-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_span_scorer.py
163 lines (131 loc) · 7 KB
/
train_span_scorer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import argparse
import pyhocon
from sklearn.utils import shuffle
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModel
from evaluator import Evaluation
from model_utils import *
from models import SpanEmbedder, SpanScorer
from utils import *
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='configs/config_span_scorer.json')
args = parser.parse_args()
def train_topic_mention_extractor(span_repr, span_scorer, start_end, continuous_embeddings,
width, labels, batch_size, criterion, optimizer):
accumulate_loss = 0
idx = list(range(len(width)))
for i in range(0, len(width), batch_size):
indices = idx[i:i + batch_size]
batch_start_end = start_end[indices]
batch_width = width[indices]
batch_continuous_embeddings = [continuous_embeddings[k] for k in indices]
batch_labels = labels[i:i + batch_size]
optimizer.zero_grad()
span = span_repr(batch_start_end, batch_continuous_embeddings, batch_width)
scores = span_scorer(span)
loss = criterion(scores.squeeze(1), batch_labels)
loss.backward()
accumulate_loss += loss.item()
optimizer.step()
return accumulate_loss
def get_span_data_from_topic(config, bert_model, data, topic_num):
docs_embeddings, docs_length = pad_and_read_bert(data.topics_bert_tokens[topic_num], bert_model)
span_meta_data, span_embeddings, num_of_tokens = get_all_candidate_from_topic(
config, data, topic_num, docs_embeddings, docs_length)
doc_id, sentence_id, start, end = span_meta_data
labels = data.get_candidate_labels(doc_id, start, end)
mention_labels = torch.zeros(labels.shape, device=device)
mention_labels[labels.nonzero().squeeze(1)] = 1
return span_meta_data, span_embeddings, mention_labels, num_of_tokens
if __name__ == '__main__':
config = pyhocon.ConfigFactory.parse_file(args.config)
fix_seed(config)
logger = create_logger(config, create_file=True)
logger.info(pyhocon.HOCONConverter.convert(config, "hocon"))
create_folder(config['model_path'])
if torch.cuda.is_available():
device = 'cuda:{}'.format(config['gpu_num'])
torch.cuda.set_device(config['gpu_num'])
else:
device = 'cpu'
# read and tokenize data
bert_tokenizer = AutoTokenizer.from_pretrained(config['bert_tokenizer'], add_special_tokens=True)
training_set = create_corpus(config, bert_tokenizer, 'train')
dev_set = create_corpus(config, bert_tokenizer, 'dev')
# Mention extractor configuration
logger.info('Init models')
bert_model = AutoModel.from_pretrained(config['bert_model']).to(device)
config['bert_hidden_size'] = bert_model.config.hidden_size
span_repr = SpanEmbedder(config, device).to(device)
span_scorer = SpanScorer(config).to(device)
optimizer = get_optimizer(config, [span_scorer, span_repr])
criterion = get_loss_function(config)
logger.info('Number of parameters of mention extractor: {}'.format(
count_parameters(span_repr) + count_parameters(span_scorer)))
span_repr_path = os.path.join(config['model_path'],
'{}_span_repr_{}'.format(config['mention_type'], config['exp_num']))
span_scorer_path = os.path.join(config['model_path'],
'{}_span_scorer_{}'.format(config['mention_type'], config['exp_num']))
logger.info('Number of topics: {}'.format(len(training_set.topic_list)))
max_dev = (0, None)
for epoch in range(config['epochs']):
logger.info('Epoch: {}'.format(epoch))
span_repr.train()
span_scorer.train()
list_of_topics = shuffle(list(range(len(training_set.topic_list))))
accumulate_loss = 0
for topic_num in tqdm(list_of_topics):
topic = training_set.topic_list[topic_num]
span_meta_data, span_embeddings, mention_labels, num_of_tokens = \
get_span_data_from_topic(config, bert_model, training_set, topic_num)
topic_start_end_embeddings, topic_continuous_embeddings, topic_width = span_embeddings
epoch_loss = train_topic_mention_extractor(span_repr, span_scorer, topic_start_end_embeddings,
topic_continuous_embeddings, topic_width.to(device),
mention_labels, config['batch_size'], criterion, optimizer)
accumulate_loss += epoch_loss
torch.cuda.empty_cache()
logger.info('Accumulate loss: {}'.format(accumulate_loss))
logger.info('Evaluate on the dev set')
span_repr.eval()
span_scorer.eval()
all_scores, all_labels = [], []
dev_num_of_tokens = 0
for topic_num, topic in enumerate(tqdm(dev_set.topic_list)):
span_meta_data, span_embeddings, mention_labels, num_of_tokens = \
get_span_data_from_topic(config, bert_model, dev_set, topic_num)
all_labels.extend(mention_labels)
dev_num_of_tokens += num_of_tokens
topic_start_end_embeddings, topic_continuous_embeddings, topic_width = span_embeddings
with torch.no_grad():
span_emb = span_repr(topic_start_end_embeddings, topic_continuous_embeddings,
topic_width.to(device))
span_score = span_scorer(span_emb)
all_scores.extend(span_score.squeeze(1))
all_scores = torch.stack(all_scores)
all_labels = torch.stack(all_labels)
strict_preds = (all_scores > 0).to(torch.int)
eval = Evaluation(strict_preds, all_labels)
logger.info(
'Recall: {}, Precision: {}, F1: {}'.format(eval.get_recall(),
eval.get_precision(), eval.get_f1()))
if config.exact:
if eval.get_f1() > max_dev[0]:
max_dev = (eval.get_f1(), epoch)
torch.save(span_repr.state_dict(), span_repr_path)
torch.save(span_scorer.state_dict(), span_scorer_path)
else:
eval_range = [0.2, 0.25, 0.3] if config['mention_type'] == 'events' else [0.2, 0.25, 0.3, 0.4, 0.45]
for k in eval_range:
s, i = torch.topk(all_scores, int(k * dev_num_of_tokens), sorted=False)
rank_preds = torch.zeros(len(all_scores), device=device)
rank_preds[i] = 1
eval = Evaluation(rank_preds, all_labels)
recall = eval.get_recall()
if recall > max_dev[0]:
max_dev = (recall, epoch)
torch.save(span_repr.state_dict(), span_repr_path)
torch.save(span_scorer.state_dict(), span_scorer_path)
logger.info(
'K = {}, Recall: {}, Precision: {}, F1: {}'.format(k, eval.get_recall(), eval.get_precision(),
eval.get_f1()))
logger.info('Best Performance: {}'.format(max_dev))