From 87f7b4a9f079d37d31a4838eb64dd7686236186a Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Sun, 6 Aug 2023 18:29:39 -0700 Subject: [PATCH] sage.rings.polynomial: Update # needs --- src/sage/rings/polynomial/polynomial_element.pyx | 8 ++++---- src/sage/rings/polynomial/term_order.py | 2 +- src/sage/rings/polynomial/toy_variety.py | 2 +- 3 files changed, 6 insertions(+), 6 deletions(-) diff --git a/src/sage/rings/polynomial/polynomial_element.pyx b/src/sage/rings/polynomial/polynomial_element.pyx index a0ea407ec4d..ec006cc0860 100644 --- a/src/sage/rings/polynomial/polynomial_element.pyx +++ b/src/sage/rings/polynomial/polynomial_element.pyx @@ -666,8 +666,8 @@ cdef class Polynomial(CommutativePolynomial): Univariate Polynomial Ring in x over Rational Field sage: zero = QQ['x'](0) - sage: a = matrix(ZZ, [[1]]) - sage: zero(a).parent() + sage: a = matrix(ZZ, [[1]]) # needs sage.modules + sage: zero(a).parent() # needs sage.modules Full MatrixSpace of 1 by 1 dense matrices over Rational Field sage: pol(y, x).parent() is pol(x, y).parent() is pol(y, y).parent() is Pol_xy @@ -677,11 +677,11 @@ cdef class Polynomial(CommutativePolynomial): Univariate Polynomial Ring in x over Rational Field sage: one = Pol_xy(1) - sage: one(1, 1.).parent() + sage: one(1, 1.).parent() # needs sage.rings.real_mpfr Real Field with 53 bits of precision sage: zero = GF(2)['x'](0) - sage: zero(1.).parent() + sage: zero(1.).parent() # needs sage.rings.real_mpfr Traceback (most recent call last): ... TypeError: no common canonical parent for objects with parents: diff --git a/src/sage/rings/polynomial/term_order.py b/src/sage/rings/polynomial/term_order.py index a04638ea9b6..189a73a2188 100644 --- a/src/sage/rings/polynomial/term_order.py +++ b/src/sage/rings/polynomial/term_order.py @@ -1659,7 +1659,7 @@ def singular_str(self): sage: T = P.term_order() sage: T.singular_str() '(lp(3),Dp(5),lp(2))' - sage: P._singular_() # needs sage.rings.finite_rings + sage: P._singular_() # needs sage.libs.singular polynomial ring, over a field, global ordering // coefficients: ZZ/127 // number of vars : 10 diff --git a/src/sage/rings/polynomial/toy_variety.py b/src/sage/rings/polynomial/toy_variety.py index 20fed7fd72d..5b51dc5eb00 100644 --- a/src/sage/rings/polynomial/toy_variety.py +++ b/src/sage/rings/polynomial/toy_variety.py @@ -203,7 +203,7 @@ def linear_representation(p, polys): EXAMPLES:: - sage: # needs sage.rings.finite_rings + sage: # needs sage.modules sage.rings.finite_rings sage: from sage.rings.polynomial.toy_variety import linear_representation sage: R. = PolynomialRing(GF(32003)) sage: B = [x^2 + 1, y^2 + 1, x*y + 1]