-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhparams_registry.py
executable file
·209 lines (167 loc) · 9.41 KB
/
hparams_registry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import numpy as np
from domainbed.lib import misc
def _define_hparam(hparams, hparam_name, default_val, random_val_fn):
hparams[hparam_name] = (hparams, hparam_name, default_val, random_val_fn)
def _hparams(algorithm, dataset, random_seed, larger_batch=False):
"""
Global registry of hyperparams. Each entry is a (default, random) tuple.
New algorithms / networks / etc. should add entries here.
"""
SMALL_IMAGES = ['Debug28', 'RotatedMNIST', 'ColoredMNIST']
hparams = {}
def _hparam(name, default_val, random_val_fn):
"""Define a hyperparameter. random_val_fn takes a RandomState and
returns a random hyperparameter value."""
assert (name not in hparams)
random_state = np.random.RandomState(
misc.seed_hash(random_seed, name)
)
hparams[name] = (default_val, random_val_fn(random_state))
# Unconditional hparam definitions.
if 'CLIP' not in algorithm:
_hparam('data_augmentation', True, lambda r: True)
_hparam('resnet18', False, lambda r: False)
_hparam('resnet_pretrained', True, lambda r: True)
_hparam('resnet_dropout', 0., lambda r: r.choice([0., 0.1, 0.5]))
_hparam('class_balanced', False, lambda r: False)
# TODO: nonlinear classifiers disabled
_hparam('nonlinear_classifier', False,
lambda r: bool(r.choice([False, False])))
# Algorithm-specific hparam definitions. Each block of code below
# corresponds to exactly one algorithm.
if algorithm in ['DANN', 'CDANN']:
_hparam('lambda', 1.0, lambda r: 10 ** r.uniform(-2, 2))
_hparam('weight_decay_d', 0., lambda r: 10 ** r.uniform(-6, -2))
_hparam('d_steps_per_g_step', 1, lambda r: int(2 ** r.uniform(0, 3)))
_hparam('grad_penalty', 0., lambda r: 10 ** r.uniform(-2, 1))
_hparam('beta1', 0.5, lambda r: r.choice([0., 0.5]))
_hparam('mlp_width', 256, lambda r: int(2 ** r.uniform(6, 10)))
_hparam('mlp_depth', 3, lambda r: int(r.choice([3, 4, 5])))
_hparam('mlp_dropout', 0., lambda r: r.choice([0., 0.1, 0.5]))
elif algorithm == 'Fish':
_hparam('meta_lr', 0.5, lambda r: r.choice([0.05, 0.1, 0.5]))
elif algorithm == "RSC":
_hparam('rsc_f_drop_factor', 1 / 3, lambda r: r.uniform(0, 0.5))
_hparam('rsc_b_drop_factor', 1 / 3, lambda r: r.uniform(0, 0.5))
elif algorithm == "SagNet":
_hparam('sag_w_adv', 0.1, lambda r: 10 ** r.uniform(-2, 1))
elif algorithm == "IRM":
_hparam('irm_lambda', 1e2, lambda r: 10 ** r.uniform(-1, 5))
_hparam('irm_penalty_anneal_iters', 500,
lambda r: int(10 ** r.uniform(0, 4)))
elif algorithm == "Mixup":
_hparam('mixup_alpha', 0.2, lambda r: 10 ** r.uniform(-1, -1))
elif algorithm == "GroupDRO":
_hparam('groupdro_eta', 1e-2, lambda r: 10 ** r.uniform(-3, -1))
elif algorithm == "MMD" or algorithm == "CORAL":
_hparam('mmd_gamma', 1., lambda r: 10 ** r.uniform(-1, 1))
elif algorithm == "MLDG":
_hparam('mldg_beta', 1., lambda r: 10 ** r.uniform(-1, 1))
elif algorithm == "MTL":
_hparam('mtl_ema', .99, lambda r: r.choice([0.5, 0.9, 0.99, 1.]))
elif algorithm == "VREx":
_hparam('vrex_lambda', 1e1, lambda r: 10 ** r.uniform(-1, 5))
_hparam('vrex_penalty_anneal_iters', 500,
lambda r: int(10 ** r.uniform(0, 4)))
elif algorithm == "SD":
_hparam('sd_reg', 0.1, lambda r: 10 ** r.uniform(-5, -1))
elif algorithm == "ANDMask":
_hparam('tau', 1, lambda r: r.uniform(0.5, 1.))
elif algorithm == "IGA":
_hparam('penalty', 1000, lambda r: 10 ** r.uniform(1, 5))
elif algorithm == "SANDMask":
_hparam('tau', 1.0, lambda r: r.uniform(0.0, 1.))
_hparam('k', 1e+1, lambda r: int(10 ** r.uniform(-3, 5)))
elif algorithm == "CAD" or algorithm == "CondCAD":
_hparam('lmbda', 1, lambda r: r.choice([1e-4, 1e-3, 1e-2, 1e-1, 1, 1e1, 1e2]))
_hparam('temperature', 0.1, lambda r: r.choice([0.05, 0.1]))
_hparam('is_normalized', False, lambda r: False)
_hparam('is_project', False, lambda r: False)
_hparam('is_flipped', True, lambda r: True)
# Dataset-and-algorithm-specific hparam definitions. Each block of code
# below corresponds to exactly one hparam. Avoid nested conditionals.
if dataset in SMALL_IMAGES:
_hparam('lr', 1e-3, lambda r: 10 ** r.uniform(-4.5, -2.5))
else:
_hparam('lr', 5e-5, lambda r: 10 ** r.uniform(-5, -3.5))
if dataset in SMALL_IMAGES:
_hparam('weight_decay', 0., lambda r: 0.)
else:
_hparam('weight_decay', 0., lambda r: 10 ** r.uniform(-6, -2))
if dataset in SMALL_IMAGES:
_hparam('batch_size', 64, lambda r: int(2 ** r.uniform(3, 9)))
elif algorithm == 'ARM':
_hparam('batch_size', 8, lambda r: 8)
elif dataset == 'DomainNet':
_hparam('batch_size', 32, lambda r: int(2 ** r.uniform(3, 5)))
else:
_hparam('batch_size', 32, lambda r: int(2 ** r.uniform(3, 5.3)))
if algorithm in ['DANN', 'CDANN'] and dataset in SMALL_IMAGES:
_hparam('lr_g', 1e-3, lambda r: 10 ** r.uniform(-4.5, -2.5))
elif algorithm in ['DANN', 'CDANN']:
_hparam('lr_g', 5e-5, lambda r: 10 ** r.uniform(-5, -3.5))
if algorithm in ['DANN', 'CDANN'] and dataset in SMALL_IMAGES:
_hparam('lr_d', 1e-3, lambda r: 10 ** r.uniform(-4.5, -2.5))
elif algorithm in ['DANN', 'CDANN']:
_hparam('lr_d', 5e-5, lambda r: 10 ** r.uniform(-5, -3.5))
if algorithm in ['DANN', 'CDANN'] and dataset in SMALL_IMAGES:
_hparam('weight_decay_g', 0., lambda r: 0.)
elif algorithm in ['DANN', 'CDANN']:
_hparam('weight_decay_g', 0., lambda r: 10 ** r.uniform(-6, -2))
else:
_hparam('clip_model', 'RN50', lambda r: 'RN50') # possible choices: ['RN50', 'RN101', 'RN50x4', 'ViT-B/32']
_hparam('data_augmentation', False, lambda r: False) # no data augmentation
_hparam('class_balanced', False, lambda r: False)
_hparam('clf_type', 'SVM', lambda r: 'SVM') # possible choices: 'SVM' or 'Logistic' for sklearn classifiers,
# 'LogisticPT' for pytorch implemented logistic regression, 'ZeroShot' for CLIP zero-shot classifier
# optimization
_hparam('lr', 3e-4, lambda r: r.choice([1e-4, 3e-4, 1e-3, 3e-3]))
if not larger_batch:
_hparam('batch_size', 64, lambda r: int(r.choice([64, 128, 256])))
else:
_hparam('batch_size', 256, lambda r: int(r.choice([128, 256, 512])))
_hparam('warmup', False, lambda r: bool(r.choice([True, False]))) # whether warmp up learning rate
_hparam('cosine_anneal', True, lambda r: True) # whether apply cosine annealing or step decay
_hparam('weight_decay', 1e-5, lambda r: 1e-5)
_hparam('max_epoch', 50, lambda r: 50)
_hparam('max_step', 5001, lambda r: 5001)
_hparam('use_fix_step', False, lambda r: False) # whether use fix number of training steps or epochs
# MLP
_hparam('mlp_width', 1024, lambda r: 1024)
_hparam('mlp_depth', 2, lambda r: 2)
_hparam('mlp_blocks', 1, lambda r: 1)
_hparam('mlp_dropout', 0.1, lambda r: r.choice([0., 0.1, 0.5]))
_hparam('mlp_norm', False, lambda r: False)
# algorithm-specific hparams
if 'ContrastCLIPBottleneck' in algorithm:
_hparam('temperature', 0.05, lambda r: 0.05)
_hparam('learnable_temperature', True, lambda r: True)
_hparam('is_symmetric', False, lambda r: False)
_hparam('is_project', False, lambda r: False)
elif 'SupCLIPBottleneck' in algorithm:
_hparam('refit_classifier', True, lambda r: True)
else:
assert algorithm in ['CLIPZeroShot', 'CLIPPretrained'], algorithm
if 'BottleneckBase' in algorithm:
_hparam('lmbda', 0., lambda r: 0.)
elif 'BottleneckEnt' in algorithm:
_hparam('lmbda', 1, lambda r: r.choice([1e-4, 1e-3, 1e-2, 1e-1, 1, 1e1, 1e2]))
elif 'BottleneckCAD' in algorithm or 'BottleneckCondCAD':
_hparam('lmbda', 1e-2, lambda r: r.choice([1e-4, 1e-3, 1e-2, 1e-1, 1]))
if 'SupCLIPBottleneck' in algorithm:
_hparam('temperature', 0.05, lambda r: 0.05)
_hparam('is_normalized', False, lambda r: False)
_hparam('is_project', False, lambda r: False)
_hparam('is_flipped', True, lambda r: True)
elif 'ContrastCLIPBottleneck' in algorithm:
_hparam('is_normalized', False, lambda r: False)
_hparam('is_flipped', True, lambda r: True)
else:
assert algorithm in ['CLIPZeroShot', 'CLIPPretrained'], algorithm
return hparams
def default_hparams(algorithm, dataset, larger_batch=False):
return {a: b for a, (b, c) in _hparams(algorithm, dataset, 0, larger_batch=larger_batch).items()}
def random_hparams(algorithm, dataset, seed, larger_batch=False):
return {a: c for a, (b, c) in
_hparams(algorithm, dataset, seed, larger_batch=larger_batch).items()}