This repository includes the implementation for Dynamic Causal Collaborative Filtering
Paper: Dynamic Causal Collaborative Filtering
Paper Link: https://dl.acm.org/doi/abs/10.1145/3511808.3557300
Environment requirements can be found in ./requirement.txt
-
Electronics: The origin dataset can be found here.
-
MovieLens-1M: The origin dataset can be found here.
-
The data processing code can be found in
./src/data_processing/
For example:
# DyCCF on Electronics dataset based on GRU4Rec model
> cd ./src/
> python main-3phases.py --model GRU4Rec --dataset Electronics-3 --epoch 100 --phase1 0 --batch_size 256 --dccf 1 --eval_batch_size 5000 --gpu 3 --ctf_num 3 --load 1 --train 0 --metrics nDCG@10,hit@10,unbiasedndcg@10,unbiasedhit@10
@inproceedings{xu2022dynamic,
title={Dynamic causal collaborative filtering},
author={Xu, Shuyuan and Tan, Juntao and Fu, Zuohui and Ji, Jianchao and Heinecke, Shelby and Zhang, Yongfeng},
booktitle={Proceedings of the 31st ACM International Conference on Information \& Knowledge Management},
pages={2301--2310},
year={2022}
}