From 6affde3907871d39e4fb01feccc534a77b8ac8b2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fr=C3=A9d=C3=A9ric=20Chapoton?= Date: Fri, 10 Mar 2023 14:20:10 +0100 Subject: [PATCH] shorter doctests in finite monoids --- src/sage/categories/finite_monoids.py | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/src/sage/categories/finite_monoids.py b/src/sage/categories/finite_monoids.py index a300339ae22..fdf1db47a71 100644 --- a/src/sage/categories/finite_monoids.py +++ b/src/sage/categories/finite_monoids.py @@ -144,20 +144,18 @@ def nerve(self): sage: len(BSigma3.n_cells(3)) 125 - sage: BC3.homology(range(5), base_ring=GF(3)) + sage: BC3.homology(range(4), base_ring=GF(3)) {0: Vector space of dimension 0 over Finite Field of size 3, 1: Vector space of dimension 1 over Finite Field of size 3, 2: Vector space of dimension 1 over Finite Field of size 3, - 3: Vector space of dimension 1 over Finite Field of size 3, - 4: Vector space of dimension 1 over Finite Field of size 3} + 3: Vector space of dimension 1 over Finite Field of size 3} sage: BC5 = groups.permutation.Cyclic(5).nerve() - sage: BC5.homology(range(5), base_ring=GF(5)) + sage: BC5.homology(range(4), base_ring=GF(5)) {0: Vector space of dimension 0 over Finite Field of size 5, 1: Vector space of dimension 1 over Finite Field of size 5, 2: Vector space of dimension 1 over Finite Field of size 5, - 3: Vector space of dimension 1 over Finite Field of size 5, - 4: Vector space of dimension 1 over Finite Field of size 5} + 3: Vector space of dimension 1 over Finite Field of size 5} """ from sage.topology.simplicial_set_examples import Nerve return Nerve(self) @@ -209,7 +207,7 @@ def rhodes_radical_congruence(self, base_ring=None): res = [] for m in self: for n in self: - if (m == n) or ((n, m) in res): + if m == n or (n, m) in res: continue try: kSrad.retract(kS(m) - kS(n)) @@ -222,7 +220,7 @@ def rhodes_radical_congruence(self, base_ring=None): class ElementMethods: def pseudo_order(self): r""" - Returns the pair `[k, j]` with `k` minimal and `0\leq j