-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
78 lines (61 loc) · 2.01 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from flask import Flask, jsonify, request
# curl http://localhost:5000/predict \
# --request POST \
# --header "Content-Type: application/json" \
# --data '{"address": "cell"}'
from tensorflow import keras
import numpy as np
from PIL import Image
import os
# IMAGE_PATH = "/home/gajendra/bcpmodel/"
def channel_zeropad(x, channel_axis=3):
'''
Zero-padding for channle dimensions.
Note that padded channles are added like (Batch, H, W, 2/x + x + 2/x).
'''
shape = list(x.shape)
y = keras.backend.zeros_like(x)
if channel_axis == 3:
y = y[:, :, :, :shape[channel_axis] // 2]
else:
y = y[:, :shape[channel_axis] // 2, :, :]
return keras.layers.concatenate([y, x, y], channel_axis)
def channel_zeropad_output(input_shape, channel_axis=3):
'''
Function for setting a channel dimension for zero padding.
'''
shape = list(input_shape)
shape[channel_axis] *= 2
return tuple(shape)
model = keras.models.load_model('mySeResnextModel.hdf5', custom_objects= {'channel_zeropad': channel_zeropad, 'channel_zeropad_output': channel_zeropad_output})
# model.compile(loss='categorical_crossentropy', optimizer='Adamax', metrics=['accuracy'])
app = Flask(__name__)
def load_image(image):
image = image + ".bmp"
image = np.array(Image.open(image))
image = float(image/255)
return image
def predict_image(image):
image = load_image(image)
prediction = model.predict(image)
return prediction
@app.route('/')
def hello_world():
value = "Hello World! \n This api is made to predict blood cancer for a provided cell image!"
return value
@app.route('/value', methods = ["GET"])
def bringit():
if request.method == 'GET':
string = input("Enter address of image: ")
string = str(string) + " VOILA!"
return jsonify(string)
@app.route('/predict', methods = ["POST"])
def predict():
try:
if "address" in request.get_json():
data = request.get_json()['address']
return jsonify(predict_image(data))
except KeyError:
return jsonify("Provide a proper value for address!")
if __name__ == '__main__':
app.run(debug = True)