diff --git a/src/sage/matrix/matrix2.pyx b/src/sage/matrix/matrix2.pyx index 488098f25e8..0c2aa9eda4b 100644 --- a/src/sage/matrix/matrix2.pyx +++ b/src/sage/matrix/matrix2.pyx @@ -3182,13 +3182,13 @@ cdef class Matrix(Matrix1): """ - # Validate assertions + # Validate assertions if not self.is_square(): raise ValueError("self must be a square matrix") from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing - # Extract parameters + # Extract parameters cdef Matrix M = self n = M._ncols R = M._base_ring @@ -3196,7 +3196,7 @@ cdef class Matrix(Matrix1): # Corner cases # N.B. We already tested for M to be square, hence we do not need to - # test for 0 x n or m x 0 matrices. + # test for 0 x n or m x 0 matrices. if n == 0: return S.one() @@ -18662,8 +18662,8 @@ def _matrix_power_symbolic(A, n): mk = mk.radical_expression() - # When the variable "mk" is equal to zero, it is advisable to employ the Kronecker delta function - # instead of utilizing the numerical value zero. This choice is made to encompass scenarios where + # When the variable "mk" is equal to zero, it is advisable to employ the Kronecker delta function + # instead of utilizing the numerical value zero. This choice is made to encompass scenarios where # the power of zero is also equal to zero. if mk: vk = [(binomial(n, i) * mk._pow_(n-i)).simplify_full()