fine_pysizes=[(8, 7, 7), (8, 7, 7), (8, 7, 7), (16, 7, 7)],
# temporal_pooling=[-1, 1, 1, 1],
# )
# if __name__ == '__main__':
# x = torch.rand(1, 3, 32, 224, 224).fill_(0)
# model = DualFormer_Tiny(x.shape[2:])
# y = model(x)
# from fvcore.nn import FlopCountAnalysis, parameter_count_table
# flops = FlopCountAnalysis(model, x)
# print('flops: {:.3f} G'.format(flops.total() / 1e9))
# counter = flops.by_module().most_common()
# # for c in counter:
# # print('{} FLOPs: {} G'.format(c[0], c[1] / 1e9))
# print('Params: {}'.format(parameter_count_table(model)))
# print(y.shape)