https://github.com/aditya10/VLC-BERT.git
cd VL-BERT
# Option 1: use venv
virtualenv -p python3 --no-download vl-bert
source vl-bert/bin/activate
# Option 2: use conda
conda create -n vl-bert python=3.6 pip
conda activate vl-bert
# Install PyTorch, torchvision (this is for CUDA 11.X, check nvidia-smi)
# pip install torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio==0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
# CUDA 11.1
pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/torch_stable.html
# Install requirements
pip install Cython
pip install -r requirements.txt
# Optional: Install Nvidia Apex (I skipped this because VQA config uses FP32)
git clone https://github.com/jackroos/apex
cd ./apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
# Initialize
./scripts/init.sh # if init.sh is not working, it means that ur CUDA versions did not match
# Make dir for checkpoints
mkdir ckpts
Follow PREPARE_DATA.md to download relevant data.
Download VLC-BERT data from Google Drive. This folder contains:
- pre-built commonsense expansions
- VQA Pre-trained model checkpoint
- Answer vocabularies for the OK-VQA and A-OKVQA
Please save the files to the appropriate locations.
Before you begin, it is recommended that you setup SBERT in a new conda environment.
# Conda setup
conda create -n sbert-env python=3.8
conda activate sbert-env
# Install sbert, see https://www.sbert.net
pip install -U sentence-transformers
You must build SBERT annotations for the A-OKVQA and OK-VQA datasets by running this python script: common/utils/build_sbert_emb.py
(see here). Please change the settings at the top of the script to build annotations for the appropriate dataset.
We use weak supervision to train the commonsense attention weights. Therefore, we need ground truth attention weight annotations first, which we build using the following scripts.
To build attention annotations for OK-VQA, follow: common/utils/build_attn_annot_okvqa.py
(see here).
To build attention annotatiosn for A-OKVQA, follow: common/utils/build_attn_annot_aokvqa.py
(see here).