diff --git a/build/pkgs/maxima/package-version.txt b/build/pkgs/maxima/package-version.txt index b1e9710a45b..41b4e210ed2 100644 --- a/build/pkgs/maxima/package-version.txt +++ b/build/pkgs/maxima/package-version.txt @@ -1 +1 @@ -5.38.1 +5.38.1.p1 diff --git a/src/doc/de/tutorial/tour_algebra.rst b/src/doc/de/tutorial/tour_algebra.rst index bd788d9d7e7..5864cbff79e 100644 --- a/src/doc/de/tutorial/tour_algebra.rst +++ b/src/doc/de/tutorial/tour_algebra.rst @@ -212,7 +212,7 @@ Lösung: Berechnen Sie die Laplace-Transformierte der ersten Gleichung sage: de1 = maxima("2*diff(x(t),t, 2) + 6*x(t) - 2*y(t)") sage: lde1 = de1.laplace("t","s"); lde1 - 2*(-%at('diff(x(t),t,1),t=0)+s^2*'laplace(x(t),t,s)-x(0)*s)-2*'laplace(y(t),t,s)+6*'laplace(x(t),t,s) + 2*((-%at('diff(x(t),t,1),t=0))+s^2*'laplace(x(t),t,s)-x(0)*s)-2*'laplace(y(t),t,s)+6*'laplace(x(t),t,s) Das ist schwierig zu lesen, es besagt jedoch, dass @@ -228,7 +228,7 @@ Laplace-Transformierte der zweiten Gleichung: sage: de2 = maxima("diff(y(t),t, 2) + 2*y(t) - 2*x(t)") sage: lde2 = de2.laplace("t","s"); lde2 - -%at('diff(y(t),t,1),t=0)+s^2*'laplace(y(t),t,s)+2*'laplace(y(t),t,s)-2*'laplace(x(t),t,s)-y(0)*s + (-%at('diff(y(t),t,1),t=0))+s^2*'laplace(y(t),t,s)+2*'laplace(y(t),t,s)-2*'laplace(x(t),t,s)-y(0)*s Dies besagt diff --git a/src/doc/en/constructions/linear_algebra.rst b/src/doc/en/constructions/linear_algebra.rst index 58747c663f1..e101cab2c01 100644 --- a/src/doc/en/constructions/linear_algebra.rst +++ b/src/doc/en/constructions/linear_algebra.rst @@ -417,12 +417,7 @@ Using maxima, you can easily solve linear equations: (a, b, c) sage: eqn = [a+b*c==1, b-a*c==0, a+b==5] sage: s = solve(eqn, a,b,c); s - [[a == (25*I*sqrt(79) + 25)/(6*I*sqrt(79) - 34), - b == (5*I*sqrt(79) + 5)/(I*sqrt(79) + 11), - c == 1/10*I*sqrt(79) + 1/10], - [a == (25*I*sqrt(79) - 25)/(6*I*sqrt(79) + 34), - b == (5*I*sqrt(79) - 5)/(I*sqrt(79) - 11), - c == -1/10*I*sqrt(79) + 1/10]] + [[a == 50/(I*sqrt(79) + 11), b == (5*I*sqrt(79) + 5)/(I*sqrt(79) + 11), c == 1/10*I*sqrt(79) + 1/10], [a == -50/(I*sqrt(79) - 11), b == (5*I*sqrt(79) - 5)/(I*sqrt(79) - 11), c == -1/10*I*sqrt(79) + 1/10]] You can even nicely typeset the solution in LaTeX: diff --git a/src/doc/en/tutorial/tour_algebra.rst b/src/doc/en/tutorial/tour_algebra.rst index a6b88e8301e..fa93dae888c 100644 --- a/src/doc/en/tutorial/tour_algebra.rst +++ b/src/doc/en/tutorial/tour_algebra.rst @@ -219,7 +219,7 @@ the notation :math:`x=x_{1}`, :math:`y=x_{2}`): sage: de1 = maxima("2*diff(x(t),t, 2) + 6*x(t) - 2*y(t)") sage: lde1 = de1.laplace("t","s"); lde1 - 2*(-%at('diff(x(t),t,1),t=0)+s^2*'laplace(x(t),t,s)-x(0)*s)-2*'laplace(y(t),t,s)+6*'laplace(x(t),t,s) + 2*((-%at('diff(x(t),t,1),t=0))+s^2*'laplace(x(t),t,s)-x(0)*s)-2*'laplace(y(t),t,s)+6*'laplace(x(t),t,s) This is hard to read, but it says that @@ -234,7 +234,7 @@ Laplace transform of the second equation: sage: de2 = maxima("diff(y(t),t, 2) + 2*y(t) - 2*x(t)") sage: lde2 = de2.laplace("t","s"); lde2 - -%at('diff(y(t),t,1),t=0)+s^2*'laplace(y(t),t,s)+2*'laplace(y(t),t,s)-2*'laplace(x(t),t,s)-y(0)*s + (-%at('diff(y(t),t,1),t=0))+s^2*'laplace(y(t),t,s)+2*'laplace(y(t),t,s)-2*'laplace(x(t),t,s)-y(0)*s This says diff --git a/src/doc/es/tutorial/tour_algebra.rst b/src/doc/es/tutorial/tour_algebra.rst index 8f255eba1b1..e321d15f050 100644 --- a/src/doc/es/tutorial/tour_algebra.rst +++ b/src/doc/es/tutorial/tour_algebra.rst @@ -198,7 +198,7 @@ la notación :math:`x=x_{1}`, :math:`y=x_{2}`): sage: de1 = maxima("2*diff(x(t),t, 2) + 6*x(t) - 2*y(t)") sage: lde1 = de1.laplace("t","s"); lde1 - 2*(-%at('diff(x(t),t,1),t=0)+s^2*'laplace(x(t),t,s)-x(0)*s)-2*'laplace(y(t),t,s)+6*'laplace(x(t),t,s) + 2*((-%at('diff(x(t),t,1),t=0))+s^2*'laplace(x(t),t,s)-x(0)*s)-2*'laplace(y(t),t,s)+6*'laplace(x(t),t,s) El resultado puede ser difícil de leer, pero significa que @@ -213,7 +213,7 @@ Toma la transformada de Laplace de la segunda ecuación: sage: de2 = maxima("diff(y(t),t, 2) + 2*y(t) - 2*x(t)") sage: lde2 = de2.laplace("t","s"); lde2 - -%at('diff(y(t),t,1),t=0)+s^2*'laplace(y(t),t,s)+2*'laplace(y(t),t,s)-2*'laplace(x(t),t,s)-y(0)*s + (-%at('diff(y(t),t,1),t=0))+s^2*'laplace(y(t),t,s)+2*'laplace(y(t),t,s)-2*'laplace(x(t),t,s)-y(0)*s Esto dice diff --git a/src/doc/fr/tutorial/tour_algebra.rst b/src/doc/fr/tutorial/tour_algebra.rst index e944975ed89..033af144450 100644 --- a/src/doc/fr/tutorial/tour_algebra.rst +++ b/src/doc/fr/tutorial/tour_algebra.rst @@ -183,7 +183,7 @@ Solution : Considérons la transformée de Laplace de la première équation sage: de1 = maxima("2*diff(x(t),t, 2) + 6*x(t) - 2*y(t)") sage: lde1 = de1.laplace("t","s"); lde1 - 2*(-%at('diff(x(t),t,1),t=0)+s^2*'laplace(x(t),t,s)-x(0)*s)-2*'laplace(y(t),t,s)+6*'laplace(x(t),t,s) + 2*((-%at('diff(x(t),t,1),t=0))+s^2*'laplace(x(t),t,s)-x(0)*s)-2*'laplace(y(t),t,s)+6*'laplace(x(t),t,s) La réponse n'est pas très lisible, mais elle signifie que @@ -198,7 +198,7 @@ la seconde équation : sage: de2 = maxima("diff(y(t),t, 2) + 2*y(t) - 2*x(t)") sage: lde2 = de2.laplace("t","s"); lde2 - -%at('diff(y(t),t,1),t=0)+s^2*'laplace(y(t),t,s)+2*'laplace(y(t),t,s)-2*'laplace(x(t),t,s)-y(0)*s + (-%at('diff(y(t),t,1),t=0))+s^2*'laplace(y(t),t,s)+2*'laplace(y(t),t,s)-2*'laplace(x(t),t,s)-y(0)*s Ceci signifie diff --git a/src/doc/ja/tutorial/tour_algebra.rst b/src/doc/ja/tutorial/tour_algebra.rst index a82d16f31fa..04ac41e33b8 100644 --- a/src/doc/ja/tutorial/tour_algebra.rst +++ b/src/doc/ja/tutorial/tour_algebra.rst @@ -216,8 +216,7 @@ Sageを使って常微分方程式を研究することもできる. :math:`x' sage: de1 = maxima("2*diff(x(t),t, 2) + 6*x(t) - 2*y(t)") sage: lde1 = de1.laplace("t","s"); lde1 - 2*(-%at('diff(x(t),t,1),t=0)+s^2*'laplace(x(t),t,s)-x(0)*s)-2*'laplace(y(t),t,s)+6*'laplace(x(t),t,s) - + 2*((-%at('diff(x(t),t,1),t=0))+s^2*'laplace(x(t),t,s)-x(0)*s)-2*'laplace(y(t),t,s)+6*'laplace(x(t),t,s) この出力は読みにくいけれども,意味しているのは @@ -231,7 +230,7 @@ Sageを使って常微分方程式を研究することもできる. :math:`x' sage: de2 = maxima("diff(y(t),t, 2) + 2*y(t) - 2*x(t)") sage: lde2 = de2.laplace("t","s"); lde2 - -%at('diff(y(t),t,1),t=0)+s^2*'laplace(y(t),t,s)+2*'laplace(y(t),t,s)-2*'laplace(x(t),t,s)-y(0)*s + (-%at('diff(y(t),t,1),t=0))+s^2*'laplace(y(t),t,s)+2*'laplace(y(t),t,s)-2*'laplace(x(t),t,s)-y(0)*s 意味するところは diff --git a/src/doc/pt/tutorial/tour_algebra.rst b/src/doc/pt/tutorial/tour_algebra.rst index f456b0f70e6..574661da790 100644 --- a/src/doc/pt/tutorial/tour_algebra.rst +++ b/src/doc/pt/tutorial/tour_algebra.rst @@ -207,7 +207,7 @@ equação (usando a notação :math:`x=x_{1}`, :math:`y=x_{2}`): sage: de1 = maxima("2*diff(x(t),t, 2) + 6*x(t) - 2*y(t)") sage: lde1 = de1.laplace("t","s"); lde1 - 2*(-%at('diff(x(t),t,1),t=0)+s^2*'laplace(x(t),t,s)-x(0)*s)-2*'laplace(y(t),t,s)+6*'laplace(x(t),t,s) + 2*((-%at('diff(x(t),t,1),t=0))+s^2*'laplace(x(t),t,s)-x(0)*s)-2*'laplace(y(t),t,s)+6*'laplace(x(t),t,s) O resultado é um pouco difícil de ler, mas diz que @@ -222,7 +222,7 @@ calcule a transformada de Laplace da segunda equação: sage: de2 = maxima("diff(y(t),t, 2) + 2*y(t) - 2*x(t)") sage: lde2 = de2.laplace("t","s"); lde2 - -%at('diff(y(t),t,1),t=0)+s^2*'laplace(y(t),t,s)+2*'laplace(y(t),t,s)-2*'laplace(x(t),t,s)-y(0)*s + (-%at('diff(y(t),t,1),t=0))+s^2*'laplace(y(t),t,s)+2*'laplace(y(t),t,s)-2*'laplace(x(t),t,s)-y(0)*s O resultado significa que diff --git a/src/doc/ru/tutorial/tour_algebra.rst b/src/doc/ru/tutorial/tour_algebra.rst index fb2cac89968..30285e87113 100644 --- a/src/doc/ru/tutorial/tour_algebra.rst +++ b/src/doc/ru/tutorial/tour_algebra.rst @@ -200,7 +200,7 @@ Sage может использоваться для решения диффер sage: de1 = maxima("2*diff(x(t),t, 2) + 6*x(t) - 2*y(t)") sage: lde1 = de1.laplace("t","s"); lde1 - 2*(-%at('diff(x(t),t,1),t=0)+s^2*'laplace(x(t),t,s)-x(0)*s)-2*'laplace(y(t),t,s)+6*'laplace(x(t),t,s) + 2*((-%at('diff(x(t),t,1),t=0))+s^2*'laplace(x(t),t,s)-x(0)*s)-2*'laplace(y(t),t,s)+6*'laplace(x(t),t,s) Данный результат тяжело читаем, однако должен быть понят как @@ -212,7 +212,7 @@ Sage может использоваться для решения диффер sage: de2 = maxima("diff(y(t),t, 2) + 2*y(t) - 2*x(t)") sage: lde2 = de2.laplace("t","s"); lde2 - -%at('diff(y(t),t,1),t=0)+s^2*'laplace(y(t),t,s)+2*'laplace(y(t),t,s)-2*'laplace(x(t),t,s)-y(0)*s + (-%at('diff(y(t),t,1),t=0))+s^2*'laplace(y(t),t,s)+2*'laplace(y(t),t,s)-2*'laplace(x(t),t,s)-y(0)*s Результат: diff --git a/src/sage/calculus/desolvers.py b/src/sage/calculus/desolvers.py index e8e3277824a..1957bd6e75f 100644 --- a/src/sage/calculus/desolvers.py +++ b/src/sage/calculus/desolvers.py @@ -281,7 +281,7 @@ def desolve(de, dvar, ics=None, ivar=None, show_method=False, contrib_ode=False) Some more types of ODE's:: sage: desolve(x*diff(y,x)^2-(1+x*y)*diff(y,x)+y==0,y,contrib_ode=True,show_method=True) - [[y(x) == _C*e^x, y(x) == _C + log(x)], 'factor'] + [[y(x) == _C + log(x), y(x) == _C*e^x], 'factor'] :: diff --git a/src/sage/interfaces/maxima_abstract.py b/src/sage/interfaces/maxima_abstract.py index 1392573fbad..e22f29c5d34 100644 --- a/src/sage/interfaces/maxima_abstract.py +++ b/src/sage/interfaces/maxima_abstract.py @@ -426,7 +426,7 @@ def version(self): EXAMPLES:: sage: maxima.version() - '5.36.0.1' + '5.38.1' """ return maxima_version() @@ -2213,7 +2213,7 @@ def maxima_version(): sage: from sage.interfaces.maxima_abstract import maxima_version sage: maxima_version() - '5.36.0.1' + '5.38.1' """ return os.popen('maxima --version').read().split()[-1] diff --git a/src/sage/interfaces/maxima_lib.py b/src/sage/interfaces/maxima_lib.py index ed654b4655a..41ae822e4ff 100644 --- a/src/sage/interfaces/maxima_lib.py +++ b/src/sage/interfaces/maxima_lib.py @@ -1087,7 +1087,7 @@ def to_poly_solve(self,vars,options=""): sage: from sage.interfaces.maxima_lib import maxima_lib sage: sol = maxima_lib(sin(x) == 0).to_poly_solve(x) sage: sol.sage() - [[x == pi*z54]] + [[x == pi*z...]] """ if options.find("use_grobner=true") != -1: cmd=EclObject([[max_to_poly_solve], self.ecl(), sr_to_max(vars), diff --git a/src/sage/matrix/matrix1.pyx b/src/sage/matrix/matrix1.pyx index f818644bf9f..86e13aace79 100644 --- a/src/sage/matrix/matrix1.pyx +++ b/src/sage/matrix/matrix1.pyx @@ -203,7 +203,7 @@ cdef class Matrix(matrix0.Matrix): sage: a = maxima(m); a matrix([0,1,2],[3,4,5],[6,7,8]) sage: a.charpoly('x').expand() - -x^3+12*x^2+18*x + (-x^3)+12*x^2+18*x sage: m.charpoly() x^3 - 12*x^2 - 18*x """ diff --git a/src/sage/symbolic/constants.py b/src/sage/symbolic/constants.py index 58ed87f289e..4b664926c8c 100644 --- a/src/sage/symbolic/constants.py +++ b/src/sage/symbolic/constants.py @@ -59,7 +59,7 @@ sage: a = pi + e*4/5; a pi + 4/5*e sage: maxima(a) - %pi+4*%e/5 + %pi+(4*%e)/5 sage: RealField(15)(a) # 15 *bits* of precision 5.316 sage: gp(a) diff --git a/src/sage/symbolic/expression.pyx b/src/sage/symbolic/expression.pyx index 5a46186d69e..044589f410f 100644 --- a/src/sage/symbolic/expression.pyx +++ b/src/sage/symbolic/expression.pyx @@ -11537,14 +11537,14 @@ cdef class Expression(CommutativeRingElement): sage: (n,k,j)=var('n,k,j') sage: sum(binomial(n,k)*binomial(k-1,j)*(-1)**(k-1-j),k,j+1,n) - -sum((-1)^(-j + k)*binomial(k - 1, j)*binomial(n, k), k, j + 1, n) + -(-1)^(-j)*sum((-1)^k*binomial(k - 1, j)*binomial(n, k), k, j + 1, n) sage: assume(j>-1) sage: sum(binomial(n,k)*binomial(k-1,j)*(-1)**(k-1-j),k,j+1,n) 1 sage: forget() sage: assume(n>=j) sage: sum(binomial(n,k)*binomial(k-1,j)*(-1)**(k-1-j),k,j+1,n) - -sum((-1)^(-j + k)*binomial(k - 1, j)*binomial(n, k), k, j + 1, n) + -(-1)^(-j)*sum((-1)^k*binomial(k - 1, j)*binomial(n, k), k, j + 1, n) sage: forget() sage: assume(j==-1) sage: sum(binomial(n,k)*binomial(k-1,j)*(-1)**(k-1-j),k,j+1,n) @@ -11552,7 +11552,7 @@ cdef class Expression(CommutativeRingElement): sage: forget() sage: assume(j<-1) sage: sum(binomial(n,k)*binomial(k-1,j)*(-1)**(k-1-j),k,j+1,n) - -sum((-1)^(-j + k)*binomial(k - 1, j)*binomial(n, k), k, j + 1, n) + -(-1)^(-j)*sum((-1)^k*binomial(k - 1, j)*binomial(n, k), k, j + 1, n) sage: forget() Check that :trac:`16176` is fixed:: diff --git a/src/sage/tests/french_book/recequadiff.py b/src/sage/tests/french_book/recequadiff.py index 687df8b0756..5ac6bfdfadf 100644 --- a/src/sage/tests/french_book/recequadiff.py +++ b/src/sage/tests/french_book/recequadiff.py @@ -195,14 +195,14 @@ Sage example in ./recequadiff.tex, line 575:: sage: Sol(x) = solve(sol, y)[0]; Sol(x) - log(y(x)) == (_C + x)*a + log(b*y(x) - a) + log(y(x)) == _C*a + a*x + log(b*y(x) - a) Sage example in ./recequadiff.tex, line 582:: sage: Sol(x) = Sol(x).lhs()-Sol(x).rhs(); Sol(x) - -(_C + x)*a - log(b*y(x) - a) + log(y(x)) + -_C*a - a*x - log(b*y(x) - a) + log(y(x)) sage: Sol = Sol.simplify_log(); Sol(x) - -(_C + x)*a + log(y(x)/(b*y(x) - a)) + -_C*a - a*x + log(y(x)/(b*y(x) - a)) sage: solve(Sol, y)[0].simplify() y(x) == a*e^(_C*a + a*x)/(b*e^(_C*a + a*x) - 1)