-
Notifications
You must be signed in to change notification settings - Fork 13k
/
Copy pathwrite.rs
2325 lines (2092 loc) · 92.2 KB
/
write.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2013-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use back::bytecode::{self, RLIB_BYTECODE_EXTENSION};
use back::lto::{self, ModuleBuffer, ThinBuffer};
use back::link::{self, get_linker, remove};
use back::command::Command;
use back::linker::LinkerInfo;
use back::symbol_export::ExportedSymbols;
use base;
use consts;
use rustc_incremental::{save_trans_partition, in_incr_comp_dir};
use rustc::dep_graph::{DepGraph, WorkProductFileKind};
use rustc::middle::cstore::{LinkMeta, EncodedMetadata};
use rustc::session::config::{self, OutputFilenames, OutputType, Passes, SomePasses,
AllPasses, Sanitizer, Lto};
use rustc::session::Session;
use rustc::util::nodemap::FxHashMap;
use rustc_back::LinkerFlavor;
use time_graph::{self, TimeGraph, Timeline};
use llvm;
use llvm::{ModuleRef, TargetMachineRef, PassManagerRef, DiagnosticInfoRef};
use llvm::{SMDiagnosticRef, ContextRef};
use {CrateTranslation, ModuleSource, ModuleTranslation, CompiledModule, ModuleKind};
use CrateInfo;
use rustc::hir::def_id::{CrateNum, LOCAL_CRATE};
use rustc::ty::TyCtxt;
use rustc::util::common::{time, time_depth, set_time_depth, path2cstr, print_time_passes_entry};
use rustc::util::fs::{link_or_copy};
use errors::{self, Handler, Level, DiagnosticBuilder, FatalError, DiagnosticId};
use errors::emitter::{Emitter};
use syntax::attr;
use syntax::ext::hygiene::Mark;
use syntax_pos::MultiSpan;
use syntax_pos::symbol::Symbol;
use type_::Type;
use context::{is_pie_binary, get_reloc_model};
use jobserver::{Client, Acquired};
use rustc_demangle;
use std::any::Any;
use std::ffi::{CString, CStr};
use std::fs;
use std::io::{self, Write};
use std::mem;
use std::path::{Path, PathBuf};
use std::str;
use std::sync::Arc;
use std::sync::mpsc::{channel, Sender, Receiver};
use std::slice;
use std::time::Instant;
use std::thread;
use libc::{c_uint, c_void, c_char, size_t};
pub const RELOC_MODEL_ARGS : [(&'static str, llvm::RelocMode); 7] = [
("pic", llvm::RelocMode::PIC),
("static", llvm::RelocMode::Static),
("default", llvm::RelocMode::Default),
("dynamic-no-pic", llvm::RelocMode::DynamicNoPic),
("ropi", llvm::RelocMode::ROPI),
("rwpi", llvm::RelocMode::RWPI),
("ropi-rwpi", llvm::RelocMode::ROPI_RWPI),
];
pub const CODE_GEN_MODEL_ARGS: &[(&str, llvm::CodeModel)] = &[
("small", llvm::CodeModel::Small),
("kernel", llvm::CodeModel::Kernel),
("medium", llvm::CodeModel::Medium),
("large", llvm::CodeModel::Large),
];
pub const TLS_MODEL_ARGS : [(&'static str, llvm::ThreadLocalMode); 4] = [
("global-dynamic", llvm::ThreadLocalMode::GeneralDynamic),
("local-dynamic", llvm::ThreadLocalMode::LocalDynamic),
("initial-exec", llvm::ThreadLocalMode::InitialExec),
("local-exec", llvm::ThreadLocalMode::LocalExec),
];
pub fn llvm_err(handler: &errors::Handler, msg: String) -> FatalError {
match llvm::last_error() {
Some(err) => handler.fatal(&format!("{}: {}", msg, err)),
None => handler.fatal(&msg),
}
}
pub fn write_output_file(
handler: &errors::Handler,
target: llvm::TargetMachineRef,
pm: llvm::PassManagerRef,
m: ModuleRef,
output: &Path,
file_type: llvm::FileType) -> Result<(), FatalError> {
unsafe {
let output_c = path2cstr(output);
let result = llvm::LLVMRustWriteOutputFile(
target, pm, m, output_c.as_ptr(), file_type);
if result.into_result().is_err() {
let msg = format!("could not write output to {}", output.display());
Err(llvm_err(handler, msg))
} else {
Ok(())
}
}
}
// On android, we by default compile for armv7 processors. This enables
// things like double word CAS instructions (rather than emulating them)
// which are *far* more efficient. This is obviously undesirable in some
// cases, so if any sort of target feature is specified we don't append v7
// to the feature list.
//
// On iOS only armv7 and newer are supported. So it is useful to
// get all hardware potential via VFP3 (hardware floating point)
// and NEON (SIMD) instructions supported by LLVM.
// Note that without those flags various linking errors might
// arise as some of intrinsics are converted into function calls
// and nobody provides implementations those functions
fn target_feature(sess: &Session) -> String {
let rustc_features = [
"crt-static",
];
let requested_features = sess.opts.cg.target_feature.split(',');
let llvm_features = requested_features.filter(|f| {
!rustc_features.iter().any(|s| f.contains(s))
});
format!("{},{}",
sess.target.target.options.features,
llvm_features.collect::<Vec<_>>().join(","))
}
fn get_llvm_opt_level(optimize: config::OptLevel) -> llvm::CodeGenOptLevel {
match optimize {
config::OptLevel::No => llvm::CodeGenOptLevel::None,
config::OptLevel::Less => llvm::CodeGenOptLevel::Less,
config::OptLevel::Default => llvm::CodeGenOptLevel::Default,
config::OptLevel::Aggressive => llvm::CodeGenOptLevel::Aggressive,
_ => llvm::CodeGenOptLevel::Default,
}
}
fn get_llvm_opt_size(optimize: config::OptLevel) -> llvm::CodeGenOptSize {
match optimize {
config::OptLevel::Size => llvm::CodeGenOptSizeDefault,
config::OptLevel::SizeMin => llvm::CodeGenOptSizeAggressive,
_ => llvm::CodeGenOptSizeNone,
}
}
pub fn create_target_machine(sess: &Session) -> TargetMachineRef {
target_machine_factory(sess)().unwrap_or_else(|err| {
llvm_err(sess.diagnostic(), err).raise()
})
}
pub fn target_machine_factory(sess: &Session)
-> Arc<Fn() -> Result<TargetMachineRef, String> + Send + Sync>
{
let reloc_model = get_reloc_model(sess);
let opt_level = get_llvm_opt_level(sess.opts.optimize);
let use_softfp = sess.opts.cg.soft_float;
let ffunction_sections = sess.target.target.options.function_sections;
let fdata_sections = ffunction_sections;
let code_model_arg = sess.opts.cg.code_model.as_ref().or(
sess.target.target.options.code_model.as_ref(),
);
let code_model = match code_model_arg {
Some(s) => {
match CODE_GEN_MODEL_ARGS.iter().find(|arg| arg.0 == s) {
Some(x) => x.1,
_ => {
sess.err(&format!("{:?} is not a valid code model",
code_model_arg));
sess.abort_if_errors();
bug!();
}
}
}
None => llvm::CodeModel::None,
};
let singlethread = sess.target.target.options.singlethread;
let triple = &sess.target.target.llvm_target;
let triple = CString::new(triple.as_bytes()).unwrap();
let cpu = match sess.opts.cg.target_cpu {
Some(ref s) => &**s,
None => &*sess.target.target.options.cpu
};
let cpu = CString::new(cpu.as_bytes()).unwrap();
let features = CString::new(target_feature(sess).as_bytes()).unwrap();
let is_pie_binary = is_pie_binary(sess);
let trap_unreachable = sess.target.target.options.trap_unreachable;
Arc::new(move || {
let tm = unsafe {
llvm::LLVMRustCreateTargetMachine(
triple.as_ptr(), cpu.as_ptr(), features.as_ptr(),
code_model,
reloc_model,
opt_level,
use_softfp,
is_pie_binary,
ffunction_sections,
fdata_sections,
trap_unreachable,
singlethread,
)
};
if tm.is_null() {
Err(format!("Could not create LLVM TargetMachine for triple: {}",
triple.to_str().unwrap()))
} else {
Ok(tm)
}
})
}
/// Module-specific configuration for `optimize_and_codegen`.
pub struct ModuleConfig {
/// Names of additional optimization passes to run.
passes: Vec<String>,
/// Some(level) to optimize at a certain level, or None to run
/// absolutely no optimizations (used for the metadata module).
pub opt_level: Option<llvm::CodeGenOptLevel>,
/// Some(level) to optimize binary size, or None to not affect program size.
opt_size: Option<llvm::CodeGenOptSize>,
// Flags indicating which outputs to produce.
emit_no_opt_bc: bool,
emit_bc: bool,
emit_bc_compressed: bool,
emit_lto_bc: bool,
emit_ir: bool,
emit_asm: bool,
emit_obj: bool,
// Miscellaneous flags. These are mostly copied from command-line
// options.
no_verify: bool,
no_prepopulate_passes: bool,
no_builtins: bool,
time_passes: bool,
vectorize_loop: bool,
vectorize_slp: bool,
merge_functions: bool,
inline_threshold: Option<usize>,
// Instead of creating an object file by doing LLVM codegen, just
// make the object file bitcode. Provides easy compatibility with
// emscripten's ecc compiler, when used as the linker.
obj_is_bitcode: bool,
no_integrated_as: bool,
}
impl ModuleConfig {
fn new(passes: Vec<String>) -> ModuleConfig {
ModuleConfig {
passes,
opt_level: None,
opt_size: None,
emit_no_opt_bc: false,
emit_bc: false,
emit_bc_compressed: false,
emit_lto_bc: false,
emit_ir: false,
emit_asm: false,
emit_obj: false,
obj_is_bitcode: false,
no_integrated_as: false,
no_verify: false,
no_prepopulate_passes: false,
no_builtins: false,
time_passes: false,
vectorize_loop: false,
vectorize_slp: false,
merge_functions: false,
inline_threshold: None
}
}
fn set_flags(&mut self, sess: &Session, no_builtins: bool) {
self.no_verify = sess.no_verify();
self.no_prepopulate_passes = sess.opts.cg.no_prepopulate_passes;
self.no_builtins = no_builtins || sess.target.target.options.no_builtins;
self.time_passes = sess.time_passes();
self.inline_threshold = sess.opts.cg.inline_threshold;
self.obj_is_bitcode = sess.target.target.options.obj_is_bitcode;
// Copy what clang does by turning on loop vectorization at O2 and
// slp vectorization at O3. Otherwise configure other optimization aspects
// of this pass manager builder.
// Turn off vectorization for emscripten, as it's not very well supported.
self.vectorize_loop = !sess.opts.cg.no_vectorize_loops &&
(sess.opts.optimize == config::OptLevel::Default ||
sess.opts.optimize == config::OptLevel::Aggressive) &&
!sess.target.target.options.is_like_emscripten;
self.vectorize_slp = !sess.opts.cg.no_vectorize_slp &&
sess.opts.optimize == config::OptLevel::Aggressive &&
!sess.target.target.options.is_like_emscripten;
self.merge_functions = sess.opts.optimize == config::OptLevel::Default ||
sess.opts.optimize == config::OptLevel::Aggressive;
}
}
/// Assembler name and command used by codegen when no_integrated_as is enabled
struct AssemblerCommand {
name: PathBuf,
cmd: Command,
}
/// Additional resources used by optimize_and_codegen (not module specific)
#[derive(Clone)]
pub struct CodegenContext {
// Resouces needed when running LTO
pub time_passes: bool,
pub lto: Lto,
pub no_landing_pads: bool,
pub save_temps: bool,
pub fewer_names: bool,
pub exported_symbols: Arc<ExportedSymbols>,
pub opts: Arc<config::Options>,
pub crate_types: Vec<config::CrateType>,
pub each_linked_rlib_for_lto: Vec<(CrateNum, PathBuf)>,
output_filenames: Arc<OutputFilenames>,
regular_module_config: Arc<ModuleConfig>,
metadata_module_config: Arc<ModuleConfig>,
allocator_module_config: Arc<ModuleConfig>,
pub tm_factory: Arc<Fn() -> Result<TargetMachineRef, String> + Send + Sync>,
pub msvc_imps_needed: bool,
pub target_pointer_width: String,
binaryen_linker: bool,
debuginfo: config::DebugInfoLevel,
wasm_import_memory: bool,
// Number of cgus excluding the allocator/metadata modules
pub total_cgus: usize,
// Handler to use for diagnostics produced during codegen.
pub diag_emitter: SharedEmitter,
// LLVM passes added by plugins.
pub plugin_passes: Vec<String>,
// LLVM optimizations for which we want to print remarks.
pub remark: Passes,
// Worker thread number
pub worker: usize,
// The incremental compilation session directory, or None if we are not
// compiling incrementally
pub incr_comp_session_dir: Option<PathBuf>,
// Channel back to the main control thread to send messages to
coordinator_send: Sender<Box<Any + Send>>,
// A reference to the TimeGraph so we can register timings. None means that
// measuring is disabled.
time_graph: Option<TimeGraph>,
// The assembler command if no_integrated_as option is enabled, None otherwise
assembler_cmd: Option<Arc<AssemblerCommand>>,
}
impl CodegenContext {
pub fn create_diag_handler(&self) -> Handler {
Handler::with_emitter(true, false, Box::new(self.diag_emitter.clone()))
}
pub(crate) fn config(&self, kind: ModuleKind) -> &ModuleConfig {
match kind {
ModuleKind::Regular => &self.regular_module_config,
ModuleKind::Metadata => &self.metadata_module_config,
ModuleKind::Allocator => &self.allocator_module_config,
}
}
pub(crate) fn save_temp_bitcode(&self, trans: &ModuleTranslation, name: &str) {
if !self.save_temps {
return
}
unsafe {
let ext = format!("{}.bc", name);
let cgu = Some(&trans.name[..]);
let path = self.output_filenames.temp_path_ext(&ext, cgu);
let cstr = path2cstr(&path);
let llmod = trans.llvm().unwrap().llmod;
llvm::LLVMWriteBitcodeToFile(llmod, cstr.as_ptr());
}
}
}
struct DiagnosticHandlers<'a> {
inner: Box<(&'a CodegenContext, &'a Handler)>,
llcx: ContextRef,
}
impl<'a> DiagnosticHandlers<'a> {
fn new(cgcx: &'a CodegenContext,
handler: &'a Handler,
llcx: ContextRef) -> DiagnosticHandlers<'a> {
let data = Box::new((cgcx, handler));
unsafe {
let arg = &*data as &(_, _) as *const _ as *mut _;
llvm::LLVMRustSetInlineAsmDiagnosticHandler(llcx, inline_asm_handler, arg);
llvm::LLVMContextSetDiagnosticHandler(llcx, diagnostic_handler, arg);
}
DiagnosticHandlers {
inner: data,
llcx: llcx,
}
}
}
impl<'a> Drop for DiagnosticHandlers<'a> {
fn drop(&mut self) {
unsafe {
llvm::LLVMRustSetInlineAsmDiagnosticHandler(self.llcx, inline_asm_handler, 0 as *mut _);
llvm::LLVMContextSetDiagnosticHandler(self.llcx, diagnostic_handler, 0 as *mut _);
}
}
}
unsafe extern "C" fn report_inline_asm<'a, 'b>(cgcx: &'a CodegenContext,
msg: &'b str,
cookie: c_uint) {
cgcx.diag_emitter.inline_asm_error(cookie as u32, msg.to_string());
}
unsafe extern "C" fn inline_asm_handler(diag: SMDiagnosticRef,
user: *const c_void,
cookie: c_uint) {
if user.is_null() {
return
}
let (cgcx, _) = *(user as *const (&CodegenContext, &Handler));
let msg = llvm::build_string(|s| llvm::LLVMRustWriteSMDiagnosticToString(diag, s))
.expect("non-UTF8 SMDiagnostic");
report_inline_asm(cgcx, &msg, cookie);
}
unsafe extern "C" fn diagnostic_handler(info: DiagnosticInfoRef, user: *mut c_void) {
if user.is_null() {
return
}
let (cgcx, diag_handler) = *(user as *const (&CodegenContext, &Handler));
match llvm::diagnostic::Diagnostic::unpack(info) {
llvm::diagnostic::InlineAsm(inline) => {
report_inline_asm(cgcx,
&llvm::twine_to_string(inline.message),
inline.cookie);
}
llvm::diagnostic::Optimization(opt) => {
let enabled = match cgcx.remark {
AllPasses => true,
SomePasses(ref v) => v.iter().any(|s| *s == opt.pass_name),
};
if enabled {
diag_handler.note_without_error(&format!("optimization {} for {} at {}:{}:{}: {}",
opt.kind.describe(),
opt.pass_name,
opt.filename,
opt.line,
opt.column,
opt.message));
}
}
_ => (),
}
}
// Unsafe due to LLVM calls.
unsafe fn optimize(cgcx: &CodegenContext,
diag_handler: &Handler,
mtrans: &ModuleTranslation,
config: &ModuleConfig,
timeline: &mut Timeline)
-> Result<(), FatalError>
{
let (llmod, llcx, tm) = match mtrans.source {
ModuleSource::Translated(ref llvm) => (llvm.llmod, llvm.llcx, llvm.tm),
ModuleSource::Preexisting(_) => {
bug!("optimize_and_codegen: called with ModuleSource::Preexisting")
}
};
let _handlers = DiagnosticHandlers::new(cgcx, diag_handler, llcx);
let module_name = mtrans.name.clone();
let module_name = Some(&module_name[..]);
if config.emit_no_opt_bc {
let out = cgcx.output_filenames.temp_path_ext("no-opt.bc", module_name);
let out = path2cstr(&out);
llvm::LLVMWriteBitcodeToFile(llmod, out.as_ptr());
}
if config.opt_level.is_some() {
// Create the two optimizing pass managers. These mirror what clang
// does, and are by populated by LLVM's default PassManagerBuilder.
// Each manager has a different set of passes, but they also share
// some common passes.
let fpm = llvm::LLVMCreateFunctionPassManagerForModule(llmod);
let mpm = llvm::LLVMCreatePassManager();
// If we're verifying or linting, add them to the function pass
// manager.
let addpass = |pass_name: &str| {
let pass_name = CString::new(pass_name).unwrap();
let pass = llvm::LLVMRustFindAndCreatePass(pass_name.as_ptr());
if pass.is_null() {
return false;
}
let pass_manager = match llvm::LLVMRustPassKind(pass) {
llvm::PassKind::Function => fpm,
llvm::PassKind::Module => mpm,
llvm::PassKind::Other => {
diag_handler.err("Encountered LLVM pass kind we can't handle");
return true
},
};
llvm::LLVMRustAddPass(pass_manager, pass);
true
};
if !config.no_verify { assert!(addpass("verify")); }
if !config.no_prepopulate_passes {
llvm::LLVMRustAddAnalysisPasses(tm, fpm, llmod);
llvm::LLVMRustAddAnalysisPasses(tm, mpm, llmod);
let opt_level = config.opt_level.unwrap_or(llvm::CodeGenOptLevel::None);
with_llvm_pmb(llmod, &config, opt_level, &mut |b| {
llvm::LLVMPassManagerBuilderPopulateFunctionPassManager(b, fpm);
llvm::LLVMPassManagerBuilderPopulateModulePassManager(b, mpm);
})
}
for pass in &config.passes {
if !addpass(pass) {
diag_handler.warn(&format!("unknown pass `{}`, ignoring",
pass));
}
}
for pass in &cgcx.plugin_passes {
if !addpass(pass) {
diag_handler.err(&format!("a plugin asked for LLVM pass \
`{}` but LLVM does not \
recognize it", pass));
}
}
diag_handler.abort_if_errors();
// Finally, run the actual optimization passes
time(config.time_passes, &format!("llvm function passes [{}]", module_name.unwrap()), ||
llvm::LLVMRustRunFunctionPassManager(fpm, llmod));
timeline.record("fpm");
time(config.time_passes, &format!("llvm module passes [{}]", module_name.unwrap()), ||
llvm::LLVMRunPassManager(mpm, llmod));
// Deallocate managers that we're now done with
llvm::LLVMDisposePassManager(fpm);
llvm::LLVMDisposePassManager(mpm);
}
Ok(())
}
fn generate_lto_work(cgcx: &CodegenContext,
modules: Vec<ModuleTranslation>)
-> Vec<(WorkItem, u64)>
{
let mut timeline = cgcx.time_graph.as_ref().map(|tg| {
tg.start(TRANS_WORKER_TIMELINE,
TRANS_WORK_PACKAGE_KIND,
"generate lto")
}).unwrap_or(Timeline::noop());
let lto_modules = lto::run(cgcx, modules, &mut timeline)
.unwrap_or_else(|e| e.raise());
lto_modules.into_iter().map(|module| {
let cost = module.cost();
(WorkItem::LTO(module), cost)
}).collect()
}
unsafe fn codegen(cgcx: &CodegenContext,
diag_handler: &Handler,
mtrans: ModuleTranslation,
config: &ModuleConfig,
timeline: &mut Timeline)
-> Result<CompiledModule, FatalError>
{
timeline.record("codegen");
let (llmod, llcx, tm) = match mtrans.source {
ModuleSource::Translated(ref llvm) => (llvm.llmod, llvm.llcx, llvm.tm),
ModuleSource::Preexisting(_) => {
bug!("codegen: called with ModuleSource::Preexisting")
}
};
let module_name = mtrans.name.clone();
let module_name = Some(&module_name[..]);
let handlers = DiagnosticHandlers::new(cgcx, diag_handler, llcx);
if cgcx.msvc_imps_needed {
create_msvc_imps(cgcx, llcx, llmod);
}
// A codegen-specific pass manager is used to generate object
// files for an LLVM module.
//
// Apparently each of these pass managers is a one-shot kind of
// thing, so we create a new one for each type of output. The
// pass manager passed to the closure should be ensured to not
// escape the closure itself, and the manager should only be
// used once.
unsafe fn with_codegen<F, R>(tm: TargetMachineRef,
llmod: ModuleRef,
no_builtins: bool,
f: F) -> R
where F: FnOnce(PassManagerRef) -> R,
{
let cpm = llvm::LLVMCreatePassManager();
llvm::LLVMRustAddAnalysisPasses(tm, cpm, llmod);
llvm::LLVMRustAddLibraryInfo(cpm, llmod, no_builtins);
f(cpm)
}
// If we're going to generate wasm code from the assembly that llvm
// generates then we'll be transitively affecting a ton of options below.
// This only happens on the wasm target now.
let asm2wasm = cgcx.binaryen_linker &&
!cgcx.crate_types.contains(&config::CrateTypeRlib) &&
mtrans.kind == ModuleKind::Regular;
// If we don't have the integrated assembler, then we need to emit asm
// from LLVM and use `gcc` to create the object file.
let asm_to_obj = config.emit_obj && config.no_integrated_as;
// Change what we write and cleanup based on whether obj files are
// just llvm bitcode. In that case write bitcode, and possibly
// delete the bitcode if it wasn't requested. Don't generate the
// machine code, instead copy the .o file from the .bc
let write_bc = config.emit_bc || (config.obj_is_bitcode && !asm2wasm);
let rm_bc = !config.emit_bc && config.obj_is_bitcode && !asm2wasm;
let write_obj = config.emit_obj && !config.obj_is_bitcode && !asm2wasm && !asm_to_obj;
let copy_bc_to_obj = config.emit_obj && config.obj_is_bitcode && !asm2wasm;
let bc_out = cgcx.output_filenames.temp_path(OutputType::Bitcode, module_name);
let obj_out = cgcx.output_filenames.temp_path(OutputType::Object, module_name);
if write_bc || config.emit_bc_compressed {
let thin;
let old;
let data = if llvm::LLVMRustThinLTOAvailable() {
thin = ThinBuffer::new(llmod);
thin.data()
} else {
old = ModuleBuffer::new(llmod);
old.data()
};
timeline.record("make-bc");
if write_bc {
if let Err(e) = fs::write(&bc_out, data) {
diag_handler.err(&format!("failed to write bytecode: {}", e));
}
timeline.record("write-bc");
}
if config.emit_bc_compressed {
let dst = bc_out.with_extension(RLIB_BYTECODE_EXTENSION);
let data = bytecode::encode(&mtrans.llmod_id, data);
if let Err(e) = fs::write(&dst, data) {
diag_handler.err(&format!("failed to write bytecode: {}", e));
}
timeline.record("compress-bc");
}
}
time(config.time_passes, &format!("codegen passes [{}]", module_name.unwrap()),
|| -> Result<(), FatalError> {
if config.emit_ir {
let out = cgcx.output_filenames.temp_path(OutputType::LlvmAssembly, module_name);
let out = path2cstr(&out);
extern "C" fn demangle_callback(input_ptr: *const c_char,
input_len: size_t,
output_ptr: *mut c_char,
output_len: size_t) -> size_t {
let input = unsafe {
slice::from_raw_parts(input_ptr as *const u8, input_len as usize)
};
let input = match str::from_utf8(input) {
Ok(s) => s,
Err(_) => return 0,
};
let output = unsafe {
slice::from_raw_parts_mut(output_ptr as *mut u8, output_len as usize)
};
let mut cursor = io::Cursor::new(output);
let demangled = match rustc_demangle::try_demangle(input) {
Ok(d) => d,
Err(_) => return 0,
};
if let Err(_) = write!(cursor, "{:#}", demangled) {
// Possible only if provided buffer is not big enough
return 0;
}
cursor.position() as size_t
}
with_codegen(tm, llmod, config.no_builtins, |cpm| {
llvm::LLVMRustPrintModule(cpm, llmod, out.as_ptr(), demangle_callback);
llvm::LLVMDisposePassManager(cpm);
});
timeline.record("ir");
}
if config.emit_asm || (asm2wasm && config.emit_obj) || asm_to_obj {
let path = cgcx.output_filenames.temp_path(OutputType::Assembly, module_name);
// We can't use the same module for asm and binary output, because that triggers
// various errors like invalid IR or broken binaries, so we might have to clone the
// module to produce the asm output
let llmod = if config.emit_obj && !asm2wasm {
llvm::LLVMCloneModule(llmod)
} else {
llmod
};
with_codegen(tm, llmod, config.no_builtins, |cpm| {
write_output_file(diag_handler, tm, cpm, llmod, &path,
llvm::FileType::AssemblyFile)
})?;
if config.emit_obj && !asm2wasm {
llvm::LLVMDisposeModule(llmod);
}
timeline.record("asm");
}
if asm2wasm && config.emit_obj {
let assembly = cgcx.output_filenames.temp_path(OutputType::Assembly, module_name);
let suffix = ".wasm.map"; // FIXME use target suffix
let map = cgcx.output_filenames.path(OutputType::Exe)
.with_extension(&suffix[1..]);
binaryen_assemble(cgcx, diag_handler, &assembly, &obj_out, &map);
timeline.record("binaryen");
if !config.emit_asm {
drop(fs::remove_file(&assembly));
}
} else if write_obj {
with_codegen(tm, llmod, config.no_builtins, |cpm| {
write_output_file(diag_handler, tm, cpm, llmod, &obj_out,
llvm::FileType::ObjectFile)
})?;
timeline.record("obj");
} else if asm_to_obj {
let assembly = cgcx.output_filenames.temp_path(OutputType::Assembly, module_name);
run_assembler(cgcx, diag_handler, &assembly, &obj_out);
timeline.record("asm_to_obj");
if !config.emit_asm && !cgcx.save_temps {
drop(fs::remove_file(&assembly));
}
}
Ok(())
})?;
if copy_bc_to_obj {
debug!("copying bitcode {:?} to obj {:?}", bc_out, obj_out);
if let Err(e) = link_or_copy(&bc_out, &obj_out) {
diag_handler.err(&format!("failed to copy bitcode to object file: {}", e));
}
}
if rm_bc {
debug!("removing_bitcode {:?}", bc_out);
if let Err(e) = fs::remove_file(&bc_out) {
diag_handler.err(&format!("failed to remove bitcode: {}", e));
}
}
drop(handlers);
Ok(mtrans.into_compiled_module(config.emit_obj,
config.emit_bc,
config.emit_bc_compressed,
&cgcx.output_filenames))
}
/// Translates the LLVM-generated `assembly` on the filesystem into a wasm
/// module using binaryen, placing the output at `object`.
///
/// In this case the "object" is actually a full and complete wasm module. We
/// won't actually be doing anything else to the output for now. This is all
/// pretty janky and will get removed as soon as a linker for wasm exists.
fn binaryen_assemble(cgcx: &CodegenContext,
handler: &Handler,
assembly: &Path,
object: &Path,
map: &Path) {
use rustc_binaryen::{Module, ModuleOptions};
let input = fs::read(&assembly).and_then(|contents| {
Ok(CString::new(contents)?)
});
let mut options = ModuleOptions::new();
if cgcx.debuginfo != config::NoDebugInfo {
options.debuginfo(true);
let map_file_name = map.file_name().unwrap();
options.source_map_url(map_file_name.to_str().unwrap());
}
options.stack(1024 * 1024);
options.import_memory(cgcx.wasm_import_memory);
let assembled = input.and_then(|input| {
Module::new(&input, &options)
.map_err(|e| io::Error::new(io::ErrorKind::Other, e))
});
let err = assembled.and_then(|binary| {
fs::write(&object, binary.data()).and_then(|()| {
if cgcx.debuginfo != config::NoDebugInfo {
fs::write(map, binary.source_map())
} else {
Ok(())
}
})
});
if let Err(e) = err {
handler.err(&format!("failed to run binaryen assembler: {}", e));
}
}
pub(crate) struct CompiledModules {
pub modules: Vec<CompiledModule>,
pub metadata_module: CompiledModule,
pub allocator_module: Option<CompiledModule>,
}
fn need_crate_bitcode_for_rlib(sess: &Session) -> bool {
sess.crate_types.borrow().contains(&config::CrateTypeRlib) &&
sess.opts.output_types.contains_key(&OutputType::Exe)
}
pub fn start_async_translation(tcx: TyCtxt,
time_graph: Option<TimeGraph>,
link: LinkMeta,
metadata: EncodedMetadata,
coordinator_receive: Receiver<Box<Any + Send>>,
total_cgus: usize)
-> OngoingCrateTranslation {
let sess = tcx.sess;
let crate_name = tcx.crate_name(LOCAL_CRATE);
let no_builtins = attr::contains_name(&tcx.hir.krate().attrs, "no_builtins");
let subsystem = attr::first_attr_value_str_by_name(&tcx.hir.krate().attrs,
"windows_subsystem");
let windows_subsystem = subsystem.map(|subsystem| {
if subsystem != "windows" && subsystem != "console" {
tcx.sess.fatal(&format!("invalid windows subsystem `{}`, only \
`windows` and `console` are allowed",
subsystem));
}
subsystem.to_string()
});
let linker_info = LinkerInfo::new(tcx);
let crate_info = CrateInfo::new(tcx);
// Figure out what we actually need to build.
let mut modules_config = ModuleConfig::new(sess.opts.cg.passes.clone());
let mut metadata_config = ModuleConfig::new(vec![]);
let mut allocator_config = ModuleConfig::new(vec![]);
if let Some(ref sanitizer) = sess.opts.debugging_opts.sanitizer {
match *sanitizer {
Sanitizer::Address => {
modules_config.passes.push("asan".to_owned());
modules_config.passes.push("asan-module".to_owned());
}
Sanitizer::Memory => {
modules_config.passes.push("msan".to_owned())
}
Sanitizer::Thread => {
modules_config.passes.push("tsan".to_owned())
}
_ => {}
}
}
if sess.opts.debugging_opts.profile {
modules_config.passes.push("insert-gcov-profiling".to_owned())
}
modules_config.opt_level = Some(get_llvm_opt_level(sess.opts.optimize));
modules_config.opt_size = Some(get_llvm_opt_size(sess.opts.optimize));
// Save all versions of the bytecode if we're saving our temporaries.
if sess.opts.cg.save_temps {
modules_config.emit_no_opt_bc = true;
modules_config.emit_bc = true;
modules_config.emit_lto_bc = true;
metadata_config.emit_bc = true;
allocator_config.emit_bc = true;
}
// Emit compressed bitcode files for the crate if we're emitting an rlib.
// Whenever an rlib is created, the bitcode is inserted into the archive in
// order to allow LTO against it.
if need_crate_bitcode_for_rlib(sess) {
modules_config.emit_bc_compressed = true;
allocator_config.emit_bc_compressed = true;
}
modules_config.no_integrated_as = tcx.sess.opts.cg.no_integrated_as ||
tcx.sess.target.target.options.no_integrated_as;
for output_type in sess.opts.output_types.keys() {
match *output_type {
OutputType::Bitcode => { modules_config.emit_bc = true; }
OutputType::LlvmAssembly => { modules_config.emit_ir = true; }
OutputType::Assembly => {
modules_config.emit_asm = true;
// If we're not using the LLVM assembler, this function
// could be invoked specially with output_type_assembly, so
// in this case we still want the metadata object file.
if !sess.opts.output_types.contains_key(&OutputType::Assembly) {
metadata_config.emit_obj = true;
allocator_config.emit_obj = true;
}
}
OutputType::Object => { modules_config.emit_obj = true; }
OutputType::Metadata => { metadata_config.emit_obj = true; }
OutputType::Exe => {
modules_config.emit_obj = true;
metadata_config.emit_obj = true;
allocator_config.emit_obj = true;
},
OutputType::Mir => {}
OutputType::DepInfo => {}
}
}
modules_config.set_flags(sess, no_builtins);
metadata_config.set_flags(sess, no_builtins);
allocator_config.set_flags(sess, no_builtins);
// Exclude metadata and allocator modules from time_passes output, since
// they throw off the "LLVM passes" measurement.
metadata_config.time_passes = false;
allocator_config.time_passes = false;
let client = sess.jobserver_from_env.clone().unwrap_or_else(|| {
// Pick a "reasonable maximum" if we don't otherwise have a jobserver in
// our environment, capping out at 32 so we don't take everything down
// by hogging the process run queue.
Client::new(32).expect("failed to create jobserver")
});
let (shared_emitter, shared_emitter_main) = SharedEmitter::new();
let (trans_worker_send, trans_worker_receive) = channel();
let coordinator_thread = start_executing_work(tcx,
&crate_info,
shared_emitter,
trans_worker_send,
coordinator_receive,
total_cgus,
client,
time_graph.clone(),
Arc::new(modules_config),
Arc::new(metadata_config),
Arc::new(allocator_config));
OngoingCrateTranslation {
crate_name,
link,
metadata,
windows_subsystem,
linker_info,
crate_info,