diff --git a/Marlin/src/core/types.h b/Marlin/src/core/types.h
index aee25a0dfff44..6bcd4bd489ea2 100644
--- a/Marlin/src/core/types.h
+++ b/Marlin/src/core/types.h
@@ -16,7 +16,7 @@
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
- * along with this program. If not, see .
+ * along with this program. If not, see .
*
*/
#pragma once
@@ -26,45 +26,8 @@
#include "../inc/MarlinConfigPre.h"
-//
-// Conditional type assignment magic. For example...
-//
-// typename IF<(MYOPT==12), int, float>::type myvar;
-//
-template
-struct IF { typedef R type; };
-template
-struct IF { typedef L type; };
-
-#define LINEAR_AXIS_GANG(V...) GANG_N(LINEAR_AXES, V)
-#define LINEAR_AXIS_CODE(V...) CODE_N(LINEAR_AXES, V)
-#define LINEAR_AXIS_LIST(V...) LIST_N(LINEAR_AXES, V)
-#define LINEAR_AXIS_ARRAY(V...) { LINEAR_AXIS_LIST(V) }
-#define LINEAR_AXIS_ARGS(T...) LINEAR_AXIS_LIST(T x, T y, T z, T i, T j, T k)
-#define LINEAR_AXIS_ELEM(O) LINEAR_AXIS_LIST(O.x, O.y, O.z, O.i, O.j, O.k)
-#define LINEAR_AXIS_DEFS(T,V) LINEAR_AXIS_LIST(T x=V, T y=V, T z=V, T i=V, T j=V, T k=V)
-
-#define LOGICAL_AXIS_GANG(E,V...) LINEAR_AXIS_GANG(V) GANG_ITEM_E(E)
-#define LOGICAL_AXIS_CODE(E,V...) LINEAR_AXIS_CODE(V) CODE_ITEM_E(E)
-#define LOGICAL_AXIS_LIST(E,V...) LINEAR_AXIS_LIST(V) LIST_ITEM_E(E)
-#define LOGICAL_AXIS_ARRAY(E,V...) { LOGICAL_AXIS_LIST(E,V) }
-#define LOGICAL_AXIS_ARGS(T...) LOGICAL_AXIS_LIST(T e, T x, T y, T z, T i, T j, T k)
-#define LOGICAL_AXIS_ELEM(O) LOGICAL_AXIS_LIST(O.e, O.x, O.y, O.z, O.i, O.j, O.k)
-#define LOGICAL_AXIS_DECL(T,V) LOGICAL_AXIS_LIST(T e=V, T x=V, T y=V, T z=V, T i=V, T j=V, T k=V)
-
-#define LOGICAL_AXES_STRING LOGICAL_AXIS_GANG("E", "X", "Y", "Z", STR_I, STR_J, STR_K)
-
-#if HAS_EXTRUDERS
- #define LIST_ITEM_E(N) , N
- #define CODE_ITEM_E(N) ; N
- #define GANG_ITEM_E(N) N
-#else
- #define LIST_ITEM_E(N)
- #define CODE_ITEM_E(N)
- #define GANG_ITEM_E(N)
-#endif
-
-#define AXIS_COLLISION(L) (AXIS4_NAME == L || AXIS5_NAME == L || AXIS6_NAME == L)
+class __FlashStringHelper;
+typedef const __FlashStringHelper *progmem_str;
//
// Enumerated axis indices
@@ -74,84 +37,52 @@ struct IF { typedef L type; };
// - X_HEAD, Y_HEAD, and Z_HEAD should be used for Steppers on Core kinematics
//
enum AxisEnum : uint8_t {
-
- // Linear axes may be controlled directly or indirectly
- LINEAR_AXIS_LIST(X_AXIS, Y_AXIS, Z_AXIS, I_AXIS, J_AXIS, K_AXIS)
-
- // Extruder axes may be considered distinctly
- #define _EN_ITEM(N) , E##N##_AXIS
- REPEAT(EXTRUDERS, _EN_ITEM)
- #undef _EN_ITEM
-
- // Core also keeps toolhead directions
- #if ANY(IS_CORE, MARKFORGED_XY, MARKFORGED_YX)
- , X_HEAD, Y_HEAD, Z_HEAD
- #endif
-
- // Distinct axes, including all E and Core
- , NUM_AXIS_ENUMS
-
- // Most of the time we refer only to the single E_AXIS
- #if HAS_EXTRUDERS
- , E_AXIS = E0_AXIS
- #endif
-
- // A, B, and C are for DELTA, SCARA, etc.
- , A_AXIS = X_AXIS
- #if HAS_Y_AXIS
- , B_AXIS = Y_AXIS
- #endif
- #if HAS_Z_AXIS
- , C_AXIS = Z_AXIS
- #endif
-
- // To refer to all or none
- , ALL_AXES_ENUM = 0xFE, NO_AXIS_ENUM = 0xFF
+ X_AXIS = 0, A_AXIS = 0,
+ Y_AXIS = 1, B_AXIS = 1,
+ Z_AXIS = 2, C_AXIS = 2,
+ E_AXIS = 3,
+ X_HEAD = 4, Y_HEAD = 5, Z_HEAD = 6,
+ E0_AXIS = 3,
+ E1_AXIS, E2_AXIS, E3_AXIS, E4_AXIS, E5_AXIS, E6_AXIS, E7_AXIS,
+ ALL_AXES = 0xFE, NO_AXIS = 0xFF
};
-typedef IF<(NUM_AXIS_ENUMS > 8), uint16_t, uint8_t>::type axis_bits_t;
-
//
-// Loop over axes
+// Loop over XYZE axes
//
+#define LOOP_XYZ(VAR) LOOP_S_LE_N(VAR, X_AXIS, Z_AXIS)
+#define LOOP_XYZE(VAR) LOOP_S_LE_N(VAR, X_AXIS, E_AXIS)
+#define LOOP_XYZE_N(VAR) LOOP_S_L_N(VAR, X_AXIS, XYZE_N)
#define LOOP_ABC(VAR) LOOP_S_LE_N(VAR, A_AXIS, C_AXIS)
-#define LOOP_LINEAR_AXES(VAR) LOOP_S_L_N(VAR, X_AXIS, LINEAR_AXES)
-#define LOOP_LOGICAL_AXES(VAR) LOOP_S_L_N(VAR, X_AXIS, LOGICAL_AXES)
-#define LOOP_DISTINCT_AXES(VAR) LOOP_S_L_N(VAR, X_AXIS, DISTINCT_AXES)
+#define LOOP_ABCE(VAR) LOOP_S_LE_N(VAR, A_AXIS, E_AXIS)
+#define LOOP_ABCE_N(VAR) LOOP_S_L_N(VAR, A_AXIS, XYZE_N)
//
-// feedRate_t is just a humble float
-//
-typedef float feedRate_t;
-
+// Conditional type assignment magic. For example...
//
-// celsius_t is the native unit of temperature. Signed to handle a disconnected thermistor value (-14).
-// For more resolition (e.g., for a chocolate printer) this may later be changed to Celsius x 100
+// typename IF<(MYOPT==12), int, float>::type myvar;
//
-typedef int16_t celsius_t;
-typedef float celsius_float_t;
+template
+struct IF { typedef R type; };
+template
+struct IF { typedef L type; };
//
-// On AVR pointers are only 2 bytes so use 'const float &' for 'const float'
+// feedRate_t is just a humble float
//
-#ifdef __AVR__
- typedef const float & const_float_t;
-#else
- typedef const float const_float_t;
-#endif
-typedef const_float_t const_feedRate_t;
-typedef const_float_t const_celsius_float_t;
+typedef float feedRate_t;
// Conversion macros
-#define MMM_TO_MMS(MM_M) feedRate_t(static_cast(MM_M) / 60.0f)
-#define MMS_TO_MMM(MM_S) (static_cast(MM_S) * 60.0f)
+#define MMM_TO_MMS(MM_M) feedRate_t(float(MM_M) / 60.0f)
+#define MMS_TO_MMM(MM_S) (float(MM_S) * 60.0f)
+#define MMS_SCALED(V) ((V) * 0.01f * feedrate_percentage)
//
// Coordinates structures for XY, XYZ, XYZE...
//
// Helpers
-#define _RECIP(N) ((N) ? 1.0f / static_cast(N) : 0.0f)
+#define _RECIP(N) ((N) ? 1.0f / float(N) : 0.0f)
#define _ABS(N) ((N) < 0 ? -(N) : (N))
#define _LS(N) (N = (T)(uint32_t(N) << v))
#define _RS(N) (N = (T)(uint32_t(N) >> v))
@@ -239,7 +170,7 @@ void toNative(xyz_pos_t &raw);
void toNative(xyze_pos_t &raw);
//
-// Paired XY coordinates, counters, flags, etc.
+// XY coordinates, counters, etc.
//
template
struct XYval {
@@ -248,34 +179,18 @@ struct XYval {
struct { T a, b; };
T pos[2];
};
-
- // Set all to 0
- FI void reset() { x = y = 0; }
-
- // Setters taking struct types and arrays
FI void set(const T px) { x = px; }
- #if HAS_Y_AXIS
- FI void set(const T px, const T py) { x = px; y = py; }
- FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
- #endif
- #if LINEAR_AXES > XY
- FI void set(const T (&arr)[LINEAR_AXES]) { x = arr[0]; y = arr[1]; }
- #endif
- #if LOGICAL_AXES > LINEAR_AXES
- FI void set(const T (&arr)[LOGICAL_AXES]) { x = arr[0]; y = arr[1]; }
- #if DISTINCT_AXES > LOGICAL_AXES
- FI void set(const T (&arr)[DISTINCT_AXES]) { x = arr[0]; y = arr[1]; }
- #endif
+ FI void set(const T px, const T py) { x = px; y = py; }
+ FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
+ FI void set(const T (&arr)[XYZ]) { x = arr[0]; y = arr[1]; }
+ FI void set(const T (&arr)[XYZE]) { x = arr[0]; y = arr[1]; }
+ #if XYZE_N > XYZE
+ FI void set(const T (&arr)[XYZE_N]) { x = arr[0]; y = arr[1]; }
#endif
-
- // Length reduced to one dimension
+ FI void reset() { x = y = 0; }
FI T magnitude() const { return (T)sqrtf(x*x + y*y); }
- // Pointer to the data as a simple array
FI operator T* () { return pos; }
- // If any element is true then it's true
FI operator bool() { return x || y; }
-
- // Explicit copy and copies with conversion
FI XYval copy() const { return *this; }
FI XYval ABS() const { return { T(_ABS(x)), T(_ABS(y)) }; }
FI XYval asInt() { return { int16_t(x), int16_t(y) }; }
@@ -284,30 +199,20 @@ struct XYval {
FI XYval asLong() const { return { int32_t(x), int32_t(y) }; }
FI XYval ROUNDL() { return { int32_t(LROUND(x)), int32_t(LROUND(y)) }; }
FI XYval ROUNDL() const { return { int32_t(LROUND(x)), int32_t(LROUND(y)) }; }
- FI XYval asFloat() { return { static_cast(x), static_cast(y) }; }
- FI XYval asFloat() const { return { static_cast(x), static_cast(y) }; }
+ FI XYval asFloat() { return { float(x), float(y) }; }
+ FI XYval asFloat() const { return { float(x), float(y) }; }
FI XYval reciprocal() const { return { _RECIP(x), _RECIP(y) }; }
-
- // Marlin workspace shifting is done with G92 and M206
FI XYval asLogical() const { XYval o = asFloat(); toLogical(o); return o; }
FI XYval asNative() const { XYval o = asFloat(); toNative(o); return o; }
-
- // Cast to a type with more fields by making a new object
FI operator XYZval() { return { x, y }; }
FI operator XYZval() const { return { x, y }; }
FI operator XYZEval() { return { x, y }; }
FI operator XYZEval() const { return { x, y }; }
-
- // Accessor via an AxisEnum (or any integer) [index]
- FI T& operator[](const int n) { return pos[n]; }
- FI const T& operator[](const int n) const { return pos[n]; }
-
- // Assignment operator overrides do the expected thing
+ FI T& operator[](const int i) { return pos[i]; }
+ FI const T& operator[](const int i) const { return pos[i]; }
FI XYval& operator= (const T v) { set(v, v ); return *this; }
FI XYval& operator= (const XYZval &rs) { set(rs.x, rs.y); return *this; }
FI XYval& operator= (const XYZEval &rs) { set(rs.x, rs.y); return *this; }
-
- // Override other operators to get intuitive behaviors
FI XYval operator+ (const XYval &rs) const { XYval ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
FI XYval operator+ (const XYval &rs) { XYval ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
FI XYval operator- (const XYval &rs) const { XYval ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
@@ -344,10 +249,6 @@ struct XYval {
FI XYval operator>>(const int &v) { XYval ls = *this; _RS(ls.x); _RS(ls.y); return ls; }
FI XYval operator<<(const int &v) const { XYval ls = *this; _LS(ls.x); _LS(ls.y); return ls; }
FI XYval operator<<(const int &v) { XYval ls = *this; _LS(ls.x); _LS(ls.y); return ls; }
- FI const XYval operator-() const { XYval o = *this; o.x = -x; o.y = -y; return o; }
- FI XYval operator-() { XYval o = *this; o.x = -x; o.y = -y; return o; }
-
- // Modifier operators
FI XYval& operator+=(const XYval &rs) { x += rs.x; y += rs.y; return *this; }
FI XYval& operator-=(const XYval &rs) { x -= rs.x; y -= rs.y; return *this; }
FI XYval& operator*=(const XYval &rs) { x *= rs.x; y *= rs.y; return *this; }
@@ -361,8 +262,6 @@ struct XYval {
FI XYval& operator*=(const int &v) { x *= v; y *= v; return *this; }
FI XYval& operator>>=(const int &v) { _RS(x); _RS(y); return *this; }
FI XYval& operator<<=(const int &v) { _LS(x); _LS(y); return *this; }
-
- // Exact comparisons. For floats a "NEAR" operation may be better.
FI bool operator==(const XYval &rs) { return x == rs.x && y == rs.y; }
FI bool operator==(const XYZval &rs) { return x == rs.x && y == rs.y; }
FI bool operator==(const XYZEval &rs) { return x == rs.x && y == rs.y; }
@@ -375,291 +274,224 @@ struct XYval {
FI bool operator!=(const XYval &rs) const { return !operator==(rs); }
FI bool operator!=(const XYZval &rs) const { return !operator==(rs); }
FI bool operator!=(const XYZEval &rs) const { return !operator==(rs); }
+ FI XYval operator-() { XYval o = *this; o.x = -x; o.y = -y; return o; }
+ FI const XYval operator-() const { XYval o = *this; o.x = -x; o.y = -y; return o; }
};
//
-// Linear Axes coordinates, counters, flags, etc.
+// XYZ coordinates, counters, etc.
//
template
struct XYZval {
union {
- struct { T LINEAR_AXIS_ARGS(); };
- struct { T LINEAR_AXIS_LIST(a, b, c, u, v, w); };
- T pos[LINEAR_AXES];
+ struct { T x, y, z; };
+ struct { T a, b, c; };
+ T pos[3];
};
-
- // Set all to 0
- FI void reset() { LINEAR_AXIS_GANG(x =, y =, z =, i =, j =, k =) 0; }
-
- // Setters taking struct types and arrays
FI void set(const T px) { x = px; }
FI void set(const T px, const T py) { x = px; y = py; }
- FI void set(const XYval pxy) { x = pxy.x; y = pxy.y; }
- FI void set(const XYval pxy, const T pz) { LINEAR_AXIS_CODE(x = pxy.x, y = pxy.y, z = pz, NOOP, NOOP, NOOP); }
+ FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; }
+ FI void set(const XYval pxy, const T pz) { x = pxy.x; y = pxy.y; z = pz; }
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
- #if HAS_Z_AXIS
- FI void set(const T (&arr)[LINEAR_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); }
- FI void set(LINEAR_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k ); }
- #endif
- #if LOGICAL_AXES > LINEAR_AXES
- FI void set(const T (&arr)[LOGICAL_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); }
- FI void set(LOGICAL_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k ); }
- #if DISTINCT_AXES > LOGICAL_AXES
- FI void set(const T (&arr)[DISTINCT_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); }
- #endif
- #endif
- #if HAS_I_AXIS
- FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; }
- #endif
- #if HAS_J_AXIS
- FI void set(const T px, const T py, const T pz, const T pi) { x = px; y = py; z = pz; i = pi; }
- #endif
- #if HAS_K_AXIS
- FI void set(const T px, const T py, const T pz, const T pi, const T pj) { x = px; y = py; z = pz; i = pi; j = pj; }
+ FI void set(const T (&arr)[XYZ]) { x = arr[0]; y = arr[1]; z = arr[2]; }
+ FI void set(const T (&arr)[XYZE]) { x = arr[0]; y = arr[1]; z = arr[2]; }
+ #if XYZE_N > XYZE
+ FI void set(const T (&arr)[XYZE_N]) { x = arr[0]; y = arr[1]; z = arr[2]; }
#endif
-
- // Length reduced to one dimension
- FI T magnitude() const { return (T)sqrtf(LINEAR_AXIS_GANG(x*x, + y*y, + z*z, + i*i, + j*j, + k*k)); }
- // Pointer to the data as a simple array
+ FI void reset() { x = y = z = 0; }
+ FI T magnitude() const { return (T)sqrtf(x*x + y*y + z*z); }
FI operator T* () { return pos; }
- // If any element is true then it's true
- FI operator bool() { return LINEAR_AXIS_GANG(x, || y, || z, || i, || j, || k); }
-
- // Explicit copy and copies with conversion
+ FI operator bool() { return z || x || y; }
FI XYZval copy() const { XYZval o = *this; return o; }
- FI XYZval ABS() const { return LINEAR_AXIS_ARRAY(T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k))); }
- FI XYZval asInt() { return LINEAR_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
- FI XYZval asInt() const { return LINEAR_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
- FI XYZval asLong() { return LINEAR_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
- FI XYZval asLong() const { return LINEAR_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
- FI XYZval ROUNDL() { return LINEAR_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
- FI XYZval ROUNDL() const { return LINEAR_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
- FI XYZval asFloat() { return LINEAR_AXIS_ARRAY(static_cast(x), static_cast(y), static_cast(z), static_cast(i), static_cast(j), static_cast(k)); }
- FI XYZval asFloat() const { return LINEAR_AXIS_ARRAY(static_cast(x), static_cast(y), static_cast(z), static_cast(i), static_cast(j), static_cast(k)); }
- FI XYZval reciprocal() const { return LINEAR_AXIS_ARRAY(_RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k)); }
-
- // Marlin workspace shifting is done with G92 and M206
+ FI XYZval ABS() const { return { T(_ABS(x)), T(_ABS(y)), T(_ABS(z)) }; }
+ FI XYZval asInt() { return { int16_t(x), int16_t(y), int16_t(z) }; }
+ FI XYZval asInt() const { return { int16_t(x), int16_t(y), int16_t(z) }; }
+ FI XYZval asLong() { return { int32_t(x), int32_t(y), int32_t(z) }; }
+ FI XYZval asLong() const { return { int32_t(x), int32_t(y), int32_t(z) }; }
+ FI XYZval ROUNDL() { return { int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)) }; }
+ FI XYZval ROUNDL() const { return { int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)) }; }
+ FI XYZval asFloat() { return { float(x), float(y), float(z) }; }
+ FI XYZval asFloat() const { return { float(x), float(y), float(z) }; }
+ FI XYZval reciprocal() const { return { _RECIP(x), _RECIP(y), _RECIP(z) }; }
FI XYZval asLogical() const { XYZval o = asFloat(); toLogical(o); return o; }
FI XYZval asNative() const { XYZval o = asFloat(); toNative(o); return o; }
-
- // In-place cast to types having fewer fields
FI operator XYval&() { return *(XYval*)this; }
FI operator const XYval&() const { return *(const XYval*)this; }
-
- // Cast to a type with more fields by making a new object
- FI operator XYZEval() const { return LINEAR_AXIS_ARRAY(x, y, z, i, j, k); }
-
- // Accessor via an AxisEnum (or any integer) [index]
- FI T& operator[](const int n) { return pos[n]; }
- FI const T& operator[](const int n) const { return pos[n]; }
-
- // Assignment operator overrides do the expected thing
- FI XYZval& operator= (const T v) { set(ARRAY_N_1(LINEAR_AXES, v)); return *this; }
+ FI operator XYZEval() const { return { x, y, z }; }
+ FI T& operator[](const int i) { return pos[i]; }
+ FI const T& operator[](const int i) const { return pos[i]; }
+ FI XYZval& operator= (const T v) { set(v, v, v ); return *this; }
FI XYZval& operator= (const XYval &rs) { set(rs.x, rs.y ); return *this; }
- FI XYZval& operator= (const XYZEval &rs) { set(LINEAR_AXIS_ELEM(rs)); return *this; }
-
- // Override other operators to get intuitive behaviors
- FI XYZval operator+ (const XYval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
- FI XYZval operator+ (const XYval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
- FI XYZval operator- (const XYval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
- FI XYZval operator- (const XYval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
- FI XYZval operator* (const XYval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
- FI XYZval operator* (const XYval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
- FI XYZval operator/ (const XYval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
- FI XYZval operator/ (const XYval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
- FI XYZval operator+ (const XYZval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
- FI XYZval operator+ (const XYZval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
- FI XYZval operator- (const XYZval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
- FI XYZval operator- (const XYZval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
- FI XYZval operator* (const XYZval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
- FI XYZval operator* (const XYZval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
- FI XYZval operator/ (const XYZval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
- FI XYZval operator/ (const XYZval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
- FI XYZval operator+ (const XYZEval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
- FI XYZval operator+ (const XYZEval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
- FI XYZval operator- (const XYZEval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
- FI XYZval operator- (const XYZEval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
- FI XYZval operator* (const XYZEval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
- FI XYZval operator* (const XYZEval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
- FI XYZval operator/ (const XYZEval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
- FI XYZval operator/ (const XYZEval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
- FI XYZval operator* (const float &v) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
- FI XYZval operator* (const float &v) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
- FI XYZval operator* (const int &v) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
- FI XYZval operator* (const int &v) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
- FI XYZval operator/ (const float &v) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
- FI XYZval operator/ (const float &v) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
- FI XYZval operator/ (const int &v) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
- FI XYZval operator/ (const int &v) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
- FI XYZval operator>>(const int &v) const { XYZval ls = *this; LINEAR_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
- FI XYZval operator>>(const int &v) { XYZval ls = *this; LINEAR_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
- FI XYZval operator<<(const int &v) const { XYZval ls = *this; LINEAR_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
- FI XYZval operator<<(const int &v) { XYZval ls = *this; LINEAR_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
- FI const XYZval operator-() const { XYZval o = *this; LINEAR_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z, o.i = -i, o.j = -j, o.k = -k); return o; }
- FI XYZval operator-() { XYZval o = *this; LINEAR_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z, o.i = -i, o.j = -j, o.k = -k); return o; }
-
- // Modifier operators
- FI XYZval& operator+=(const XYval &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
- FI XYZval& operator-=(const XYval &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
- FI XYZval& operator*=(const XYval &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
- FI XYZval& operator/=(const XYval &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
- FI XYZval& operator+=(const XYZval &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
- FI XYZval& operator-=(const XYZval &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
- FI XYZval& operator*=(const XYZval &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
- FI XYZval& operator/=(const XYZval &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
- FI XYZval& operator+=(const XYZEval &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
- FI XYZval& operator-=(const XYZEval &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
- FI XYZval& operator*=(const XYZEval &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
- FI XYZval& operator/=(const XYZEval