From 15f50e0685ee7daec6de61ca68acb147677767dd Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fr=C3=A9d=C3=A9ric=20Chapoton?= Date: Mon, 8 Aug 2022 14:34:03 +0200 Subject: [PATCH] pep8 for one file in quadratic_forms --- ...c_form__local_representation_conditions.py | 279 +++++++----------- 1 file changed, 106 insertions(+), 173 deletions(-) diff --git a/src/sage/quadratic_forms/quadratic_form__local_representation_conditions.py b/src/sage/quadratic_forms/quadratic_form__local_representation_conditions.py index 418365f3d60..5d39650ecb4 100644 --- a/src/sage/quadratic_forms/quadratic_form__local_representation_conditions.py +++ b/src/sage/quadratic_forms/quadratic_form__local_representation_conditions.py @@ -5,7 +5,7 @@ # Class for keeping track of the local conditions for representability # # of numbers by a quadratic form over ZZ (and eventually QQ also). # ######################################################################## - +from __future__ import annotations from copy import deepcopy from sage.arith.all import prime_divisors, valuation, is_square @@ -16,10 +16,9 @@ from sage.rings.rational_field import QQ - class QuadraticFormLocalRepresentationConditions(): """ - Creates a class for dealing with the local conditions of a + A class for dealing with the local conditions of a quadratic form, and checking local representability of numbers. EXAMPLES:: @@ -92,23 +91,21 @@ class QuadraticFormLocalRepresentationConditions(): sage: L = [m for m in range(100) if Q0.is_locally_represented_number(m)] sage: L [0] - """ - def __init__(self, Q): """ Takes a QuadraticForm and computes its local conditions (if - they don't already exist). The recompute_flag overrides the + they do not already exist). The recompute_flag overrides the previously computed conditions if they exist, and stores the new conditions. INPUT: - Q -- Quadratic form over ZZ + - Q -- Quadratic form over ZZ OUTPUT: - a QuadraticFormLocalRepresentationConditions object + a QuadraticFormLocalRepresentationConditions object EXAMPLES:: @@ -118,14 +115,11 @@ def __init__(self, Q): This form represents the p-adic integers Z_p for all primes p except []. For these and the reals, we have: Reals: [0, +Infinity] - """ - # Check that the form Q is integer-valued (we can relax this later) if Q.base_ring() != ZZ: raise TypeError("We require that the quadratic form be defined over ZZ (integer-values) for now.") - # Basic structure initialization self.local_repn_array = [] # List of all local conditions self.dim = Q.dim() # We allow this to be any non-negative integer. @@ -135,18 +129,17 @@ def __init__(self, Q): if self.dim == 0: self.coeff = None return - elif self.dim == 1: - self.coeff = Q[0,0] + if self.dim == 1: + self.coeff = Q[0, 0] return - else: - self.coeff = None + self.coeff = None # Compute the local conditions at the real numbers (i.e. "p = infinity") # ---------------------------------------------------------------------- M = Q.matrix() E = M.eigenspaces_left() - M_eigenvalues = [E[i][0] for i in range(len(E))] + M_eigenvalues = [E[i][0] for i in range(len(E))] pos_flag = infinity neg_flag = infinity @@ -160,30 +153,27 @@ def __init__(self, Q): real_vec = [infinity, pos_flag, neg_flag, None, None, None, None, None, None] self.local_repn_array.append(real_vec) - # Compute the local conditions for representability: # -------------------------------------------------- N = Q.level() level_primes = prime_divisors(N) # Make a table of local normal forms for each p | N - local_normal_forms = [Q.local_normal_form(p) for p in level_primes] + local_normal_forms = [Q.local_normal_form(p) for p in level_primes] # Check local representability conditions for each prime - for i in range(len(level_primes)): - p = level_primes[i] + for i, p in enumerate(level_primes): tmp_local_repn_vec = [p, None, None, None, None, None, None, None, None] sqclass = self.squareclass_vector(p) # Check the representability in each Z_p squareclass - for j in range(len(sqclass)): - m = sqclass[j] + for j, m in enumerate(sqclass): k = 0 repn_flag = False while ((not repn_flag) and (m < 4 * N * p * p)): - if (local_normal_forms[i].local_density(p, m) > 0): - tmp_local_repn_vec[j+1] = k + if local_normal_forms[i].local_density(p, m) > 0: + tmp_local_repn_vec[j + 1] = k repn_flag = True k = k + 1 m = m * p * p @@ -191,7 +181,7 @@ def __init__(self, Q): # If we're not represented, write "infinity" to signify # that this squareclass is fully obstructed if not repn_flag: - tmp_local_repn_vec[j+1] = infinity + tmp_local_repn_vec[j + 1] = infinity # Test if the conditions at p give exactly Z_p when dim >=3, or # if we represent the elements of even valuation >= 2 when dim = 2. @@ -207,21 +197,18 @@ def __init__(self, Q): self.local_repn_array.append(tmp_local_repn_vec) self.exceptional_primes.append(p) - - def __repr__(self): + def __repr__(self) -> str: r""" Print the local conditions. - INPUT: - - none - OUTPUT: - string + string - TO DO: Improve the output for the real numbers, and special output for locally universality. - Also give names to the squareclasses, so it's clear what the output means! =) + .. TODO:: + + Improve the output for the real numbers, and special output for locally universality. + Also give names to the squareclasses, so it's clear what the output means! =) EXAMPLES:: @@ -230,7 +217,6 @@ def __repr__(self): sage: C = QuadraticFormLocalRepresentationConditions(Q) sage: C.__repr__() 'This 2-dimensional form represents the p-adic integers of even\nvaluation for all primes p except [2].\nFor these and the reals, we have:\n Reals: [0, +Infinity]\n p = 2: [0, +Infinity, 0, +Infinity, 0, +Infinity, 0, +Infinity]\n' - """ if self.dim == 0: out_str = "This 0-dimensional form only represents zero." @@ -254,19 +240,17 @@ def __repr__(self): return out_str - - - def __eq__(self, right): + def __eq__(self, right) -> bool: """ - Determines if two sets of local conditions are equal. + Determine if two sets of local conditions are equal. INPUT: - right -- a QuadraticFormLocalRepresentationConditions object + - right -- a QuadraticFormLocalRepresentationConditions object OUTPUT: - boolean + boolean EXAMPLES:: @@ -296,26 +280,24 @@ def __eq__(self, right): # Check equality by dimension if self.dim == 0: return True - elif self.dim == 1: + if self.dim == 1: return self.coeff == right.coeff # Compare coefficients in dimension 1 (since ZZ has only one unit square) - else: - return (self.exceptional_primes == right.exceptional_primes) \ - and (self.local_repn_array == right.local_repn_array) + return ((self.exceptional_primes == right.exceptional_primes) + and (self.local_repn_array == right.local_repn_array)) - - def squareclass_vector(self, p): + def squareclass_vector(self, p) -> list: """ - Gives a vector of integers which are normalized + Return a list of integers which are normalized representatives for the `p`-adic rational squareclasses (or the real squareclasses) at the prime `p`. INPUT: - `p` -- a positive prime number or "infinity". + - `p` -- a positive prime number or "infinity" OUTPUT: - a list of integers + a list of integers EXAMPLES:: @@ -324,29 +306,25 @@ def squareclass_vector(self, p): sage: C = QuadraticFormLocalRepresentationConditions(Q) sage: C.squareclass_vector(5) [1, 2, 5, 10] - """ if p == infinity: return [1, -1] - elif p == 2: + if p == 2: return [1, 3, 5, 7, 2, 6, 10, 14] - else: - r = least_quadratic_nonresidue(p) - return [1, r, p, p*r] + r = least_quadratic_nonresidue(p) + return [1, r, p, p * r] - - - def local_conditions_vector_for_prime(self, p): + def local_conditions_vector_for_prime(self, p) -> list: """ - Returns a local representation vector for the (possibly infinite) prime `p`. + Return a local representation vector for the (possibly infinite) prime `p`. INPUT: - `p` -- a positive prime number. (Is 'infinity' allowed here?) + - `p` -- a positive prime number. (Is 'infinity' allowed here?) OUTPUT: - a list of integers + a list of integers EXAMPLES:: @@ -357,7 +335,6 @@ def local_conditions_vector_for_prime(self, p): [2, 0, 0, 0, +Infinity, 0, 0, 0, 0] sage: C.local_conditions_vector_for_prime(3) [3, 0, 0, 0, 0, None, None, None, None] - """ # Check if p is non-generic if p in self.exceptional_primes: @@ -380,31 +357,30 @@ def local_conditions_vector_for_prime(self, p): v = [p, None, None, None, None, None, None, None, None] sqclass = self.squareclass_vector(p) - for i in range(len(sqclass)): - if QQ(self.coeff / sqclass[i]).is_padic_square(p): # Note:This should happen only once! - nu = valuation(self.coeff / sqclass[i], p) / 2 + for i, sqi in enumerate(sqclass): + if QQ(self.coeff / sqi).is_padic_square(p): # Note:This should happen only once! + nu = valuation(self.coeff / sqi, p) / 2 # UNUSED VARIABLE ! else: - v[i+1] = infinity + v[i + 1] = infinity elif self.dim == 0: if p == 2: return [2, infinity, infinity, infinity, infinity, infinity, infinity, infinity, infinity] - else: - return [p, infinity, infinity, infinity, infinity, None, None, None, None] + return [p, infinity, infinity, infinity, infinity, None, None, None, None] - raise RuntimeError("Error... The dimension stored should be a non-negative integer!") + raise RuntimeError("the stored dimension should be a non-negative integer") - def is_universal_at_prime(self, p): + def is_universal_at_prime(self, p) -> bool: """ - Determines if the (integer-valued/rational) quadratic form represents all of `Z_p`. + Determine if the (integer-valued/rational) quadratic form represents all of `Z_p`. INPUT: - `p` -- a positive prime number or "infinity". + - `p` -- a positive prime number or "infinity". OUTPUT: - boolean + boolean EXAMPLES:: @@ -417,14 +393,13 @@ def is_universal_at_prime(self, p): True sage: C.is_universal_at_prime(infinity) False - """ # Check if the prime behaves generically for n >= 3. - if (self.dim >= 3) and not (p in self.exceptional_primes): + if self.dim >= 3 and p not in self.exceptional_primes: return True # Check if the prime behaves generically for n <= 2. - if (self.dim <= 2) and not (p in self.exceptional_primes): + if self.dim <= 2 and p not in self.exceptional_primes: return False # Check if the prime is "infinity" (for the reals) @@ -432,7 +407,7 @@ def is_universal_at_prime(self, p): v = self.local_repn_array[0] if p != v[0]: raise RuntimeError("Error... The first vector should be for the real numbers!") - return (v[1:3] == [0,0]) # True iff the form is indefinite + return (v[1:3] == [0, 0]) # True iff the form is indefinite # Check non-generic "finite" primes v = self.local_conditions_vector_for_prime(p) @@ -442,18 +417,13 @@ def is_universal_at_prime(self, p): Zp_univ_flag = False return Zp_univ_flag - - def is_universal_at_all_finite_primes(self): + def is_universal_at_all_finite_primes(self) -> bool: """ - Determines if the quadratic form represents `Z_p` for all finite/non-archimedean primes. - - INPUT: - - none + Determine if the quadratic form represents `Z_p` for all finite/non-archimedean primes. OUTPUT: - boolean + boolean EXAMPLES:: @@ -470,31 +440,24 @@ def is_universal_at_all_finite_primes(self): sage: C = QuadraticFormLocalRepresentationConditions(Q) sage: C.is_universal_at_all_finite_primes() True - """ # Check if dim <= 2. if self.dim <= 2: return False # Check that all non-generic finite primes are universal - univ_flag = True - for p in self.exceptional_primes[1:]: # Omit p = "infinity" here - univ_flag = univ_flag and self.is_universal_at_prime(p) - return univ_flag - + # Omit p = "infinity" here + return all(self.is_universal_at_prime(p) + for p in self.exceptional_primes[1:]) - def is_universal_at_all_places(self): + def is_universal_at_all_places(self) -> bool: """ - Determines if the quadratic form represents `Z_p` for all + Determine if the quadratic form represents `Z_p` for all finite/non-archimedean primes, and represents all real numbers. - INPUT: - - none - OUTPUT: - boolean + boolean EXAMPLES:: @@ -520,34 +483,29 @@ def is_universal_at_all_places(self): sage: C = QuadraticFormLocalRepresentationConditions(Q) # long time (8.5 s) sage: C.is_universal_at_all_places() # long time True - """ # Check if dim <= 2. if self.dim <= 2: return False # Check that all non-generic finite primes are universal - for p in self.exceptional_primes: - if not self.is_universal_at_prime(p): - return False - return True + return all(self.is_universal_at_prime(p) + for p in self.exceptional_primes) - - - def is_locally_represented_at_place(self, m, p): + def is_locally_represented_at_place(self, m, p) -> bool: """ - Determines if the rational number m is locally represented by the + Determine if the rational number `m` is locally represented by the quadratic form at the (possibly infinite) prime `p`. INPUT: - `m` -- an integer + - `m` -- an integer - `p` -- a positive prime number or "infinity". + - `p` -- a positive prime number or "infinity". OUTPUT: - boolean + boolean EXAMPLES:: @@ -565,7 +523,6 @@ def is_locally_represented_at_place(self, m, p): True sage: C.is_locally_represented_at_place(0, infinity) True - """ # Sanity Check if m not in QQ: @@ -583,9 +540,8 @@ def is_locally_represented_at_place(self, m, p): if self.dim == 1: m1 = QQ(m) / self.coeff if p == infinity: - return (m1 > 0) - else: - return (valuation(m1, p) >= 0) and m1.is_padic_square(p) + return m1 > 0 + return (valuation(m1, p) >= 0) and m1.is_padic_square(p) # >= 2-dim'l forms local_vec = self.local_conditions_vector_for_prime(p) @@ -594,31 +550,31 @@ def is_locally_represented_at_place(self, m, p): if p == infinity: if m > 0: return local_vec[1] == 0 - elif m < 0: + if m < 0: return local_vec[2] == 0 - else: # m == 0 - return True + # m == 0 + return True # Check at a finite place sqclass = self.squareclass_vector(p) for s in sqclass: - if (QQ(m)/s).is_padic_square(p): - nu = valuation(m//s, p) + if (QQ(m) / s).is_padic_square(p): + nu = valuation(m // s, p) return local_vec[sqclass.index(s) + 1] <= (nu / 2) - def is_locally_represented(self, m): + def is_locally_represented(self, m) -> bool: """ - Determines if the rational number `m` is locally represented by + Determine if the rational number `m` is locally represented by the quadratic form (allowing vectors with coefficients in `Z_p` at all places). INPUT: - `m` -- an integer + - `m` -- an integer OUTPUT: - boolean + boolean EXAMPLES:: @@ -634,7 +590,6 @@ def is_locally_represented(self, m): True sage: C.is_locally_represented(QQ(1)/QQ(2)) False - """ # Representing zero if m == 0: @@ -665,15 +620,14 @@ def is_locally_represented(self, m): # If we got here, we're locally represented! return True - - -# -------------------- End of QuadraticFormLocalRepresentationConditions Class ---------------------- - +# --- End of QuadraticFormLocalRepresentationConditions Class --- def local_representation_conditions(self, recompute_flag=False, silent_flag=False): """ - WARNING: THIS ONLY WORKS CORRECTLY FOR FORMS IN >=3 VARIABLES, + .. WARNING:: + + THIS ONLY WORKS CORRECTLY FOR FORMS IN >=3 VARIABLES, WHICH ARE LOCALLY UNIVERSAL AT ALMOST ALL PRIMES! This class finds the local conditions for a number to be integrally @@ -718,14 +672,10 @@ def local_representation_conditions(self, recompute_flag=False, silent_flag=Fals positive reals are represented). The real vector always appears, and is listed before the other ones. - INPUT: - - none - OUTPUT: - A list of 9-element vectors describing the representation - obstructions at primes dividing the level. + A list of 9-element vectors describing the representation + obstructions at primes dividing the level. EXAMPLES:: @@ -745,7 +695,6 @@ def local_representation_conditions(self, recompute_flag=False, silent_flag=Fals Reals: [0, +Infinity] p = 2: [0, +Infinity, 0, +Infinity, 0, +Infinity, 0, +Infinity] - sage: Q1 = DiagonalQuadraticForm(ZZ, [1,1,1]) sage: Q1.local_representation_conditions() This form represents the p-adic integers Z_p for all primes p except @@ -778,9 +727,8 @@ def local_representation_conditions(self, recompute_flag=False, silent_flag=Fals This form represents the p-adic integers Z_p for all primes p except []. For these and the reals, we have: Reals: [0, +Infinity] - """ - # Recompute the local conditions if they don't exist or the recompute_flag is set. + # Recompute the local conditions if they do not exist or the recompute_flag is set. if not hasattr(self, "__local_representability_conditions") or recompute_flag: self.__local_representability_conditions = QuadraticFormLocalRepresentationConditions(self) @@ -789,17 +737,17 @@ def local_representation_conditions(self, recompute_flag=False, silent_flag=Fals return self.__local_representability_conditions -def is_locally_universal_at_prime(self, p): +def is_locally_universal_at_prime(self, p) -> bool: """ - Determines if the (integer-valued/rational) quadratic form represents all of `Z_p`. + Determine if the (integer-valued/rational) quadratic form represents all of `Z_p`. INPUT: - `p` -- a positive prime number or "infinity". + - `p` -- a positive prime number or "infinity". OUTPUT: - boolean + boolean EXAMPLES:: @@ -830,24 +778,18 @@ def is_locally_universal_at_prime(self, p): sage: Q = DiagonalQuadraticForm(ZZ, [1,1,-1]) sage: Q.is_locally_universal_at_prime(infinity) True - """ self.local_representation_conditions(silent_flag=True) return self.__local_representability_conditions.is_universal_at_prime(p) - -def is_locally_universal_at_all_primes(self): +def is_locally_universal_at_all_primes(self) -> bool: """ - Determines if the quadratic form represents `Z_p` for all finite/non-archimedean primes. - - INPUT: - - none + Determine if the quadratic form represents `Z_p` for all finite/non-archimedean primes. OUTPUT: - boolean + boolean EXAMPLES:: @@ -866,25 +808,19 @@ def is_locally_universal_at_all_primes(self): sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1]) sage: Q.is_locally_universal_at_all_primes() False - """ self.local_representation_conditions(silent_flag=True) return self.__local_representability_conditions.is_universal_at_all_finite_primes() - -def is_locally_universal_at_all_places(self): +def is_locally_universal_at_all_places(self) -> bool: """ - Determines if the quadratic form represents `Z_p` for all + Determine if the quadratic form represents `Z_p` for all finite/non-archimedean primes, and represents all real numbers. - INPUT: - - none - OUTPUT: - boolean + boolean EXAMPLES:: @@ -903,27 +839,25 @@ def is_locally_universal_at_all_places(self): sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1,-1]) sage: Q.is_locally_universal_at_all_places() # long time (8.5 s) True - """ self.local_representation_conditions(silent_flag=True) return self.__local_representability_conditions.is_universal_at_all_places() - -def is_locally_represented_number_at_place(self, m, p): +def is_locally_represented_number_at_place(self, m, p) -> bool: """ - Determines if the rational number m is locally represented by the + Determine if the rational number `m` is locally represented by the quadratic form at the (possibly infinite) prime `p`. INPUT: - `m` -- an integer + - `m` -- an integer - `p` -- a prime number > 0 or 'infinity' + - `p` -- a prime number > 0 or 'infinity' OUTPUT: - boolean + boolean EXAMPLES:: @@ -952,24 +886,23 @@ def is_locally_represented_number_at_place(self, m, p): True sage: Q.is_locally_represented_number_at_place(7, 5) # long time True - """ self.local_representation_conditions(silent_flag=True) return self.__local_representability_conditions.is_locally_represented_at_place(m, p) - -def is_locally_represented_number(self, m): +def is_locally_represented_number(self, m) -> bool: """ - Determines if the rational number m is locally represented by the quadratic form. + Determine if the rational number `m` is locally represented + by the quadratic form. INPUT: - `m` -- an integer + - `m` -- an integer OUTPUT: - boolean + boolean EXAMPLES::