diff --git a/build/pkgs/pysingular/checksums.ini b/build/pkgs/pysingular/checksums.ini index da367b69484..eedd093dcdd 100644 --- a/build/pkgs/pysingular/checksums.ini +++ b/build/pkgs/pysingular/checksums.ini @@ -1,4 +1,5 @@ tarball=PySingular-VERSION.tar.gz -sha1=760ccdd20c869c5a874100df02e9031fc0c6157a -md5=f2698b633915199fc27c9772e4688754 -cksum=1655432975 +sha1=c8d4bbe4552490aac37afe6d87a2cd3a7b445a7e +md5=84a8639d33a5b03637a7ca3ea322b085 +cksum=822399760 +upstream_url=https://pypi.io/packages/source/p/pysingular/PySingular-VERSION.tar.gz diff --git a/build/pkgs/pysingular/package-version.txt b/build/pkgs/pysingular/package-version.txt index b0bb878545d..c81aa44afbf 100644 --- a/build/pkgs/pysingular/package-version.txt +++ b/build/pkgs/pysingular/package-version.txt @@ -1 +1 @@ -0.9.5 +0.9.7 diff --git a/build/pkgs/singular/SPKG.rst b/build/pkgs/singular/SPKG.rst index f71f98d49b4..b754451aac7 100644 --- a/build/pkgs/singular/SPKG.rst +++ b/build/pkgs/singular/SPKG.rst @@ -35,7 +35,8 @@ Dependencies Special Update/Build Instructions --------------------------------- -See spkg-src to create the source tarball. +The current upstream tarball is made from the branch at +https://github.com/mkoeppe/Singular/tree/Release-4-2-0-p1%2Bsage Other notes: diff --git a/build/pkgs/singular/checksums.ini b/build/pkgs/singular/checksums.ini index 55751d34293..b9f442b8f4a 100644 --- a/build/pkgs/singular/checksums.ini +++ b/build/pkgs/singular/checksums.ini @@ -1,4 +1,5 @@ tarball=singular-VERSION.tar.gz -sha1=5c6b6c3d2b5ebaca164967eec67e59ebb4e6142f -md5=cb50d64ab1b2b49a0c3f519e5c87639e -cksum=4294037094 +sha1=eeb0b250e481e710daea45c2f78ccff9b84e6f15 +md5=88c4500c2d6ac3eb9b112111fc9404ad +cksum=3131197750 +upstream_url=https://trac.sagemath.org/raw-attachment/ticket/25993/singular-VERSION.tar.gz diff --git a/build/pkgs/singular/package-version.txt b/build/pkgs/singular/package-version.txt index dc3219d462a..f3faa815f96 100644 --- a/build/pkgs/singular/package-version.txt +++ b/build/pkgs/singular/package-version.txt @@ -1 +1 @@ -4.1.1p2.p0 +4.2.0p1+2021-03-13+sage diff --git a/build/pkgs/singular/patches/configure-no-ntl-header-check.patch b/build/pkgs/singular/patches/configure-no-ntl-header-check.patch index 3109e57f4b2..b4ec33fc054 100644 --- a/build/pkgs/singular/patches/configure-no-ntl-header-check.patch +++ b/build/pkgs/singular/patches/configure-no-ntl-header-check.patch @@ -49,30 +49,4 @@ index db6423d..c0a2260 100755 +## fi done - if test "x$ntl_found" = "xyes" ; then -diff --git a/libpolys/configure b/libpolys/configure -index 41b0928..9a4b9f5 100755 ---- a/libpolys/configure -+++ b/libpolys/configure -@@ -20660,7 +20660,7 @@ fi - - for NTL_HOME in ${NTL_HOME_PATH} - do --if test -r "$NTL_HOME/include/NTL/ZZ.h"; then -+## if test -r "$NTL_HOME/include/NTL/ZZ.h"; then - - if test "x$NTL_HOME" != "x/usr"; then - NTL_CPPFLAGS="-I${NTL_HOME}/include" -@@ -20731,9 +20731,9 @@ else - fi - rm -f core conftest.err conftest.$ac_objext \ - conftest$ac_exeext conftest.$ac_ext --else -- ntl_found="no" --fi -+## else -+## ntl_found="no" -+## fi - done - if test "x$ntl_found" = "xyes" ; then diff --git a/build/pkgs/singular/patches/fix-building-with-nodebug.patch b/build/pkgs/singular/patches/fix-building-with-nodebug.patch deleted file mode 100644 index 46b8ab83cec..00000000000 --- a/build/pkgs/singular/patches/fix-building-with-nodebug.patch +++ /dev/null @@ -1,31 +0,0 @@ -From 80a9ffc773542e3329935e5377f6906628be16e6 Mon Sep 17 00:00:00 2001 -From: Yue Ren -Date: Thu, 15 Nov 2018 10:48:24 -0500 -Subject: [PATCH] fix: building with NDEBUG=1, trac ticket 840 - ---- - Singular/dyn_modules/gfanlib/groebnerCone.h | 6 +++++- - 1 file changed, 5 insertions(+), 1 deletion(-) - -diff --git a/Singular/dyn_modules/gfanlib/groebnerCone.h b/Singular/dyn_modules/gfanlib/groebnerCone.h -index cb067250a0..8a212a7b7f 100644 ---- a/Singular/dyn_modules/gfanlib/groebnerCone.h -+++ b/Singular/dyn_modules/gfanlib/groebnerCone.h -@@ -99,12 +99,16 @@ class groebnerCone - */ - groebnerCones tropicalNeighbours() const; - -+ /** -+ * Return 1 if w points is in the dual of the polyhedral cone, 0 otherwise -+ */ -+ bool pointsOutwards(const gfan::ZVector w) const; -+ - /** - * Debug tools. - */ - #ifndef NDEBUG - bool checkFlipConeInput(const gfan::ZVector interiorPoint, const gfan::ZVector facetNormal) const; -- bool pointsOutwards(const gfan::ZVector) const; - #endif - }; - diff --git a/build/pkgs/singular/patches/singular-ntl-error-handler.patch b/build/pkgs/singular/patches/singular-ntl-error-handler.patch deleted file mode 100644 index 3d495293239..00000000000 --- a/build/pkgs/singular/patches/singular-ntl-error-handler.patch +++ /dev/null @@ -1,75 +0,0 @@ -Move NTL error handler out of libsingular, otherwise it takes over Sage's error handler and makes it quit on NTL errors. -See https://www.singular.uni-kl.de/forum/viewtopic.php?f=10&t=2769 and https://trac.sagemath.org/ticket/24735#comment:29 -Rebased from upstream commit https://github.com/Singular/Sources/commit/502cf86d0bb2a96715be6764774b64a69c1ca34c - -From 502cf86d0bb2a96715be6764774b64a69c1ca34c Mon Sep 17 00:00:00 2001 -From: Hans Schoenemann -Date: Wed, 25 Jul 2018 11:03:32 +0200 -Subject: [PATCH] move error handler for factory,NTL to the non-libSingular part - -(see forum: "NTL error handling", for SAGE) - -diff --git a/Singular/cntrlc.cc b/Singular/cntrlc.cc -index 622495490c..874a5deb79 100644 ---- a/Singular/cntrlc.cc -+++ b/Singular/cntrlc.cc -@@ -20,6 +20,14 @@ - #include "Singular/links/silink.h" - #include "Singular/links/ssiLink.h" - -+#ifdef HAVE_NTL -+#include -+#include -+#ifdef NTL_CLIENT -+NTL_CLIENT -+#endif -+#endif -+ - /* undef, if you don't want GDB to come up on error */ - - #define CALL_GDB -@@ -549,11 +557,20 @@ static void stack_trace (char *const*args) - - # endif /* !__OPTIMIZE__ */ - --/*2 --* init signal handlers --*/ -+/// init signal handlers and error handling for libraries: NTL, factory - void init_signals() - { -+// NTL error handling (>= 9.3.0) ---------------------------------------- -+#ifdef HAVE_NTL -+#if (((NTL_MAJOR_VERSION==9)&&(NTL_MINOR_VERSION>=3))||(NTL_MAJOR_VERSION>=10)) -+ ErrorMsgCallback=WerrorS; -+ ErrorCallback=HALT; -+#endif -+#endif -+// factory error handling: ----------------------------------------------- -+ factoryError=WerrorS; -+ -+// signal handler ------------------------------------------------------- - #ifdef SIGSEGV - si_set_signal(SIGSEGV,(si_hdl_typ)sigsegv_handler); - #endif -diff --git a/Singular/misc_ip.cc b/Singular/misc_ip.cc -index 49eddaae6f..3d5775edd7 100644 ---- a/Singular/misc_ip.cc -+++ b/Singular/misc_ip.cc -@@ -1316,16 +1316,6 @@ static BOOLEAN iiCrossProd(leftv res, leftv args) - On(SW_USE_EZGCD_P); - On(SW_USE_QGCD); - Off(SW_USE_NTL_SORT); // may be changed by an command line option -- factoryError=WerrorS; -- --// NTL error handling (>= 9.3.0) --#ifdef HAVE_NTL --#if (((NTL_MAJOR_VERSION==9)&&(NTL_MINOR_VERSION>=3))||(NTL_MAJOR_VERSION>=10)) -- ErrorMsgCallback=WerrorS; -- ErrorCallback=HALT; --#endif --#endif -- - // memory initialization: ----------------------------------------------- - om_Opts.OutOfMemoryFunc = omSingOutOfMemoryFunc; - #ifndef OM_NDEBUG diff --git a/build/pkgs/singular/spkg-install.in b/build/pkgs/singular/spkg-install.in index 49d66d23187..baec6f12db6 100644 --- a/build/pkgs/singular/spkg-install.in +++ b/build/pkgs/singular/spkg-install.in @@ -58,6 +58,11 @@ remove_old_version() config() { + if [ "$UNAME" = "CYGWIN" ]; then + # from Hans Schoenemann - https://github.com/Singular/Singular/issues/1017 + SINGULAR_CONFIGURE="$SINGULAR_CONFIGURE --disable-p-procs-dynamic --enable-p-procs-static --with-builtinmodules=gfanlib,gitfan,interval,loctriv,partialgb,syzextra,customstd,cohomo,subsets,freealgebra,systhreads --disable-cf-inline --disable-Order-module --disable-bigintm-module --disable-pyobject-module" + fi + # configure notes (dates from Singular 3.x, maybe outdated for 4.x): # 1) We really need to add --exec-prefix and --bindir as Singular # uses some weird defaults. @@ -76,15 +81,28 @@ config() --disable-doc \ --disable-polymake \ --without-python \ + --without-pythonmodule \ --disable-python \ + --disable-python_module \ + --disable-python-module \ + --disable-static \ $SINGULAR_CONFIGURE } build_singular() { - sdh_make + for subdir in omalloc gfanlib resources omalloc factory libpolys gfanlib IntegerProgramming; do + sdh_make -w -C $subdir + done + # Possible parallelization bugs in subdirectory Singular + sdh_make -j1 sdh_make_install + + # Singular tarballs made using "make dist" do not contain built documentation. + if [ ! -e doc/doc.tbz2 ]; then + (cd doc && make singular.hlp && sdh_install singular.hlp "$SAGE_SHARE/info/") || sdh_die "Building documentation failed" + fi } diff --git a/src/doc/en/constructions/algebraic_geometry.rst b/src/doc/en/constructions/algebraic_geometry.rst index 3933bf08394..76b173d80a5 100644 --- a/src/doc/en/constructions/algebraic_geometry.rst +++ b/src/doc/en/constructions/algebraic_geometry.rst @@ -139,7 +139,7 @@ Other methods sage: singular.lib("brnoeth.lib") sage: s = singular.ring(2,'(x,y)','lp') - sage: I = singular.ideal('[x^4+x, y^4+y]') + sage: I = singular.ideal('x^4+x', 'y^4+y') sage: L = singular.closed_points(I) sage: # Here you have all the points : sage: L # random @@ -329,7 +329,7 @@ Singular itself to help an understanding of how the wrapper works. sage: X = Curve(f); pts = X.rational_points() sage: D = X.divisor([ (3, pts[0]), (-1,pts[1]), (10, pts[5]) ]) sage: X.riemann_roch_basis(D) - [(-x - 2*y)/(-2*x - 2*y), (-x + z)/(x + y)] + [(-2*x + y)/(x + y), (-x + z)/(x + y)] - Using Singular's ``BrillNoether`` command (for details see the section Brill-Noether in the Singular online documentation diff --git a/src/sage/algebras/free_algebra.py b/src/sage/algebras/free_algebra.py index 9e846158d1c..b3dc47ba3ff 100644 --- a/src/sage/algebras/free_algebra.py +++ b/src/sage/algebras/free_algebra.py @@ -39,7 +39,15 @@ Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F sage: I.groebner_basis(degbound=4) - Twosided Ideal (y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z, y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z, y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z, y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z, y*y*y - y*y*z + y*z*y - y*z*z, y*y*x + y*y*z + y*z*x + y*z*z, x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field + Twosided Ideal (x*y + y*z, + x*x - y*x - y*y - y*z, + y*y*y - y*y*z + y*z*y - y*z*z, + y*y*x + y*y*z + y*z*x + y*z*z, + y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z, + y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z, + y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z, + y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z) of Free Associative Unital + Algebra on 3 generators (x, y, z) over Rational Field sage: y*z*y*y*z*z + 2*y*z*y*z*z*x + y*z*y*z*z*z - y*z*z*y*z*x + y*z*z*z*z*x in I True @@ -232,7 +240,7 @@ class FreeAlgebraFactory(UniqueFactory): a*b^2*c^3 """ def create_key(self, base_ring, arg1=None, arg2=None, - sparse=None, order='degrevlex', + sparse=None, order=None, names=None, name=None, implementation=None, degrees=None): """ @@ -263,6 +271,8 @@ def create_key(self, base_ring, arg1=None, arg2=None, return tuple(degrees),base_ring # test if we can use libSingular/letterplace if implementation == "letterplace": + if order is None: + order = 'degrevlex' if degrees is None else 'deglex' args = [arg for arg in (arg1, arg2) if arg is not None] kwds = dict(sparse=sparse, order=order, implementation="singular") if name is not None: @@ -273,7 +283,7 @@ def create_key(self, base_ring, arg1=None, arg2=None, if degrees is None: return (PolRing,) from sage.all import TermOrder - T = PolRing.term_order() + TermOrder('lex',1) + T = TermOrder(PolRing.term_order(), PolRing.ngens() + 1) varnames = list(PolRing.variable_names()) newname = 'x' while newname in varnames: diff --git a/src/sage/algebras/letterplace/free_algebra_element_letterplace.pyx b/src/sage/algebras/letterplace/free_algebra_element_letterplace.pyx index e7fed21adaf..e9c1c9d908f 100644 --- a/src/sage/algebras/letterplace/free_algebra_element_letterplace.pyx +++ b/src/sage/algebras/letterplace/free_algebra_element_letterplace.pyx @@ -17,6 +17,7 @@ AUTHOR: # https://www.gnu.org/licenses/ # **************************************************************************** +from sage.groups.perm_gps.all import CyclicPermutationGroup from sage.libs.singular.function import lib, singular_function from sage.misc.repr import repr_lincomb from sage.rings.polynomial.multi_polynomial_ideal import MPolynomialIdeal @@ -25,7 +26,6 @@ from cpython.object cimport PyObject_RichCompare # Define some singular functions lib("freegb.lib") poly_reduce = singular_function("NF") -singular_system=singular_function("system") ##################### # Free algebra elements @@ -445,9 +445,10 @@ cdef class FreeAlgebraElement_letterplace(AlgebraElement): cdef int i if P.monomial_divides(s_poly,p_poly): return True + realngens = A._commutative_ring.ngens() + CG = CyclicPermutationGroup(P.ngens()) for i from 0 <= i < p_d-s_d: - s_poly = singular_system("stest",s_poly,1, - A._degbound,A.__ngens,ring=P) + s_poly = s_poly * CG[realngens] if P.monomial_divides(s_poly,p_poly): return True return False @@ -601,7 +602,9 @@ cdef class FreeAlgebraElement_letterplace(AlgebraElement): # we must put the polynomials into the same ring left._poly = A._current_ring(left._poly) right._poly = A._current_ring(right._poly) - rshift = singular_system("stest",right._poly,left._poly.degree(),A._degbound,A.__ngens, ring=A._current_ring) + realngens = A._commutative_ring.ngens() + CG = CyclicPermutationGroup(A._current_ring.ngens()) + rshift = right._poly * CG[left._poly.degree() * realngens] return FreeAlgebraElement_letterplace(A,left._poly*rshift, check=False) def __pow__(FreeAlgebraElement_letterplace self, int n, k): @@ -627,10 +630,11 @@ cdef class FreeAlgebraElement_letterplace(AlgebraElement): self._poly = A._current_ring(self._poly) cdef int d = self._poly.degree() q = p = self._poly + realngens = A._commutative_ring.ngens() cdef int i + CG = CyclicPermutationGroup(A._current_ring.ngens()) for i from 0 = FreeAlgebra(K, implementation='letterplace') sage: TestSuite(F).run() """ - if not isinstance(R,MPolynomialRing_libsingular): + if not isinstance(R, MPolynomialRing_libsingular): raise TypeError("A letterplace algebra must be provided by a polynomial ring of type %s" % MPolynomialRing_libsingular) self.__ngens = R.ngens() if degrees is None: @@ -260,7 +275,9 @@ cdef class FreeAlgebra_letterplace(Algebra): if degrees is None: self._degrees = tuple([int(1)]*self.__ngens) else: - if (not isinstance(degrees,(tuple,list))) or len(degrees)!=self.__ngens-1 or any(i <= 0 for i in degrees): + if (not isinstance(degrees, (tuple, list))) \ + or len(degrees) != self.__ngens - self._nb_slackvars \ + or any(i <= 0 for i in degrees): raise TypeError("The generator degrees must be given by a list or tuple of %d positive integers" % (self.__ngens-1)) self._degrees = tuple([int(i) for i in degrees]) self.set_degbound(max(self._degrees)) @@ -662,7 +679,7 @@ cdef class FreeAlgebra_letterplace(Algebra): Sage, since it does the reductions in a different order compared to Singular. Therefore, we call the original Singular reduction method, and prevent a warning message by asserting - that `G` is a Groebner basis. + that `G` is a Groebner basis. :: sage: from sage.libs.singular.function import singular_function sage: poly_reduce = singular_function("NF") @@ -678,8 +695,10 @@ cdef class FreeAlgebra_letterplace(Algebra): ngens = self.__ngens degbound = self._degbound cdef list G = [C(x._poly) for x in g] + from sage.groups.perm_gps.all import CyclicPermutationGroup + CG = CyclicPermutationGroup(C.ngens()) for y in G: - out.extend([y]+[singular_system("stest",y,n+1,degbound,ngens,ring=C) for n in xrange(d-y.degree())]) + out.extend([y]+[y * CG[ngens*(n+1)] for n in xrange(d-y.degree())]) return C.ideal(out) ########################### @@ -875,3 +894,28 @@ cdef class FreeAlgebra_letterplace(Algebra): PNames[P.ngens(): len(PNames): P.ngens()+1] = list(Names[self.ngens(): len(Names): self.ngens()+1])[:P.degbound()] x = Ppoly.hom([Gens[Names.index(asdf)] for asdf in PNames])(x.letterplace_polynomial()) return FreeAlgebraElement_letterplace(self,self._current_ring(x)) + +cdef class FreeAlgebra_letterplace_libsingular(): + """ + Internally used wrapper around a Singular Letterplace polynomial ring. + """ + + def __cinit__(self, MPolynomialRing_libsingular commutative_ring, + int degbound): + cdef RingWrap rw = freeAlgebra(commutative_ring, degbound) + self._lp_ring = singular_ring_reference(rw._ring) + # `_lp_ring` viewed as `MPolynomialRing_libsingular` with additional + # letterplace attributes set (for internal use only) + self._lp_ring_internal = new_CRing(rw, commutative_ring.base_ring()) + self._commutative_ring = commutative_ring + + def __init__(self, commutative_ring, degbound): + self.__ngens = commutative_ring.ngens() * degbound + + def __dealloc__(self): + r""" + Carefully deallocate the ring, without changing ``currRing`` + (since this method can be at unpredictable times due to garbage + collection). + """ + singular_ring_delete(self._lp_ring) diff --git a/src/sage/algebras/letterplace/letterplace_ideal.pyx b/src/sage/algebras/letterplace/letterplace_ideal.pyx index f1430ee77cc..c16803280b2 100644 --- a/src/sage/algebras/letterplace/letterplace_ideal.pyx +++ b/src/sage/algebras/letterplace/letterplace_ideal.pyx @@ -18,7 +18,11 @@ One can compute Groebner bases out to a finite degree, can compute normal forms and can test containment in the ideal:: sage: I.groebner_basis(degbound=3) - Twosided Ideal (y*y*y - y*y*z + y*z*y - y*z*z, y*y*x + y*y*z + y*z*x + y*z*z, x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field + Twosided Ideal (x*y + y*z, + x*x - y*x - y*y - y*z, + y*y*y - y*y*z + y*z*y - y*z*z, + y*y*x + y*y*z + y*z*x + y*z*z) of Free Associative Unital Algebra + on 3 generators (x, y, z) over Rational Field sage: (x*y*z*y*x).normal_form(I) y*z*z*y*z + y*z*z*z*x + y*z*z*z*z sage: x*y*z*y*x - (x*y*z*y*x).normal_form(I) in I @@ -42,14 +46,14 @@ AUTHOR: from sage.rings.noncommutative_ideals import Ideal_nc from sage.libs.singular.function import lib, singular_function -from sage.algebras.letterplace.free_algebra_letterplace cimport FreeAlgebra_letterplace +from sage.algebras.letterplace.free_algebra_letterplace cimport FreeAlgebra_letterplace, FreeAlgebra_letterplace_libsingular from sage.algebras.letterplace.free_algebra_element_letterplace cimport FreeAlgebraElement_letterplace from sage.rings.infinity import Infinity ##################### # Define some singular functions lib("freegb.lib") -singular_system=singular_function("system") +singular_twostd=singular_function("twostd") poly_reduce=singular_function("NF") class LetterplaceIdeal(Ideal_nc): @@ -69,14 +73,22 @@ class LetterplaceIdeal(Ideal_nc): sage: I.groebner_basis(2) Twosided Ideal (x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field sage: I.groebner_basis(4) - Twosided Ideal (y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z, y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z, y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z, y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z, y*y*y - y*y*z + y*z*y - y*z*z, y*y*x + y*y*z + y*z*x + y*z*z, x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field + Twosided Ideal (x*y + y*z, + x*x - y*x - y*y - y*z, + y*y*y - y*y*z + y*z*y - y*z*z, + y*y*x + y*y*z + y*z*x + y*z*z, + y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z, + y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z, + y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z, + y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z) of Free Associative Unital + Algebra on 3 generators (x, y, z) over Rational Field Groebner bases are cached. If one has computed a Groebner basis out to a high degree then it will also be returned if a Groebner basis with a lower degree bound is requested:: - sage: I.groebner_basis(2) - Twosided Ideal (y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z, y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z, y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z, y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z, y*y*y - y*y*z + y*z*y - y*z*z, y*y*x + y*y*z + y*z*x + y*z*z, x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field + sage: I.groebner_basis(2) is I.groebner_basis(4) + True Of course, the normal form of any element has to satisfy the following:: @@ -116,8 +128,11 @@ class LetterplaceIdeal(Ideal_nc): sage: F. = FreeAlgebra(QQ, implementation='letterplace',degrees=[1,2,3]) sage: I = F*[x*y+z-y*x,x*y*z-x^6+y^3]*F sage: I.groebner_basis(Infinity) - Twosided Ideal (x*z*z - y*x*x*z - y*x*y*y + y*x*z*x + y*y*y*x + z*x*z + z*y*y - z*z*x, - x*y - y*x + z, + Twosided Ideal (x*y - y*x + z, + x*x*x*x*x*x - y*x*z - y*y*y + z*z, + x*z*z - y*x*x*z + y*x*z*x + y*y*z + y*z*y + z*x*z + z*y*y - z*z*x, + x*x*x*x*x*z + x*x*x*x*z*x + x*x*x*z*x*x + x*x*z*x*x*x + x*z*x*x*x*x + + y*x*z*y - y*y*x*z + y*z*z + z*x*x*x*x*x - z*z*y, x*x*x*x*z*y*y + x*x*x*z*y*y*x - x*x*x*z*y*z - x*x*z*y*x*z + x*x*z*y*y*x*x + x*x*z*y*y*y - x*x*z*y*z*x - x*z*y*x*x*z - x*z*y*x*z*x + x*z*y*y*x*x*x + 2*x*z*y*y*y*x - 2*x*z*y*y*z - x*z*y*z*x*x - @@ -135,10 +150,7 @@ class LetterplaceIdeal(Ideal_nc): z*y*y*y*y - 3*z*y*y*z*x - z*y*z*x*x*x - 2*z*y*z*y*x + 2*z*y*z*z - z*z*x*x*x*x*x + 4*z*z*x*x*z + 4*z*z*x*z*x - 4*z*z*y*x*x*x - 3*z*z*y*y*x + 4*z*z*y*z + 4*z*z*z*x*x + - 2*z*z*z*y, - x*x*x*x*x*z + x*x*x*x*z*x + x*x*x*z*x*x + x*x*z*x*x*x + x*z*x*x*x*x + - y*x*z*y - y*y*x*z + y*z*z + z*x*x*x*x*x - z*z*y, - x*x*x*x*x*x - y*x*z - y*y*y + z*z) + 2*z*z*z*y) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field Again, we can compute normal forms:: @@ -226,7 +238,15 @@ class LetterplaceIdeal(Ideal_nc): sage: I.groebner_basis() # not tested Twosided Ideal (y*y*y - y*y*z + y*z*y - y*z*z, y*y*x + y*y*z + y*z*x + y*z*z, x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field sage: I.groebner_basis(4) - Twosided Ideal (y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z, y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z, y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z, y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z, y*y*y - y*y*z + y*z*y - y*z*z, y*y*x + y*y*z + y*z*x + y*z*z, x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field + Twosided Ideal (x*y + y*z, + x*x - y*x - y*y - y*z, + y*y*y - y*y*z + y*z*y - y*z*z, + y*y*x + y*y*z + y*z*x + y*z*z, + y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z, + y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z, + y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z, + y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z) of Free Associative + Unital Algebra on 3 generators (x, y, z) over Rational Field sage: I.groebner_basis(2) is I.groebner_basis(4) True sage: G = I.groebner_basis(4) @@ -238,7 +258,14 @@ class LetterplaceIdeal(Ideal_nc): sage: I = F*[x*y-y*x,x*z-z*x,y*z-z*y,x^2*y-z^3,x*y^2+z*x^2]*F sage: I.groebner_basis(Infinity) - Twosided Ideal (z*z*z*y*y + z*z*z*z*x, z*x*x*x + z*z*z*y, y*z - z*y, y*y*x + z*x*x, y*x*x - z*z*z, x*z - z*x, x*y - y*x) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field + Twosided Ideal (-y*z + z*y, + -x*z + z*x, + -x*y + y*x, + x*x*z + x*y*y, + x*x*y - z*z*z, + x*x*x*z + y*z*z*z, + x*z*z*z*z + y*y*z*z*z) of Free Associative Unital Algebra + on 3 generators (x, y, z) over Rational Field Since the commutators of the generators are contained in the ideal, we can verify the above result by a computation in a polynomial ring @@ -275,9 +302,32 @@ class LetterplaceIdeal(Ideal_nc): libsingular_options['redSB'] = True A.set_degbound(degbound) P = A._current_ring - out = [FreeAlgebraElement_letterplace(A,X,check=False) for X in - singular_system("freegb",P.ideal([x._poly for x in self.__GB.gens()]), - degbound,A.__ngens, ring = P)] + + # note that degbound might be smaller than A._degbound due to caching, + # but degbound must be large enough to map all generators to the + # letterplace ring L + if degbound < A._degbound: + max_deg = max([x._poly.degree() for x in self.__GB.gens()]) + if degbound < max_deg: + degbound = max_deg + + # The following is a workaround for calling Singular's new Letterplace + # API (see :trac:`25993`). We construct a temporary polynomial ring L + # with letterplace attributes set as required by the API. As L has + # duplicate variable names, we need to handle this ring carefully; in + # particular, we cannot coerce to and from L, so we use homomorphisms + # for the conversion. + + cdef FreeAlgebra_letterplace_libsingular lp_ring = \ + FreeAlgebra_letterplace_libsingular(A._commutative_ring, degbound) + L = lp_ring._lp_ring_internal + to_L = P.hom(L.gens(), L, check=False) + from_L = L.hom(P.gens(), P, check=False) + I = L.ideal([to_L(x._poly) for x in self.__GB.gens()]) + gb = singular_twostd(I) + out = [FreeAlgebraElement_letterplace(A, from_L(X), check=False) + for X in gb] + libsingular_options['redTail'] = bck[0] libsingular_options['redSB'] = bck[1] self.__GB = A.ideal(out,side='twosided',coerce=False) diff --git a/src/sage/combinat/root_system/hecke_algebra_representation.py b/src/sage/combinat/root_system/hecke_algebra_representation.py index a24147df213..3eff906dc39 100644 --- a/src/sage/combinat/root_system/hecke_algebra_representation.py +++ b/src/sage/combinat/root_system/hecke_algebra_representation.py @@ -743,7 +743,7 @@ def Y_eigenvectors(self): -2121 + 212, (q2/(q1-q2))*2121 + (q2/(-q1+q2))*121 + (q2/(-q1+q2))*212 - 12 + ((-q2)/(-q1+q2))*21 + 2, ((-q2^2)/(-q1^2+q1*q2-q2^2))*2121 - 121 + (q2^2/(-q1^2+q1*q2-q2^2))*212 + 21, - ((q1^2+q2^2)/(-q1^2+q1*q2-q2^2))*2121 + ((-q1^2-q2^2)/(-q1^2+q1*q2-q2^2))*121 + ((-q2^2)/(-q1^2+q1*q2-q2^2))*212 + (q2^2/(-q1^2+q1*q2-q2^2))*12 - 21 + 1, + ((-q1^2-q2^2)/(q1^2-q1*q2+q2^2))*2121 + ((-q1^2-q2^2)/(-q1^2+q1*q2-q2^2))*121 + ((-q2^2)/(-q1^2+q1*q2-q2^2))*212 + (q2^2/(-q1^2+q1*q2-q2^2))*12 - 21 + 1, 2121, (q2/(-q1+q2))*2121 + ((-q2)/(-q1+q2))*121 - 212 + 12, -2121 + 121] diff --git a/src/sage/combinat/root_system/non_symmetric_macdonald_polynomials.py b/src/sage/combinat/root_system/non_symmetric_macdonald_polynomials.py index 35377724c9a..ee8ddec7ddb 100644 --- a/src/sage/combinat/root_system/non_symmetric_macdonald_polynomials.py +++ b/src/sage/combinat/root_system/non_symmetric_macdonald_polynomials.py @@ -555,8 +555,7 @@ class NonSymmetricMacdonaldPolynomials(CherednikOperatorsEigenvectors): B[(1, 0, 0)] sage: E[-omega[1]] - B[(-1, 0, 0)] + ((-q*q1^6-q*q1^5*q2-q1*q2^5-q2^6)/(-q^3*q1^6-q^2*q1^5*q2-q*q1*q2^5-q2^6))*B[(1, 0, 0)] + ((-q1-q2)/(-q*q1-q2))*B[(0, -1, 0)] - + ((q1+q2)/(q*q1+q2))*B[(0, 1, 0)] + ((-q1-q2)/(-q*q1-q2))*B[(0, 0, -1)] + ((-q1-q2)/(-q*q1-q2))*B[(0, 0, 1)] + B[(-1, 0, 0)] + ((q*q1^6+q*q1^5*q2+q1*q2^5+q2^6)/(q^3*q1^6+q^2*q1^5*q2+q*q1*q2^5+q2^6))*B[(1, 0, 0)] + ((q1+q2)/(q*q1+q2))*B[(0, -1, 0)] + ((q1+q2)/(q*q1+q2))*B[(0, 1, 0)] + ((q1+q2)/(q*q1+q2))*B[(0, 0, -1)] + ((q1+q2)/(q*q1+q2))*B[(0, 0, 1)] sage: E[omega[2]] ((-q1*q2^3-q2^4)/(q*q1^4-q2^4))*B[(1, 0, 0)] + B[(0, 1, 0)] @@ -567,14 +566,7 @@ class NonSymmetricMacdonaldPolynomials(CherednikOperatorsEigenvectors): + ((-q1*q2-q2^2)/(q*q1^2-q2^2))*B[(0, 0, -1)] + ((q1*q2+q2^2)/(-q*q1^2+q2^2))*B[(0, 0, 1)] sage: E[-omega[1]-omega[2]] - ((-q^3*q1^6-q^3*q1^5*q2-2*q^2*q1^6-3*q^2*q1^5*q2+q^2*q1^4*q2^2+2*q^2*q1^3*q2^3+q*q1^5*q2+2*q*q1^4*q2^2-q*q1^3*q2^3-2*q*q1^2*q2^4+q*q1*q2^5+q*q2^6-q1^3*q2^3-q1^2*q2^4+2*q1*q2^5+2*q2^6)/(-q^4*q1^6-q^3*q1^5*q2+q^3*q1^4*q2^2-q*q1^2*q2^4+q*q1*q2^5+q2^6))*B[(0, 0, 0)] + B[(-1, -1, 0)] - + ((q*q1^4+q*q1^3*q2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(-1, 1, 0)] + ((q1+q2)/(q*q1+q2))*B[(-1, 0, -1)] + ((-q1-q2)/(-q*q1-q2))*B[(-1, 0, 1)] - + ((q*q1^4+q*q1^3*q2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(1, -1, 0)] - + ((-q^2*q1^6-q^2*q1^5*q2-q*q1^5*q2+q*q1^3*q2^3+q1^5*q2+q1^4*q2^2-q1^3*q2^3-q1^2*q2^4+q1*q2^5+q2^6)/(-q^4*q1^6-q^3*q1^5*q2+q^3*q1^4*q2^2-q*q1^2*q2^4+q*q1*q2^5+q2^6))*B[(1, 1, 0)] - + ((-q*q1^4-2*q*q1^3*q2-q*q1^2*q2^2+q1^3*q2+q1^2*q2^2-q1*q2^3-q2^4)/(-q^3*q1^4-q^2*q1^3*q2-q*q1*q2^3-q2^4))*B[(1, 0, -1)] - + ((-q*q1^4-2*q*q1^3*q2-q*q1^2*q2^2+q1^3*q2+q1^2*q2^2-q1*q2^3-q2^4)/(-q^3*q1^4-q^2*q1^3*q2-q*q1*q2^3-q2^4))*B[(1, 0, 1)] + ((q1+q2)/(q*q1+q2))*B[(0, -1, -1)] - + ((-q1-q2)/(-q*q1-q2))*B[(0, -1, 1)] + ((q*q1^4+2*q*q1^3*q2+q*q1^2*q2^2-q1^3*q2-q1^2*q2^2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(0, 1, -1)] - + ((q*q1^4+2*q*q1^3*q2+q*q1^2*q2^2-q1^3*q2-q1^2*q2^2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(0, 1, 1)] + ((q^3*q1^6+q^3*q1^5*q2+2*q^2*q1^6+3*q^2*q1^5*q2-q^2*q1^4*q2^2-2*q^2*q1^3*q2^3-q*q1^5*q2-2*q*q1^4*q2^2+q*q1^3*q2^3+2*q*q1^2*q2^4-q*q1*q2^5-q*q2^6+q1^3*q2^3+q1^2*q2^4-2*q1*q2^5-2*q2^6)/(q^4*q1^6+q^3*q1^5*q2-q^3*q1^4*q2^2+q*q1^2*q2^4-q*q1*q2^5-q2^6))*B[(0, 0, 0)] + B[(-1, -1, 0)] + ((q*q1^4+q*q1^3*q2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(-1, 1, 0)] + ((q1+q2)/(q*q1+q2))*B[(-1, 0, -1)] + ((-q1-q2)/(-q*q1-q2))*B[(-1, 0, 1)] + ((q*q1^4+q*q1^3*q2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(1, -1, 0)] + ((q^2*q1^6+q^2*q1^5*q2+q*q1^5*q2-q*q1^3*q2^3-q1^5*q2-q1^4*q2^2+q1^3*q2^3+q1^2*q2^4-q1*q2^5-q2^6)/(q^4*q1^6+q^3*q1^5*q2-q^3*q1^4*q2^2+q*q1^2*q2^4-q*q1*q2^5-q2^6))*B[(1, 1, 0)] + ((q*q1^4+2*q*q1^3*q2+q*q1^2*q2^2-q1^3*q2-q1^2*q2^2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(1, 0, -1)] + ((q*q1^4+2*q*q1^3*q2+q*q1^2*q2^2-q1^3*q2-q1^2*q2^2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(1, 0, 1)] + ((q1+q2)/(q*q1+q2))*B[(0, -1, -1)] + ((q1+q2)/(q*q1+q2))*B[(0, -1, 1)] + ((q*q1^4+2*q*q1^3*q2+q*q1^2*q2^2-q1^3*q2-q1^2*q2^2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(0, 1, -1)] + ((q*q1^4+2*q*q1^3*q2+q*q1^2*q2^2-q1^3*q2-q1^2*q2^2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(0, 1, 1)] sage: E[omega[1]-omega[2]] ((q^3*q1^7+q^3*q1^6*q2-q*q1*q2^6-q*q2^7)/(q^3*q1^7-q^2*q1^5*q2^2+q*q1^2*q2^5-q2^7))*B[(0, 0, 0)] + B[(1, -1, 0)] @@ -812,7 +804,7 @@ class NonSymmetricMacdonaldPolynomials(CherednikOperatorsEigenvectors): ((-q*q1*q2^3-q*q2^4)/(q^2*q1^4-q2^4))*B[(0, 0)] + B[(1, 0)] sage: E[2*omega[2]] # long time # not checked against Bogdan's notes, but a good self-consistency test - ((-q^12*q1^6-q^12*q1^5*q2+2*q^10*q1^5*q2+5*q^10*q1^4*q2^2+3*q^10*q1^3*q2^3+2*q^8*q1^5*q2+4*q^8*q1^4*q2^2+q^8*q1^3*q2^3-q^8*q1^2*q2^4+q^8*q1*q2^5+q^8*q2^6-q^6*q1^3*q2^3+q^6*q1^2*q2^4+4*q^6*q1*q2^5+2*q^6*q2^6+q^4*q1^3*q2^3+3*q^4*q1^2*q2^4+4*q^4*q1*q2^5+2*q^4*q2^6)/(-q^12*q1^6-q^10*q1^5*q2-q^8*q1^3*q2^3+q^6*q1^4*q2^2-q^6*q1^2*q2^4+q^4*q1^3*q2^3+q^2*q1*q2^5+q2^6))*B[(0, 0)] + ((q^7*q1^2*q2+2*q^7*q1*q2^2+q^7*q2^3+q^5*q1^2*q2+2*q^5*q1*q2^2+q^5*q2^3)/(-q^8*q1^3-q^6*q1^2*q2+q^2*q1*q2^2+q2^3))*B[(-1, 0)] + ((q^6*q1*q2+q^6*q2^2)/(-q^6*q1^2+q2^2))*B[(-1, -1)] + ((q^6*q1^2*q2+2*q^6*q1*q2^2+q^6*q2^3+q^4*q1^2*q2+2*q^4*q1*q2^2+q^4*q2^3)/(-q^8*q1^3-q^6*q1^2*q2+q^2*q1*q2^2+q2^3))*B[(-1, 1)] + ((q^3*q1*q2+q^3*q2^2)/(-q^6*q1^2+q2^2))*B[(-1, 2)] + ((-q^7*q1^3-q^7*q1^2*q2+q^7*q1*q2^2+q^7*q2^3+2*q^5*q1^2*q2+4*q^5*q1*q2^2+2*q^5*q2^3+2*q^3*q1^2*q2+4*q^3*q1*q2^2+2*q^3*q2^3)/(-q^8*q1^3-q^6*q1^2*q2+q^2*q1*q2^2+q2^3))*B[(1, 0)] + ((-q^6*q1^2*q2-2*q^6*q1*q2^2-q^6*q2^3-q^4*q1^2*q2-2*q^4*q1*q2^2-q^4*q2^3)/(q^8*q1^3+q^6*q1^2*q2-q^2*q1*q2^2-q2^3))*B[(1, -1)] + ((q^8*q1^3+q^8*q1^2*q2+q^6*q1^3+q^6*q1^2*q2-q^6*q1*q2^2-q^6*q2^3-2*q^4*q1^2*q2-4*q^4*q1*q2^2-2*q^4*q2^3-q^2*q1^2*q2-3*q^2*q1*q2^2-2*q^2*q2^3)/(q^8*q1^3+q^6*q1^2*q2-q^2*q1*q2^2-q2^3))*B[(1, 1)] + ((-q^5*q1^2-q^5*q1*q2+q^3*q1*q2+q^3*q2^2+q*q1*q2+q*q2^2)/(-q^6*q1^2+q2^2))*B[(1, 2)] + ((-q^6*q1^2-q^6*q1*q2+q^4*q1*q2+q^4*q2^2+q^2*q1*q2+q^2*q2^2)/(-q^6*q1^2+q2^2))*B[(2, 0)] + ((q^3*q1*q2+q^3*q2^2)/(-q^6*q1^2+q2^2))*B[(2, -1)] + ((-q^5*q1^2-q^5*q1*q2+q^3*q1*q2+q^3*q2^2+q*q1*q2+q*q2^2)/(-q^6*q1^2+q2^2))*B[(2, 1)] + B[(2, 2)] + ((-q^7*q1^2*q2-2*q^7*q1*q2^2-q^7*q2^3-q^5*q1^2*q2-2*q^5*q1*q2^2-q^5*q2^3)/(q^8*q1^3+q^6*q1^2*q2-q^2*q1*q2^2-q2^3))*B[(0, -1)] + ((q^7*q1^3+q^7*q1^2*q2-q^7*q1*q2^2-q^7*q2^3-2*q^5*q1^2*q2-4*q^5*q1*q2^2-2*q^5*q2^3-2*q^3*q1^2*q2-4*q^3*q1*q2^2-2*q^3*q2^3)/(q^8*q1^3+q^6*q1^2*q2-q^2*q1*q2^2-q2^3))*B[(0, 1)] + ((-q^6*q1^2-q^6*q1*q2+q^4*q1*q2+q^4*q2^2+q^2*q1*q2+q^2*q2^2)/(-q^6*q1^2+q2^2))*B[(0, 2)] + ((-q^12*q1^6-q^12*q1^5*q2+2*q^10*q1^5*q2+5*q^10*q1^4*q2^2+3*q^10*q1^3*q2^3+2*q^8*q1^5*q2+4*q^8*q1^4*q2^2+q^8*q1^3*q2^3-q^8*q1^2*q2^4+q^8*q1*q2^5+q^8*q2^6-q^6*q1^3*q2^3+q^6*q1^2*q2^4+4*q^6*q1*q2^5+2*q^6*q2^6+q^4*q1^3*q2^3+3*q^4*q1^2*q2^4+4*q^4*q1*q2^5+2*q^4*q2^6)/(-q^12*q1^6-q^10*q1^5*q2-q^8*q1^3*q2^3+q^6*q1^4*q2^2-q^6*q1^2*q2^4+q^4*q1^3*q2^3+q^2*q1*q2^5+q2^6))*B[(0, 0)] + ((q^7*q1^2*q2+2*q^7*q1*q2^2+q^7*q2^3+q^5*q1^2*q2+2*q^5*q1*q2^2+q^5*q2^3)/(-q^8*q1^3-q^6*q1^2*q2+q^2*q1*q2^2+q2^3))*B[(-1, 0)] + ((-q^6*q1*q2-q^6*q2^2)/(q^6*q1^2-q2^2))*B[(-1, -1)] + ((q^6*q1^2*q2+2*q^6*q1*q2^2+q^6*q2^3+q^4*q1^2*q2+2*q^4*q1*q2^2+q^4*q2^3)/(-q^8*q1^3-q^6*q1^2*q2+q^2*q1*q2^2+q2^3))*B[(-1, 1)] + ((-q^3*q1*q2-q^3*q2^2)/(q^6*q1^2-q2^2))*B[(-1, 2)] + ((q^7*q1^3+q^7*q1^2*q2-q^7*q1*q2^2-q^7*q2^3-2*q^5*q1^2*q2-4*q^5*q1*q2^2-2*q^5*q2^3-2*q^3*q1^2*q2-4*q^3*q1*q2^2-2*q^3*q2^3)/(q^8*q1^3+q^6*q1^2*q2-q^2*q1*q2^2-q2^3))*B[(1, 0)] + ((q^6*q1^2*q2+2*q^6*q1*q2^2+q^6*q2^3+q^4*q1^2*q2+2*q^4*q1*q2^2+q^4*q2^3)/(-q^8*q1^3-q^6*q1^2*q2+q^2*q1*q2^2+q2^3))*B[(1, -1)] + ((q^8*q1^3+q^8*q1^2*q2+q^6*q1^3+q^6*q1^2*q2-q^6*q1*q2^2-q^6*q2^3-2*q^4*q1^2*q2-4*q^4*q1*q2^2-2*q^4*q2^3-q^2*q1^2*q2-3*q^2*q1*q2^2-2*q^2*q2^3)/(q^8*q1^3+q^6*q1^2*q2-q^2*q1*q2^2-q2^3))*B[(1, 1)] + ((q^5*q1^2+q^5*q1*q2-q^3*q1*q2-q^3*q2^2-q*q1*q2-q*q2^2)/(q^6*q1^2-q2^2))*B[(1, 2)] + ((-q^6*q1^2-q^6*q1*q2+q^4*q1*q2+q^4*q2^2+q^2*q1*q2+q^2*q2^2)/(-q^6*q1^2+q2^2))*B[(2, 0)] + ((-q^3*q1*q2-q^3*q2^2)/(q^6*q1^2-q2^2))*B[(2, -1)] + ((-q^5*q1^2-q^5*q1*q2+q^3*q1*q2+q^3*q2^2+q*q1*q2+q*q2^2)/(-q^6*q1^2+q2^2))*B[(2, 1)] + B[(2, 2)] + ((q^7*q1^2*q2+2*q^7*q1*q2^2+q^7*q2^3+q^5*q1^2*q2+2*q^5*q1*q2^2+q^5*q2^3)/(-q^8*q1^3-q^6*q1^2*q2+q^2*q1*q2^2+q2^3))*B[(0, -1)] + ((q^7*q1^3+q^7*q1^2*q2-q^7*q1*q2^2-q^7*q2^3-2*q^5*q1^2*q2-4*q^5*q1*q2^2-2*q^5*q2^3-2*q^3*q1^2*q2-4*q^3*q1*q2^2-2*q^3*q2^3)/(q^8*q1^3+q^6*q1^2*q2-q^2*q1*q2^2-q2^3))*B[(0, 1)] + ((q^6*q1^2+q^6*q1*q2-q^4*q1*q2-q^4*q2^2-q^2*q1*q2-q^2*q2^2)/(q^6*q1^2-q2^2))*B[(0, 2)] sage: E.recursion(2*omega[2]) [0, 1, 0, 2, 1, 0, 2, 1, 0] @@ -997,7 +989,7 @@ class NonSymmetricMacdonaldPolynomials(CherednikOperatorsEigenvectors): sage: L0 = E.keys() sage: omega = L0.fundamental_weights() sage: E[2*omega[2]] - ((q*q1+q*q2)/(q*q1+q2))*B[(1, 2, 1)] + ((q*q1+q*q2)/(q*q1+q2))*B[(2, 1, 1)] + B[(2, 2, 0)] + ((-q*q1-q*q2)/(-q*q1-q2))*B[(1, 2, 1)] + ((-q*q1-q*q2)/(-q*q1-q2))*B[(2, 1, 1)] + B[(2, 2, 0)] sage: for d in range(4): # long time (9s) ....: for weight in IntegerVectors(d,3).map(list).map(L0): ....: eigenvalues = E.eigenvalues(E[L0(weight)]) diff --git a/src/sage/combinat/sf/macdonald.py b/src/sage/combinat/sf/macdonald.py index e340faec8f4..f7c852aeb92 100644 --- a/src/sage/combinat/sf/macdonald.py +++ b/src/sage/combinat/sf/macdonald.py @@ -480,7 +480,7 @@ def Ht(self): sage: Ht = Sym.macdonald().Ht() sage: s = Sym.schur() sage: Ht(s([2,1])) - ((-q)/(-q*t^2+t^3+q^2-q*t))*McdHt[1, 1, 1] + ((q^2+q*t+t^2)/(-q^2*t^2+q^3+t^3-q*t))*McdHt[2, 1] + (t/(-q^3+q^2*t+q*t-t^2))*McdHt[3] + (q/(q*t^2-t^3-q^2+q*t))*McdHt[1, 1, 1] + ((-q^2-q*t-t^2)/(q^2*t^2-q^3-t^3+q*t))*McdHt[2, 1] + (t/(-q^3+q^2*t+q*t-t^2))*McdHt[3] sage: Ht(s([2])) ((-q)/(-q+t))*McdHt[1, 1] + (t/(-q+t))*McdHt[2] """ @@ -898,7 +898,7 @@ def product(self, left, right): sage: Q.product(Q[1],Q[2]) McdQ[2, 1] + ((q^2*t-q^2+q*t-q+t-1)/(q^2*t-1))*McdQ[3] sage: Ht.product(Ht[1],Ht[2]) - ((-q^2+1)/(-q^2+t))*McdHt[2, 1] + ((-t+1)/(q^2-t))*McdHt[3] + ((q^2-1)/(q^2-t))*McdHt[2, 1] + ((t-1)/(-q^2+t))*McdHt[3] """ return self(self._s(left) * self._s(right)) diff --git a/src/sage/interfaces/singular.py b/src/sage/interfaces/singular.py index 6b0af7ee6ca..bc29515ccba 100644 --- a/src/sage/interfaces/singular.py +++ b/src/sage/interfaces/singular.py @@ -191,13 +191,21 @@ 6*y+2*x^3-6*x^2*y, 6*x^2*y-6*x*y^2, 6*x^2*y-6*x*y^2, - 6*x+6*x*y^2-2*y^3 + 6*x+6*x*y^2-2*y^3, + 0, + 0, + 0, + 0 sage: H.minor(2) 12*y+4*x^3-12*x^2*y, 12*x^2*y-12*x*y^2, 12*x^2*y-12*x*y^2, 12*x+12*x*y^2-4*y^3, - -36*x*y-12*x^4+36*x^3*y-36*x*y^3+12*y^4+24*x^4*y^2-32*x^3*y^3+24*x^2*y^4 + -36*x*y-12*x^4+36*x^3*y-36*x*y^3+12*y^4+24*x^4*y^2-32*x^3*y^3+24*x^2*y^4, + 0, + 0, + 0, + 0 :: @@ -240,7 +248,7 @@ :: - sage: singular.lib('poly.lib') + sage: singular.lib('polylib.lib') sage: singular.ring(32003, '(a,b,c,d,e,f)', 'lp') polynomial ring, over a field, global ordering // coefficients: ZZ/32003 @@ -260,7 +268,7 @@ :: sage: singular.quit() - sage: singular.lib('poly.lib'); R = singular.ring(32003, '(a,b,c,d,e,f)', 'lp') + sage: singular.lib('polylib.lib'); R = singular.ring(32003, '(a,b,c,d,e,f)', 'lp') sage: I = singular.ideal('cyclic(6)') sage: I.groebner() f^48-2554*f^42-15674*f^36+12326*f^30-12326*f^18+15674*f^12+2554*f^6-1, diff --git a/src/sage/libs/singular/function.pyx b/src/sage/libs/singular/function.pyx index bf03efe222b..8a9b771f262 100644 --- a/src/sage/libs/singular/function.pyx +++ b/src/sage/libs/singular/function.pyx @@ -938,7 +938,7 @@ cdef class Converter(SageObject): sage: C = Curve((x-y)*(y-z)*(z-x)) sage: I = C.defining_ideal() sage: import sage.libs.singular.function_factory - sage: freerank = sage.libs.singular.function_factory.ff.poly__lib.freerank + sage: freerank = sage.libs.singular.function_factory.ff.polylib__lib.freerank sage: freerank(I, true) [-1, [x^2*y - x*y^2 - x^2*z + y^2*z + x*z^2 - y*z^2]] @@ -1257,7 +1257,7 @@ cdef class SingularFunction(SageObject): Traceback (most recent call last): ... RuntimeError: error in Singular function call 'size': - Wrong number of arguments (got 2 arguments, arity code is 300) + Wrong number of arguments (got 2 arguments, arity code is 302) sage: size('foobar', ring=P) 6 @@ -1308,7 +1308,7 @@ cdef class SingularFunction(SageObject): ... RuntimeError: error in Singular function call 'triangL': The input is no groebner basis. - leaving triang.lib::triangL + leaving triang.lib::triangL (0) Flush any stray output -- see :trac:`28622`:: @@ -1671,17 +1671,17 @@ def singular_function(name): Traceback (most recent call last): ... RuntimeError: error in Singular function call 'factorize': - Wrong number of arguments (got 0 arguments, arity code is 303) + Wrong number of arguments (got 0 arguments, arity code is 305) sage: factorize(f, 1, 2) Traceback (most recent call last): ... RuntimeError: error in Singular function call 'factorize': - Wrong number of arguments (got 3 arguments, arity code is 303) + Wrong number of arguments (got 3 arguments, arity code is 305) sage: factorize(f, 1, 2, 3) Traceback (most recent call last): ... RuntimeError: error in Singular function call 'factorize': - Wrong number of arguments (got 4 arguments, arity code is 303) + Wrong number of arguments (got 4 arguments, arity code is 305) The Singular function ``list`` can be called with any number of arguments:: diff --git a/src/sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py b/src/sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py index 4a2a6de5f60..1975374e2ac 100644 --- a/src/sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py +++ b/src/sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py @@ -1578,7 +1578,7 @@ def asymptotics(self, p, alpha, N, asy_var=None, numerical=0, (1, [(x*y + x + y - 1, 2)]) sage: alpha = [4, 3] sage: decomp = F.asymptotic_decomposition(alpha); decomp - (0, []) + (-3/2*r*(1/y + 1) - 1/2/y - 1/2, [(x*y + x + y - 1, 1)]) + (0, []) + (-2*r*(1/x + 1) - 1/2/x - 1/2, [(x*y + x + y - 1, 1)]) sage: F1 = decomp[1] sage: p = {y: 1/3, x: 1/2} sage: asy = F1.asymptotics(p, alpha, 2, verbose=True) @@ -1612,7 +1612,7 @@ def asymptotics(self, p, alpha, N, asy_var=None, numerical=0, sage: alpha = [3, 3, 2] sage: decomp = F.asymptotic_decomposition(alpha); decomp (0, []) + - (-16*r*(3/y - 4/z) - 16/y + 32/z, + (16*r*(3/x - 2/z) + 16/x - 16/z, [(x + 2*y + z - 4, 1), (2*x + y + z - 4, 1)]) sage: F1 = decomp[1] sage: p = {x: 1, y: 1, z: 1} diff --git a/src/sage/rings/ideal.py b/src/sage/rings/ideal.py index 72548769de0..53076ac62ed 100644 --- a/src/sage/rings/ideal.py +++ b/src/sage/rings/ideal.py @@ -1709,7 +1709,7 @@ def Cyclic(R, n=None, homog=False, singular=None): from sage.interfaces.singular import singular as singular_default singular = singular_default - singular.lib("poly") + singular.lib("polylib") R2 = R.change_ring(RationalField()) R2._singular_().set_ring() @@ -1760,7 +1760,7 @@ def Katsura(R, n=None, homog=False, singular=None): if singular is None: from sage.interfaces.singular import singular as singular_default singular = singular_default - singular.lib("poly") + singular.lib("polylib") R2 = R.change_ring(RationalField()) R2._singular_().set_ring() diff --git a/src/sage/rings/polynomial/laurent_polynomial_ideal.py b/src/sage/rings/polynomial/laurent_polynomial_ideal.py index 886458ff1ed..525f20302ea 100644 --- a/src/sage/rings/polynomial/laurent_polynomial_ideal.py +++ b/src/sage/rings/polynomial/laurent_polynomial_ideal.py @@ -469,7 +469,7 @@ def associated_primes(self): sage: P. = LaurentPolynomialRing(QQ, 3) sage: p = z^2 + 1; q = z^3 + 2 sage: I = P.ideal((p*q^2, y-z^2)) - sage: I.associated_primes() + sage: tuple(sorted(I.associated_primes(), key=str)) (Ideal (y + 1, z^2 + 1) of Multivariate Laurent Polynomial Ring in x, y, z over Rational Field, Ideal (z^2 - y, y*z + 2, y^2 + 2*z) of Multivariate Laurent Polynomial Ring in x, y, z over Rational Field) """ @@ -489,7 +489,7 @@ def minimal_associated_primes(self, saturate=False): sage: P. = LaurentPolynomialRing(QQ, 3) sage: p = z^2 + 1; q = z^3 + 2 sage: I = P.ideal((p*q^2, y-z^2)) - sage: I.minimal_associated_primes() + sage: tuple(sorted(I.minimal_associated_primes(), key=str)) (Ideal (z^2 + 1, -z^2 + y) of Multivariate Laurent Polynomial Ring in x, y, z over Rational Field, Ideal (z^3 + 2, -z^2 + y) of Multivariate Laurent Polynomial Ring in x, y, z over Rational Field) """ diff --git a/src/sage/rings/polynomial/multi_polynomial_element.py b/src/sage/rings/polynomial/multi_polynomial_element.py index 43e93b823f8..1bd3696c73c 100644 --- a/src/sage/rings/polynomial/multi_polynomial_element.py +++ b/src/sage/rings/polynomial/multi_polynomial_element.py @@ -2230,7 +2230,7 @@ def degree_lowest_rational_function(r, x): :: sage: r = f/g; r - (-b*c^2 + 2)/(a*b^3*c^6 - 2*a*c) + (-2*b*c^2 - 1)/(2*a*b^3*c^6 + a*c) sage: degree_lowest_rational_function(r,a) -1 sage: degree_lowest_rational_function(r,b) diff --git a/src/sage/rings/polynomial/multi_polynomial_ideal.py b/src/sage/rings/polynomial/multi_polynomial_ideal.py index 130d8317a7a..47270760a2b 100644 --- a/src/sage/rings/polynomial/multi_polynomial_ideal.py +++ b/src/sage/rings/polynomial/multi_polynomial_ideal.py @@ -154,7 +154,7 @@ which is not 1. :: sage: I.groebner_basis() - [x + 130433*y + 59079*z, y^2 + 3*y + 17220, y*z + 5*y + 14504, 2*y + 158864, z^2 + 17223, 2*z + 41856, 164878] + [x + y + 57119*z + 4, y^2 + 3*y + 17220, y*z + y + 26532, 2*y + 158864, z^2 + 17223, 2*z + 41856, 164878] Now for each prime `p` dividing this integer 164878, the Groebner basis of I modulo `p` will be non-trivial and will thus give a @@ -710,17 +710,17 @@ def complete_primary_decomposition(self, algorithm="sy"): sage: R. = PolynomialRing(QQ, 3, order='lex') sage: p = z^2 + 1; q = z^3 + 2 sage: I = (p*q^2, y-z^2)*R - sage: pd = I.complete_primary_decomposition(); pd + sage: pd = I.complete_primary_decomposition(); sorted(pd, key=str) [(Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field, Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field), (Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field, Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field)] - sage: I.primary_decomposition_complete(algorithm = 'gtz') - [(Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field, - Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field), - (Ideal (z^2 + 1, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field, - Ideal (z^2 + 1, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field)] + sage: pdc = I.primary_decomposition_complete(algorithm = 'gtz'); sorted(pdc, key=str) + [(Ideal (z^2 + 1, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field, + Ideal (z^2 + 1, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field), + (Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field, + Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field)] sage: from functools import reduce sage: reduce(lambda Qi,Qj: Qi.intersection(Qj), [Qi for (Qi,radQi) in pd]) == I @@ -822,7 +822,7 @@ def primary_decomposition(self, algorithm='sy'): sage: R. = PolynomialRing(QQ, 3, order='lex') sage: p = z^2 + 1; q = z^3 + 2 sage: I = (p*q^2, y-z^2)*R - sage: pd = I.primary_decomposition(); pd + sage: pd = I.primary_decomposition(); sorted(pd, key=str) [Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field, Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field] @@ -894,7 +894,7 @@ def associated_primes(self, algorithm='sy'): sage: R. = PolynomialRing(QQ, 3, order='lex') sage: p = z^2 + 1; q = z^3 + 2 sage: I = (p*q^2, y-z^2)*R - sage: pd = I.associated_primes(); pd + sage: pd = I.associated_primes(); sorted(pd, key=str) [Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field, Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field] @@ -1566,8 +1566,8 @@ def intersection(self, *others): sage: I2 = y*R sage: I3 = (x, y)*R sage: I4 = (x^2 + x*y*z, y^2 - z^3*y, z^3 + y^5*x*z)*R - sage: I1.intersection(I2, I3, I4) - Ideal (x*y*z^20 - x*y*z^3, x*y^2 - x*y*z^3, x^2*y + x*y*z^4) of Multivariate Polynomial Ring in x, y, z over Rational Field + sage: I1.intersection(I2, I3, I4).groebner_basis() + [x^2*y + x*y*z^4, x*y^2 - x*y*z^3, x*y*z^20 - x*y*z^3] The ideals must share the same ring:: @@ -1616,11 +1616,9 @@ def minimal_associated_primes(self): sage: R. = PolynomialRing(QQ, 3, 'xyz') sage: p = z^2 + 1; q = z^3 + 2 sage: I = (p*q^2, y-z^2)*R - sage: I.minimal_associated_primes () - [Ideal (z^2 + 1, -z^2 + y) of Multivariate Polynomial Ring - in x, y, z over Rational Field, Ideal (z^3 + 2, -z^2 + y) - of Multivariate Polynomial Ring in x, y, z over Rational - Field] + sage: sorted(I.minimal_associated_primes(), key=str) + [Ideal (z^2 + 1, -z^2 + y) of Multivariate Polynomial Ring in x, y, z over Rational Field, + Ideal (z^3 + 2, -z^2 + y) of Multivariate Polynomial Ring in x, y, z over Rational Field] ALGORITHM: @@ -2698,7 +2696,7 @@ def hilbert_polynomial(self, algorithm='sage'): return out elif algorithm == 'singular': from sage.libs.singular.function_factory import ff - hilbPoly = ff.poly__lib.hilbPoly + hilbPoly = ff.polylib__lib.hilbPoly hp = hilbPoly(self) t = ZZ['t'].gen() @@ -4010,7 +4008,7 @@ def groebner_basis(self, algorithm='', deg_bound=None, mult_bound=None, prot=Fal sage: J.groebner_basis.set_cache(gb) sage: ideal(J.transformed_basis()).change_ring(P).interreduced_basis() # testing trac 21884 - [a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c] + ...[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c] Giac's gbasis over `\QQ` can benefit from a probabilistic lifting and multi threaded operations:: @@ -4113,9 +4111,9 @@ def groebner_basis(self, algorithm='', deg_bound=None, mult_bound=None, prot=Fal sage: P. = PolynomialRing(ZZ,3) sage: I = P * (a + 2*b + 2*c - 1, a^2 - a + 2*b^2 + 2*c^2, 2*a*b + 2*b*c - b) sage: I.groebner_basis() - [b^3 - 181*b*c^2 + 222*c^3 - 26*b*c - 146*c^2 + 19*b + 24*c, - 2*b*c^2 - 48*c^3 + 3*b*c + 22*c^2 - 2*b - 2*c, - 42*c^3 + 45*b^2 + 54*b*c + 22*c^2 - 13*b - 12*c, + [b^3 + b*c^2 + 12*c^3 + b^2 + b*c - 4*c^2, + 2*b*c^2 - 6*c^3 - b^2 - b*c + 2*c^2, + 42*c^3 + b^2 + 2*b*c - 14*c^2 + b, 2*b^2 + 6*b*c + 6*c^2 - b - 2*c, 10*b*c + 12*c^2 - b - 4*c, a + 2*b + 2*c - 1] diff --git a/src/sage/rings/polynomial/multi_polynomial_libsingular.pyx b/src/sage/rings/polynomial/multi_polynomial_libsingular.pyx index b3bb733d7aa..831113a5c94 100644 --- a/src/sage/rings/polynomial/multi_polynomial_libsingular.pyx +++ b/src/sage/rings/polynomial/multi_polynomial_libsingular.pyx @@ -1337,7 +1337,7 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_base): sage: R = IntegerModRing(15)['x,y'] sage: singular(R) polynomial ring, over a ring (with zero-divisors), global ordering - // coefficients: ZZ/bigint(15) + // coefficients: ZZ/...(15) // number of vars : 2 // block 1 : ordering dp // : names x y diff --git a/src/sage/rings/polynomial/plural.pyx b/src/sage/rings/polynomial/plural.pyx index 08b2ed72111..349871f5086 100644 --- a/src/sage/rings/polynomial/plural.pyx +++ b/src/sage/rings/polynomial/plural.pyx @@ -392,28 +392,30 @@ cdef class NCPolynomialRing_plural(Ring): TESTS: This example caused a segmentation fault with a previous version - of this method:: + of this method. This doctest still results in a segmentation fault + occasionally which is difficult to isolate, so this test is partially + disabled (:trac:`29528`):: sage: import gc sage: from sage.rings.polynomial.plural import NCPolynomialRing_plural sage: from sage.algebras.free_algebra import FreeAlgebra sage: A1. = FreeAlgebra(QQ, 3) sage: R1 = A1.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}, order=TermOrder('degrevlex', 2)) - sage: A2. = FreeAlgebra(GF(5), 3) - sage: R2 = A2.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}, order=TermOrder('degrevlex', 2)) - sage: A3. = FreeAlgebra(GF(11), 3) - sage: R3 = A3.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}, order=TermOrder('degrevlex', 2)) - sage: A4. = FreeAlgebra(GF(13), 3) - sage: R4 = A4.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}, order=TermOrder('degrevlex', 2)) + sage: A2. = FreeAlgebra(GF(5), 3) # not tested + sage: R2 = A2.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}, order=TermOrder('degrevlex', 2)) # not tested + sage: A3. = FreeAlgebra(GF(11), 3) # not tested + sage: R3 = A3.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}, order=TermOrder('degrevlex', 2)) # not tested + sage: A4. = FreeAlgebra(GF(13), 3) # not tested + sage: R4 = A4.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}, order=TermOrder('degrevlex', 2)) # not tested sage: _ = gc.collect() sage: foo = R1.gen(0) sage: del foo sage: del R1 sage: _ = gc.collect() - sage: del R2 - sage: _ = gc.collect() - sage: del R3 - sage: _ = gc.collect() + sage: del R2 # not tested + sage: _ = gc.collect() # not tested + sage: del R3 # not tested + sage: _ = gc.collect() # not tested """ singular_ring_delete(self._ring) @@ -2888,7 +2890,8 @@ cpdef MPolynomialRing_libsingular new_CRing(RingWrap rw, base_ring): self.__ngens = rw.ngens() self.__term_order = TermOrder(rw.ordering_string(), force=True) - ParentWithGens.__init__(self, base_ring, rw.var_names()) + ParentWithGens.__init__(self, base_ring, tuple(rw.var_names()), + normalize=False) # self._populate_coercion_lists_() # ??? #MPolynomialRing_generic.__init__(self, base_ring, n, names, order) diff --git a/src/sage/rings/polynomial/polynomial_singular_interface.py b/src/sage/rings/polynomial/polynomial_singular_interface.py index 37f131b5856..d9c33d9c2b4 100644 --- a/src/sage/rings/polynomial/polynomial_singular_interface.py +++ b/src/sage/rings/polynomial/polynomial_singular_interface.py @@ -165,7 +165,7 @@ def _singular_(self, singular=singular): sage: R = IntegerModRing(15)['x,y'] sage: singular(R) polynomial ring, over a ring (with zero-divisors), global ordering - // coefficients: ZZ/bigint(15) + // coefficients: ZZ/...(15) // number of vars : 2 // block 1 : ordering dp // : names x y diff --git a/src/sage/schemes/curves/projective_curve.py b/src/sage/schemes/curves/projective_curve.py index b380710fc49..0e6ba6a1e4b 100644 --- a/src/sage/schemes/curves/projective_curve.py +++ b/src/sage/schemes/curves/projective_curve.py @@ -1997,7 +1997,7 @@ def riemann_roch_basis(self, D): sage: C = Curve(f); pts = C.rational_points() sage: D = C.divisor([ (3, pts[0]), (-1,pts[1]), (10, pts[5]) ]) sage: C.riemann_roch_basis(D) - [(-x - 2*y)/(-2*x - 2*y), (-x + z)/(x + y)] + [(-2*x + y)/(x + y), (-x + z)/(x + y)] .. NOTE::