-
Notifications
You must be signed in to change notification settings - Fork 0
/
metrics.py
987 lines (806 loc) · 31.8 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
#!/usr/bin/env python
# coding: utf-8
# from sklearn.linear_model import Ridge
import os
import numpy as np
import numpy as np
import numpy as np
import torch
# from scipy import linalg
from sklearn.mixture import GaussianMixture
from sklearn.decomposition import PCA
# from utils import iterative_A
from multiprocessing import Pool
# from pathos.multiprocessing import ProcessingPool as Pool
from joblib import Parallel, delayed
def _cov(X, shrinkage=-1):
emp_cov = np.cov(np.asarray(X).T, bias=1)
if shrinkage < 0:
return emp_cov
n_features = emp_cov.shape[0]
mu = np.trace(emp_cov) / n_features
shrunk_cov = (1.0 - shrinkage) * emp_cov
shrunk_cov.flat[:: n_features + 1] += shrinkage * mu
return shrunk_cov
def softmax(X, copy=True):
if copy:
X = np.copy(X)
max_prob = np.max(X, axis=1).reshape((-1, 1))
X -= max_prob
np.exp(X, X)
sum_prob = np.sum(X, axis=1).reshape((-1, 1))
X /= sum_prob
return X
def _class_means(X, y):
"""Compute class means.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input data.
y : array-like of shape (n_samples,) or (n_samples, n_targets)
Target values.
Returns
-------
means : array-like of shape (n_classes, n_features)
Class means.
means : array-like of shape (n_classes, n_features)
Outer classes means.
"""
classes, y = np.unique(y, return_inverse=True)
cnt = np.bincount(y)
means = np.zeros(shape=(len(classes), X.shape[1]))
np.add.at(means, y, X)
means /= cnt[:, None]
means_ = np.zeros(shape=(len(classes), X.shape[1]))
for i in range(len(classes)):
means_[i] = (np.sum(means, axis=0) - means[i]) / (len(classes) - 1)
return means, means_
def split_data(data: np.ndarray, percent_train: float):
split = data.shape[0] - int(percent_train * data.shape[0])
return data[:split], data[split:]
def feature_reduce(features: np.ndarray, f: int=None):
"""
Use PCA to reduce the dimensionality of the features.
If f is none, return the original features.
If f < features.shape[0], default f to be the shape.
"""
if f is None:
return features
if f > features.shape[0]:
f = features.shape[0]
return sklearn.decomposition.PCA(
n_components=f,
svd_solver='randomized',
random_state=1919,
iterated_power=1).fit_transform(features)
class TransferabilityMethod:
def __call__(self,
features: np.ndarray, y: np.ndarray,
) -> float:
self.features = features
self.y = y
return self.forward()
def forward(self) -> float:
raise NotImplementedError
class PARC(TransferabilityMethod):
def __init__(self, n_dims: int=None, fmt: str=''):
self.n_dims = n_dims
self.fmt = fmt
def forward(self):
self.features = feature_reduce(self.features, self.n_dims)
num_classes = len(np.unique(self.y, return_inverse=True)[0])
labels = np.eye(num_classes)[self.y] if self.y.ndim == 1 else self.y
return self.get_parc_correlation(self.features, labels)
def get_parc_correlation(self, feats1, labels2):
scaler = sklearn.preprocessing.StandardScaler()
feats1 = scaler.fit_transform(feats1)
rdm1 = 1 - np.corrcoef(feats1)
rdm2 = 1 - np.corrcoef(labels2)
lt_rdm1 = self.get_lowertri(rdm1)
lt_rdm2 = self.get_lowertri(rdm2)
return scipy.stats.spearmanr(lt_rdm1, lt_rdm2)[0] * 100
def get_lowertri(self, rdm):
num_conditions = rdm.shape[0]
return rdm[np.triu_indices(num_conditions, 1)]
class SFDA():
def __init__(self, shrinkage=None, priors=None, n_components=None):
self.shrinkage = shrinkage
self.priors = priors
self.n_components = n_components
def _solve_eigen(self, X, y, shrinkage):
classes, y = np.unique(y, return_inverse=True)
cnt = np.bincount(y)
means = np.zeros(shape=(len(classes), X.shape[1]))
np.add.at(means, y, X)
means /= cnt[:, None]
self.means_ = means
cov = np.zeros(shape=(X.shape[1], X.shape[1]))
for idx, group in enumerate(classes):
Xg = X[y == group, :]
cov += self.priors_[idx] * np.atleast_2d(_cov(Xg))
self.covariance_ = cov
Sw = self.covariance_ # within scatter
if self.shrinkage is None:
# adaptive regularization strength
largest_evals_w = iterative_A(Sw, max_iterations=3)
shrinkage = max(np.exp(-5 * largest_evals_w), 1e-10)
self.shrinkage = shrinkage
else:
# given regularization strength
shrinkage = self.shrinkage
print("Shrinkage: {}".format(shrinkage))
# between scatter
St = _cov(X, shrinkage=self.shrinkage)
# add regularization on within scatter
n_features = Sw.shape[0]
mu = np.trace(Sw) / n_features
shrunk_Sw = (1.0 - self.shrinkage) * Sw
shrunk_Sw.flat[:: n_features + 1] += self.shrinkage * mu
Sb = St - shrunk_Sw # between scatter
evals, evecs = linalg.eigh(Sb, shrunk_Sw)
evecs = evecs[:, np.argsort(evals)[::-1]] # sort eigenvectors
self.scalings_ = evecs
self.coef_ = np.dot(self.means_, evecs).dot(evecs.T)
self.intercept_ = -0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(
self.priors_
)
def fit(self, X, y):
'''
X: input features, N x D
y: labels, N
'''
self.classes_ = np.unique(y)
#n_samples, _ = X.shape
n_classes = len(self.classes_)
max_components = min(len(self.classes_) - 1, X.shape[1])
if self.n_components is None:
self._max_components = max_components
else:
if self.n_components > max_components:
raise ValueError(
"n_components cannot be larger than min(n_features, n_classes - 1)."
)
self._max_components = self.n_components
_, y_t = np.unique(y, return_inverse=True) # non-negative ints
self.priors_ = np.bincount(y_t) / float(len(y))
self._solve_eigen(X, y, shrinkage=self.shrinkage,)
return self
def transform(self, X):
# project X onto Fisher Space
X_new = np.dot(X, self.scalings_)
return X_new[:, : self._max_components]
def predict_proba(self, X):
scores = np.dot(X, self.coef_.T) + self.intercept_ ##计算分数
return softmax(scores)
def each_evidence(y_, f, fh, v, s, vh, N, D):
"""
compute the maximum evidence for each class
"""
epsilon = 1e-5
alpha = 1.0
beta = 1.0
lam = alpha / beta
tmp = (vh @ (f @ np.ascontiguousarray(y_)))
for _ in range(11):
# should converge after at most 10 steps
# typically converge after two or three steps
gamma = (s / (s + lam)).sum()
# A = v @ np.diag(alpha + beta * s) @ v.transpose() # no need to compute A
# A_inv = v @ np.diag(1.0 / (alpha + beta * s)) @ v.transpose() # no need to compute A_inv
m = v @ (tmp * beta / (alpha + beta * s))
alpha_de = (m * m).sum()
alpha = gamma / (alpha_de + epsilon)
beta_de = ((y_ - fh @ m) ** 2).sum()
beta = (N - gamma) / (beta_de + epsilon)
new_lam = alpha / beta
if np.abs(new_lam - lam) / lam < 0.01:
break
lam = new_lam
evidence = D / 2.0 * np.log(alpha) \
+ N / 2.0 * np.log(beta) \
- 0.5 * np.sum(np.log(alpha + beta * s)) \
- beta / 2.0 * (beta_de + epsilon) \
- alpha / 2.0 * (alpha_de + epsilon) \
- N / 2.0 * np.log(2 * np.pi)
return evidence / N, alpha, beta, m
def truncated_svd(x):
u, s, vh = np.linalg.svd(x.transpose() @ x)
s = np.sqrt(s)
u_times_sigma = x @ vh.transpose()
k = np.sum((s > 1e-10) * 1) # rank of f
s = s.reshape(-1, 1)
s = s[:k]
vh = vh[:k]
u = u_times_sigma[:, :k] / s.reshape(1, -1)
return u, s, vh
class LogME(object):
def __init__(self, regression=False):
"""
:param regression: whether regression
"""
self.regression = regression
self.fitted = False
self.reset()
def reset(self):
self.num_dim = 0
self.alphas = [] # alpha for each class / dimension
self.betas = [] # beta for each class / dimension
# self.ms.shape --> [C, D]
self.ms = [] # m for each class / dimension
def _fit_icml(self, f: np.ndarray, y: np.ndarray):
"""
LogME calculation proposed in the ICML 2021 paper
"LogME: Practical Assessment of Pre-trained Models for Transfer Learning"
at http://proceedings.mlr.press/v139/you21b.html
"""
fh = f
f = f.transpose()
D, N = f.shape
v, s, vh = np.linalg.svd(f @ fh, full_matrices=True)
evidences = []
self.num_dim = y.shape[1] if self.regression else int(y.max() + 1)
for i in range(self.num_dim):
y_ = y[:, i] if self.regression else (y == i).astype(np.float64)
evidence, alpha, beta, m = each_evidence(y_, f, fh, v, s, vh, N, D)
evidences.append(evidence)
self.alphas.append(alpha)
self.betas.append(beta)
self.ms.append(m)
self.ms = np.stack(self.ms)
return np.mean(evidences)
def _fit_fixed_point(self, f: np.ndarray, y: np.ndarray):
"""
LogME calculation proposed in the arxiv 2021 paper
"Ranking and Tuning Pre-trained Models: A New Paradigm of Exploiting Model Hubs"
at https://arxiv.org/abs/2110.10545
"""
# k = min(N, D)
N, D = f.shape
# direct SVD may be expensive
if N > D:
u, s, vh = truncated_svd(f)
else:
u, s, vh = np.linalg.svd(f, full_matrices=False)
# u.shape = N x k, s.shape = k, vh.shape = k x D
s = s.reshape(-1, 1)
sigma = (s ** 2)
evidences = []
self.num_dim = y.shape[1] if self.regression else int(y.max() + 1)
for i in range(self.num_dim):
y_ = y[:, i] if self.regression else (y == i).astype(np.float64)
y_ = y_.reshape(-1, 1)
# x has shape [k, 1], but actually x should have shape [N, 1]
x = u.T @ y_
x2 = x ** 2
# if k < N, we compute sum of xi for 0 singular values directly
res_x2 = (y_ ** 2).sum() - x2.sum()
alpha, beta = 1.0, 1.0
for _ in range(11):
t = alpha / beta
gamma = (sigma / (sigma + t)).sum()
m2 = (sigma * x2 / ((t + sigma) ** 2)).sum()
res2 = (x2 / ((1 + sigma / t) ** 2)).sum() + res_x2
alpha = gamma / (m2 + 1e-5)
beta = (N - gamma) / (res2 + 1e-5)
t_ = alpha / beta
evidence = D / 2.0 * np.log(alpha) \
+ N / 2.0 * np.log(beta) \
- 0.5 * np.sum(np.log(alpha + beta * sigma)) \
- beta / 2.0 * res2 \
- alpha / 2.0 * m2 \
- N / 2.0 * np.log(2 * np.pi)
evidence /= N
if abs(t_ - t) / t <= 1e-3: # abs(t_ - t) <= 1e-5 or abs(1 / t_ - 1 / t) <= 1e-5:
break
evidence = D / 2.0 * np.log(alpha) \
+ N / 2.0 * np.log(beta) \
- 0.5 * np.sum(np.log(alpha + beta * sigma)) \
- beta / 2.0 * res2 \
- alpha / 2.0 * m2 \
- N / 2.0 * np.log(2 * np.pi)
evidence /= N
m = 1.0 / (t + sigma) * s * x
m = (vh.T @ m).reshape(-1)
evidences.append(evidence)
self.alphas.append(alpha)
self.betas.append(beta)
self.ms.append(m)
self.ms = np.stack(self.ms)
return np.mean(evidences)
_fit = _fit_fixed_point
#_fit = _fit_icml
def fit(self, f: np.ndarray, y: np.ndarray):
"""
:param f: [N, F], feature matrix from pre-trained model
:param y: target labels.
For classification, y has shape [N] with element in [0, C_t).
For regression, y has shape [N, C] with C regression-labels
:return: LogME score (how well f can fit y directly)
"""
if self.fitted:
warnings.warn('re-fitting for new data. old parameters cleared.')
self.reset()
else:
self.fitted = True
f = f.astype(np.float64)
if self.regression:
y = y.astype(np.float64)
if len(y.shape) == 1:
y = y.reshape(-1, 1)
return self._fit(f, y)
def predict(self, f: np.ndarray):
"""
:param f: [N, F], feature matrix
:return: prediction, return shape [N, X]
"""
if not self.fitted:
raise RuntimeError("not fitted, please call fit first")
f = f.astype(np.float64)
logits = f @ self.ms.T
if self.regression:
return logits
prob = np.exp(logits) / np.exp(logits).sum(axis=1, keepdims=True)
# return np.argmax(logits, axis=-1)
return prob
def LEEP(X, y, model_name='resnet50'):
n = len(y)
num_classes = len(np.unique(y))
# read classifier
# Group1: model_name, fc_name, model_ckpt
ckpt_models = {
'densenet121': ['classifier.weight', '/CNN_models/classifier/checkpoints/densenet121-a639ec97.pth'],
'densenet169': ['classifier.weight', '/CNN_models/classifier/checkpoints/densenet169-b2777c0a.pth'],
'densenet201': ['classifier.weight', '/CNN_models/classifier/checkpoints/densenet201-c1103571.pth'],
'resnet34': ['fc.weight', '/CNN_models/classifier/checkpoints/resnet34-333f7ec4.pth'],
'resnet50': ['fc.weight', '/CNN_models/classifier/checkpoints/resnet50-19c8e357.pth'],
'resnet101': ['fc.weight', '/CNN_models/classifier/checkpoints/resnet101-5d3b4d8f.pth'],
'resnet152': ['fc.weight', '/CNN_models/classifier/checkpoints/resnet152-b121ed2d.pth'],
'mnasnet1_0': ['classifier.1.weight', '/CNN_models/classifier/checkpoints/mnasnet1.0_top1_73.512-f206786ef8.pth'],
'mobilenet_v2': ['classifier.1.weight', '/CNN_models/classifier/checkpoints/mobilenet_v2-b0353104.pth'],
'googlenet': ['fc.weight', '/CNN_models/classifier/checkpoints/googlenet-1378be20.pth'],
'inception_v3': ['fc.weight', '/CNN_models/classifier/checkpoints/inception_v3_google-1a9a5a14.pth'],
}
# which need to be trained is you use LEEP.
ckpt_loc = ckpt_models[model_name][1]
fc_weight = ckpt_models[model_name][0]
fc_bias = fc_weight.replace('weight', 'bias')
ckpt = torch.load(ckpt_loc, map_location='cpu')
fc_weight = ckpt[fc_weight].detach().numpy()
fc_bias = ckpt[fc_bias].detach().numpy()
# p(z|x), z is source label
prob = np.dot(X, fc_weight.T) + fc_bias
prob = softmax(prob) # p(z|x), N x C(source)
pyz = np.zeros((num_classes, 1000)) # C(source) = 1000
for y_ in range(num_classes):
indices = np.where(y == y_)[0]
filter_ = np.take(prob, indices, axis=0)
pyz[y_] = np.sum(filter_, axis=0) / n
pz = np.sum(pyz, axis=0) # marginal probability
py_z = pyz / pz # conditional probability, C x C(source)
py_x = np.dot(prob, py_z.T) # N x C
# leep = E[p(y|x)]
leep_score = np.sum(py_x[np.arange(n), y]) / n
return leep_score
import sklearn.decomposition as sd
def NLEEP(X, y, component_ratio=5):
n = len(y)
num_classes = len(np.unique(y))
# PCA: keep 80% energy
pca_80 = PCA(n_components=0.8)
pca_80.fit(X)
X_pca_80 = pca_80.transform(X)
# GMM: n_components = component_ratio * class number
n_components_num = component_ratio * num_classes
gmm = GaussianMixture(n_components= n_components_num).fit(X_pca_80)
prob = gmm.predict_proba(X_pca_80) # p(z|x)
# NLEEP
pyz = np.zeros((num_classes, n_components_num))
for y_ in range(num_classes):
indices = np.where(y == y_)[0]
filter_ = np.take(prob, indices, axis=0)
pyz[y_] = np.sum(filter_, axis=0) / n
pz = np.sum(pyz, axis=0)
py_z = pyz / pz
py_x = np.dot(prob, py_z.T)
# nleep_score
nleep_score = np.sum(py_x[np.arange(n), y]) / n
return nleep_score
def LogME_Score(X, y):
logme = LogME(regression=True)
score = logme.fit(X, y)
return score
def SFDA_Score(X, y):
n = len(y)
num_classes = len(np.unique(y))
# X_features, y_labels = np.load(model_npy_feature), np.load(model_npy_label)
# SFDA_Score(X_features, y_labels)
SFDA_first = SFDA()
prob = SFDA_first.fit(X, y).predict_proba(X) # p(y|x)
# soften the probability using softmax for meaningful confidential mixture
prob = np.exp(prob) / np.exp(prob).sum(axis=1, keepdims=True)
means, means_ = _class_means(X, y) # class means, outer classes means
# ConfMix
for y_ in range(num_classes):
indices = np.where(y == y_)[0]
y_prob = np.take(prob, indices, axis=0)
y_prob = y_prob[:, y_] # probability of correctly classifying x with label y
X[indices] = y_prob.reshape(len(y_prob), 1) * X[indices] + \
(1 - y_prob.reshape(len(y_prob), 1)) * means_[y_]
SFDA_second = SFDA(shrinkage=SFDA_first.shrinkage)
prob = SFDA_second.fit(X, y).predict_proba(X) # n * num_cls
# leep = E[p(y|x)]. Note: the log function is ignored in case of instability.
sfda_score = np.sum(prob[np.arange(n), y]) / n
return sfda_score
def PARC_Score(X, y, ratio=2):
num_sample, feature_dim = X.shape
ndims = 32 if ratio > 1 else int(feature_dim * ratio) # feature reduction dimension
if num_sample > 15000:
from utils_cr import initLabeled
p = 15000.0 / num_sample
labeled_index = initLabeled(y, p=p)
features = X[labeled_index]
targets = X[labeled_index]
print("data are sampled to {}".format(features.shape))
method = PARC(n_dims = ndims)
parc_score = method(features=X, y=y)
return parc_score
def discretize_vector(vec, num_buckets=47):
# 计算每一块中应该包含的元素数量
num_bins = num_buckets
bin_size = len(vec) // num_bins
# print(bin_size)
# 对原始向量进行排序
sorted_vec = vec
# print(sorted_vec)
# print(sorted_vec[122],sorted_vec[123])
# 初始化结果列表
# print(sorted_vec == vec)
result = [0] * len(vec)
# 遍历每一块
for i in range(num_bins):
# 计算当前块的起始和结束位置
start_idx = i * bin_size
end_idx = (i + 1) * bin_size
# 如果不是最后一块,且剩余元素数量不足以填满一整块,则将多余的元素加入到前面的块中
if i < num_bins - 1:
if len(vec) - end_idx < bin_size:
end_idx = len(vec)
else:
# if i == num_bins - 1:
end_index = len(vec)
# discretized_vector[start_index:end_index] = i
# 将当前块中的元素映射为对应的索引值
for j in range(start_idx, end_idx):
# print(i,j)
result[j] = i
return np.array(result)
def discretize_vector2(vector, num_buckets):
min_val = np.min(vector)
max_val = np.max(vector)
bucket_width = (max_val - min_val) / num_buckets
bucket_indices = ((vector - min_val) / bucket_width).astype(int)
return bucket_indices
def coding_rate(Z, eps=1e-4):
n, d = Z.shape
# print(n,d)
# print(Z.min())
(_, rate) = np.linalg.slogdet((np.eye(d) + 1 / (n*eps)*Z.transpose()@Z))
return 0.5*rate
def sort_with_index(array):
"""
返回一个按照 array 排序后的索引数组
"""
return np.argsort(array)
def Transrate(Z, y, eps=1e-4):
Z = Z - np.mean(Z, axis=0, keepdims=True)
RZ = coding_rate(Z, eps)
RZY = 0.
K= int(y.max() + 1)
# print(K)
# score = 0
for i in range(K):
# print(i,'i')
tmp_Z = Z[(y == i).flatten()]
# print(tmp_Z,i)
RZY += coding_rate(tmp_Z, eps)
return (RZ - RZY / K)
def Transrate_multi(Z, Y, eps=1e-4):
RZ = coding_rate(Z, eps)
RZY = 0.
N,dim = Y.shape
print(N,dim,'y.shape')
Y = Y.T
def process_dim(Z,y):
# print(y.max())
y_perdim = y
num_bins = 50
y_perdim_regression = discretize_vector(y_perdim, num_bins)
K= int(y_perdim_regression.max() + 1)
RZY = 0
for i in range(K):
tmp_Z = Z[(y_perdim_regression == i).flatten()]
RZY += coding_rate(tmp_Z, eps)
# print((RZ - RZY / K))
return (RZ - RZY / K)
# n = 10 #regression2classification
# score = 0
results = Parallel(n_jobs=-1)(delayed(process_dim)(Z, y) for y in Y)
total = np.sum(results)
return total / dim
def f(x, y):
i = int(floor(x))
j = int(floor(y))
x_frac = x - i
y_frac = y - j
h = hilbert(x_frac, y_frac)
return h + (i + j) * (1 + sqrt(2))
def convert2T(X,Y):
d1,N = X.shape
d2,N = Y.shape
T = np.zeros([d1*d2,N*N])
for t1 in range(d1):
for t2 in range(d2):
for i in range(N):
for j in range(N):
index_i = t1*d2 + t2
index_j = i*N + j
T[index_i][index_j] = X[t1][i] + Y[t2][j]*Y[t2][j]
return T
def softmax(x):
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum(axis=0)
def EMMS_optimal(Z,Y):
N,d1 = Z.shape
N,d2 = Y.shape
# print(Z.shape,Y.shape)
beta = []
score = 0
import numpy as np
# 构造特征矩阵 X
# X = np.random.rand(N, D1)
# 对 X 在第 D1 维度上进行标准化,加入平滑项 1e-8 避免除0错误
Z_mean = np.mean(Z, axis=0)
Z_std = np.std(Z, axis=0)
epsilon = 1e-8
Z = (Z - Z_mean) / (Z_std + epsilon)
Y_mean = np.mean(Y, axis=0)
Y_std = np.std(Y, axis=0)
epsilon = 1e-8
Y = (Y - Y_mean) / (Y_std + epsilon)
coefficients, residuals, rank, singular_values = np.linalg.lstsq(Z, Y, rcond = None)
# residuals = np.sqrt(np.sum(residuals, axis=1))
# print(residuals,residuals.shape,coefficients.shape)
score = sum(residuals) / d2
print(score)
return 1 / (score + 0.000001)
import numpy as np
def softmax_t(x, temperature=1.0):
"""带有temperature参数的softmax函数"""
x = np.asarray(x) / temperature
exp_x = np.exp(x - np.max(x))
return exp_x / np.sum(exp_x)
def softmax1(x, temperature=1.0):
"""Compute softmax values for each row of x."""
exp_x = np.exp(x / temperature)
return exp_x / np.sum(exp_x, axis=1, keepdims=True)
# import numpy as np
from numpy.linalg import lstsq
def sparsemax(z):
"""forward pass for sparsemax
this will process a 2d-array $z$, where axis 1 (each row) is assumed to be
the the z-vector.
"""
# sort z
z_sorted = np.sort(z, axis=1)[:, ::-1]
# calculate k(z)
z_cumsum = np.cumsum(z_sorted, axis=1)
k = np.arange(1, z.shape[1] + 1)
z_check = 1 + k * z_sorted > z_cumsum
# use argmax to get the index by row as .nonzero() doesn't
# take an axis argument. np.argmax return the first index, but the last
# index is required here, use np.flip to get the last index and
# `z.shape[axis]` to compensate for np.flip afterwards.
k_z = z.shape[1] - np.argmax(z_check[:, ::-1], axis=1)
# calculate tau(z)
tau_sum = z_cumsum[np.arange(0, z.shape[0]), k_z - 1]
tau_z = ((tau_sum - 1) / k_z).reshape(-1, 1)
return np.maximum(0, z - tau_z)
def EMMS(Z,Y):
x = Z
y = Y
N, D2, K = y.shape
for i in range(K):
y_mean = np.mean(y[:,:,i] , axis=0)
y_std = np.std(y[:,:,i], axis=0)
epsilon = 1e-8
y[:,:,i] = (y[:,:,i] - y_mean) / (y_std + epsilon)
N,D1 = x.shape
x_mean = np.mean(x , axis=0)
x_std = np.std(x, axis=0)
epsilon = 1e-8
x = (x - x_mean) / (x_std + epsilon)
lam = np.array([1/K] * K)
w1 = 0
lam1 = 0
T = 0
b = np.dot(y, lam)
T = b
for k in range(1):
a = x
w = lstsq(a, b, rcond=None)[0]
w1 = w
a = y.reshape(N*D2, K)
b = np.dot(x, w).reshape(N*D2)
lam = lstsq(a, b, rcond=None)[0]
lam = lam.reshape(1,K)
lam = sparsemax(lam)
lam = lam.reshape(K,1)
lam1 = lam
b = np.dot(y, lam)
b = b.reshape(N,D2)
T = b
y_pred = np.dot(x,w1)
res = np.sum((y_pred - T)**2) / N*D2
return -res
import sklearn.decomposition as sd
import sklearn.mixture as sm
def gmm_estimator(features_np_all, label_np_all):
"""Estimate the GMM posterior assignment."""
pca_model = sd.PCA(n_components=0.8)
pca_model.fit(features_np_all)
features_lowdim_train = pca_model.transform(features_np_all)
num_examples = label_np_all.shape[0]
y_classes = max([min([label_np_all.max() + 1, int(num_examples * 0.2)]),
int(num_examples * 0.1)])
clf = sm.GaussianMixture(n_components=y_classes)
clf.fit(features_lowdim_train)
prob_np_all_gmm = clf.predict_proba(features_lowdim_train)
return prob_np_all_gmm, features_lowdim_train
def one_hot(a):
b = np.zeros((a.size, a.max()+1))
b[np.arange(a.size), a] = 1.
return b
def calculate_pac_dir(features_np_all, label_np_all, alpha=1.):
"""Compute the PACTran-Dirichlet estimator."""
prob_np_all,_ = gmm_estimator(features_np_all, label_np_all)
# starttime = time.time()
label_np_all = one_hot(label_np_all) # [n, v]
soft_targets_sum = np.sum(label_np_all, axis=0) # [v]
soft_targets_sum = np.expand_dims(soft_targets_sum, axis=1) # [v, 1]
a0 = alpha * soft_targets_sum / np.sum(soft_targets_sum) + 1e-10
# initialize
qz = prob_np_all # [n, d]
log_s = np.log(prob_np_all + 1e-10) # [n, d]
for _ in range(10):
aw = a0 + np.sum(np.einsum("BY,BZ->BYZ", label_np_all, qz), axis=0)
logits_qz = (log_s +
np.matmul(label_np_all, scipy.special.digamma(aw)) -
np.reshape(scipy.special.digamma(np.sum(aw, axis=0)), [1, -1]))
log_qz = logits_qz - scipy.special.logsumexp(
logits_qz, axis=-1, keepdims=True)
qz = np.exp(log_qz)
log_c0 = scipy.special.loggamma(np.sum(a0)) - np.sum(
scipy.special.loggamma(a0))
log_c = scipy.special.loggamma(np.sum(aw, axis=0)) - np.sum(
scipy.special.loggamma(aw), axis=0)
pac_dir = np.sum(
log_c0 - log_c - np.sum(qz * (log_qz - log_s), axis=0))
pac_dir = -pac_dir / label_np_all.size
return pac_dir
def calculate_pac_gamma(features_np_all, label_np_all, alpha=1.):
"""Compute the PAC-Gamma estimator."""
prob_np_all,_ = gmm_estimator(features_np_all, label_np_all)
# starttime = time.time()
label_np_all = one_hot(label_np_all) # [n, v]
soft_targets_sum = np.sum(label_np_all, axis=0) # [v]
soft_targets_sum = np.expand_dims(soft_targets_sum, axis=1) # [v, 1]
a0 = alpha * soft_targets_sum / np.sum(soft_targets_sum) + 1e-10
beta = 1.
# initialize
qz = prob_np_all # [n, d]
s = prob_np_all # [n, d]
log_s = np.log(prob_np_all + 1e-10) # [n, d]
aw = a0
bw = beta
lw = np.sum(s, axis=-1, keepdims=True) * np.sum(aw / bw) # [n, 1]
for _ in range(10):
aw = a0 + np.sum(np.einsum("BY,BZ->BYZ", label_np_all, qz),
axis=0) # [v, d]
lw = np.matmul(
s, np.expand_dims(np.sum(aw / bw, axis=0), axis=1)) # [n, 1]
logits_qz = (
log_s + np.matmul(label_np_all, scipy.special.digamma(aw) - np.log(bw)))
log_qz = logits_qz - scipy.special.logsumexp(
logits_qz, axis=-1, keepdims=True)
qz = np.exp(log_qz) # [n, a, d]
pac_gamma = (
np.sum(scipy.special.loggamma(a0) - scipy.special.loggamma(aw) +
aw * np.log(bw) - a0 * np.log(beta)) +
np.sum(np.sum(qz * (log_qz - log_s), axis=-1) +
np.log(np.squeeze(lw, axis=-1)) - 1.))
pac_gamma /= label_np_all.size
pac_gamma += 1.
# endtime = time.time()
return pac_gamma
def calculate_pac_gauss(features_np_all, label_np_all,
lda_factor = 1.):
"""Compute the PAC_Gauss score with diagonal variance."""
starttime = time.time()
nclasses = label_np_all.max()+1
label_np_all = one_hot(label_np_all) # [n, v]
mean_feature = np.mean(features_np_all, axis=0, keepdims=True)
features_np_all -= mean_feature # [n,k]
bs = features_np_all.shape[0]
kd = features_np_all.shape[-1] * nclasses
ldas2 = lda_factor * bs # * features_np_all.shape[-1]
dinv = 1. / float(features_np_all.shape[-1])
# optimizing log lik + log prior
def pac_loss_fn(theta):
theta = np.reshape(theta, [features_np_all.shape[-1] + 1, nclasses])
w = theta[:features_np_all.shape[-1], :]
b = theta[features_np_all.shape[-1]:, :]
logits = np.matmul(features_np_all, w) + b
log_qz = logits - scipy.special.logsumexp(logits, axis=-1, keepdims=True)
xent = np.sum(np.sum(
label_np_all * (np.log(label_np_all + 1e-10) - log_qz), axis=-1)) / bs
loss = xent + 0.5 * np.sum(np.square(w)) / ldas2
return loss
# gradient of xent + l2
def pac_grad_fn(theta):
theta = np.reshape(theta, [features_np_all.shape[-1] + 1, nclasses])
w = theta[:features_np_all.shape[-1], :]
b = theta[features_np_all.shape[-1]:, :]
logits = np.matmul(features_np_all, w) + b
grad_f = scipy.special.softmax(logits, axis=-1) # [n, k]
grad_f -= label_np_all
grad_f /= bs
grad_w = np.matmul(features_np_all.transpose(), grad_f) # [d, k]
grad_w += w / ldas2
grad_b = np.sum(grad_f, axis=0, keepdims=True) # [1, k]
grad = np.ravel(np.concatenate([grad_w, grad_b], axis=0))
return grad
# 2nd gradient of theta (elementwise)
def pac_grad2(theta):
theta = np.reshape(theta, [features_np_all.shape[-1] + 1, nclasses])
w = theta[:features_np_all.shape[-1], :]
b = theta[features_np_all.shape[-1]:, :]
logits = np.matmul(features_np_all, w) + b
prob_logits = scipy.special.softmax(logits, axis=-1) # [n, k]
grad2_f = prob_logits - np.square(prob_logits) # [n, k]
xx = np.square(features_np_all) # [n, d]
grad2_w = np.matmul(xx.transpose(), grad2_f) # [d, k]
grad2_w += 1. / ldas2
grad2_b = np.sum(grad2_f, axis=0, keepdims=True) # [1, k]
grad2 = np.ravel(np.concatenate([grad2_w, grad2_b], axis=0))
return grad2
kernel_shape = [features_np_all.shape[-1], nclasses]
theta = np.random.normal(size=kernel_shape) * 0.03
theta_1d = np.ravel(np.concatenate(
[theta, np.zeros([1, nclasses])], axis=0))
theta_1d = scipy.optimize.minimize(
pac_loss_fn, theta_1d, method="L-BFGS-B",
jac=pac_grad_fn,
options=dict(maxiter=100), tol=1e-6).x
pac_opt = pac_loss_fn(theta_1d)
endtime_opt = time.time()
h = pac_grad2(theta_1d)
sigma2_inv = np.sum(h) * ldas2 / kd + 1e-10
endtime = time.time()
if lda_factor == 10.:
s2s = [1000., 100.]
elif lda_factor == 1.:
s2s = [100., 10.]
elif lda_factor == 0.1:
s2s = [10., 1.]
returnv = []
for s2_factor in s2s:
s2 = s2_factor * dinv
pac_gauss = pac_opt + 0.5 * kd / ldas2 * s2 * np.log(
sigma2_inv)
# the first item is the pac_gauss metric
# the second item is the linear metric (without trH)
returnv += [("pac_gauss_%.1f" % lda_factor, pac_gauss),
("time", endtime - starttime),
("pac_opt_%.1f" % lda_factor, pac_opt),
("time", endtime_opt - starttime)]
return returnv, theta_1d