-
Notifications
You must be signed in to change notification settings - Fork 12.8k
/
select.rs
3023 lines (2687 loc) · 125 KB
/
select.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! See `README.md` for high-level documentation
pub use self::MethodMatchResult::*;
pub use self::MethodMatchedData::*;
use self::SelectionCandidate::*;
use self::EvaluationResult::*;
use super::coherence;
use super::DerivedObligationCause;
use super::project;
use super::project::{normalize_with_depth, Normalized};
use super::{PredicateObligation, TraitObligation, ObligationCause};
use super::{ObligationCauseCode, BuiltinDerivedObligation, ImplDerivedObligation};
use super::{SelectionError, Unimplemented, OutputTypeParameterMismatch};
use super::{ObjectCastObligation, Obligation};
use super::ProjectionMode;
use super::TraitNotObjectSafe;
use super::Selection;
use super::SelectionResult;
use super::{VtableBuiltin, VtableImpl, VtableParam, VtableClosure,
VtableFnPointer, VtableObject, VtableDefaultImpl};
use super::{VtableImplData, VtableObjectData, VtableBuiltinData,
VtableClosureData, VtableDefaultImplData, VtableFnPointerData};
use super::util;
use hir::def_id::DefId;
use infer;
use infer::{InferCtxt, InferOk, TypeFreshener, TypeOrigin};
use ty::subst::{Subst, Substs, TypeSpace};
use ty::{self, ToPredicate, ToPolyTraitRef, Ty, TyCtxt, TypeFoldable};
use traits;
use ty::fast_reject;
use ty::relate::TypeRelation;
use rustc_data_structures::snapshot_vec::{SnapshotVecDelegate, SnapshotVec};
use std::cell::RefCell;
use std::fmt;
use std::marker::PhantomData;
use std::mem;
use std::rc::Rc;
use syntax::abi::Abi;
use hir;
use util::nodemap::FnvHashMap;
struct InferredObligationsSnapshotVecDelegate<'tcx> {
phantom: PhantomData<&'tcx i32>,
}
impl<'tcx> SnapshotVecDelegate for InferredObligationsSnapshotVecDelegate<'tcx> {
type Value = PredicateObligation<'tcx>;
type Undo = ();
fn reverse(_: &mut Vec<Self::Value>, _: Self::Undo) {}
}
pub struct SelectionContext<'cx, 'gcx: 'cx+'tcx, 'tcx: 'cx> {
infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
/// Freshener used specifically for skolemizing entries on the
/// obligation stack. This ensures that all entries on the stack
/// at one time will have the same set of skolemized entries,
/// which is important for checking for trait bounds that
/// recursively require themselves.
freshener: TypeFreshener<'cx, 'gcx, 'tcx>,
/// If true, indicates that the evaluation should be conservative
/// and consider the possibility of types outside this crate.
/// This comes up primarily when resolving ambiguity. Imagine
/// there is some trait reference `$0 : Bar` where `$0` is an
/// inference variable. If `intercrate` is true, then we can never
/// say for sure that this reference is not implemented, even if
/// there are *no impls at all for `Bar`*, because `$0` could be
/// bound to some type that in a downstream crate that implements
/// `Bar`. This is the suitable mode for coherence. Elsewhere,
/// though, we set this to false, because we are only interested
/// in types that the user could actually have written --- in
/// other words, we consider `$0 : Bar` to be unimplemented if
/// there is no type that the user could *actually name* that
/// would satisfy it. This avoids crippling inference, basically.
intercrate: bool,
inferred_obligations: SnapshotVec<InferredObligationsSnapshotVecDelegate<'tcx>>,
}
// A stack that walks back up the stack frame.
struct TraitObligationStack<'prev, 'tcx: 'prev> {
obligation: &'prev TraitObligation<'tcx>,
/// Trait ref from `obligation` but skolemized with the
/// selection-context's freshener. Used to check for recursion.
fresh_trait_ref: ty::PolyTraitRef<'tcx>,
previous: TraitObligationStackList<'prev, 'tcx>,
}
#[derive(Clone)]
pub struct SelectionCache<'tcx> {
hashmap: RefCell<FnvHashMap<ty::TraitRef<'tcx>,
SelectionResult<'tcx, SelectionCandidate<'tcx>>>>,
}
pub enum MethodMatchResult {
MethodMatched(MethodMatchedData),
MethodAmbiguous(/* list of impls that could apply */ Vec<DefId>),
MethodDidNotMatch,
}
#[derive(Copy, Clone, Debug)]
pub enum MethodMatchedData {
// In the case of a precise match, we don't really need to store
// how the match was found. So don't.
PreciseMethodMatch,
// In the case of a coercion, we need to know the precise impl so
// that we can determine the type to which things were coerced.
CoerciveMethodMatch(/* impl we matched */ DefId)
}
/// The selection process begins by considering all impls, where
/// clauses, and so forth that might resolve an obligation. Sometimes
/// we'll be able to say definitively that (e.g.) an impl does not
/// apply to the obligation: perhaps it is defined for `usize` but the
/// obligation is for `int`. In that case, we drop the impl out of the
/// list. But the other cases are considered *candidates*.
///
/// For selection to succeed, there must be exactly one matching
/// candidate. If the obligation is fully known, this is guaranteed
/// by coherence. However, if the obligation contains type parameters
/// or variables, there may be multiple such impls.
///
/// It is not a real problem if multiple matching impls exist because
/// of type variables - it just means the obligation isn't sufficiently
/// elaborated. In that case we report an ambiguity, and the caller can
/// try again after more type information has been gathered or report a
/// "type annotations required" error.
///
/// However, with type parameters, this can be a real problem - type
/// parameters don't unify with regular types, but they *can* unify
/// with variables from blanket impls, and (unless we know its bounds
/// will always be satisfied) picking the blanket impl will be wrong
/// for at least *some* substitutions. To make this concrete, if we have
///
/// trait AsDebug { type Out : fmt::Debug; fn debug(self) -> Self::Out; }
/// impl<T: fmt::Debug> AsDebug for T {
/// type Out = T;
/// fn debug(self) -> fmt::Debug { self }
/// }
/// fn foo<T: AsDebug>(t: T) { println!("{:?}", <T as AsDebug>::debug(t)); }
///
/// we can't just use the impl to resolve the <T as AsDebug> obligation
/// - a type from another crate (that doesn't implement fmt::Debug) could
/// implement AsDebug.
///
/// Because where-clauses match the type exactly, multiple clauses can
/// only match if there are unresolved variables, and we can mostly just
/// report this ambiguity in that case. This is still a problem - we can't
/// *do anything* with ambiguities that involve only regions. This is issue
/// #21974.
///
/// If a single where-clause matches and there are no inference
/// variables left, then it definitely matches and we can just select
/// it.
///
/// In fact, we even select the where-clause when the obligation contains
/// inference variables. The can lead to inference making "leaps of logic",
/// for example in this situation:
///
/// pub trait Foo<T> { fn foo(&self) -> T; }
/// impl<T> Foo<()> for T { fn foo(&self) { } }
/// impl Foo<bool> for bool { fn foo(&self) -> bool { *self } }
///
/// pub fn foo<T>(t: T) where T: Foo<bool> {
/// println!("{:?}", <T as Foo<_>>::foo(&t));
/// }
/// fn main() { foo(false); }
///
/// Here the obligation <T as Foo<$0>> can be matched by both the blanket
/// impl and the where-clause. We select the where-clause and unify $0=bool,
/// so the program prints "false". However, if the where-clause is omitted,
/// the blanket impl is selected, we unify $0=(), and the program prints
/// "()".
///
/// Exactly the same issues apply to projection and object candidates, except
/// that we can have both a projection candidate and a where-clause candidate
/// for the same obligation. In that case either would do (except that
/// different "leaps of logic" would occur if inference variables are
/// present), and we just pick the where-clause. This is, for example,
/// required for associated types to work in default impls, as the bounds
/// are visible both as projection bounds and as where-clauses from the
/// parameter environment.
#[derive(PartialEq,Eq,Debug,Clone)]
enum SelectionCandidate<'tcx> {
BuiltinCandidate { has_nested: bool },
ParamCandidate(ty::PolyTraitRef<'tcx>),
ImplCandidate(DefId),
DefaultImplCandidate(DefId),
DefaultImplObjectCandidate(DefId),
/// This is a trait matching with a projected type as `Self`, and
/// we found an applicable bound in the trait definition.
ProjectionCandidate,
/// Implementation of a `Fn`-family trait by one of the anonymous types
/// generated for a `||` expression. The ty::ClosureKind informs the
/// confirmation step what ClosureKind obligation to emit.
ClosureCandidate(/* closure */ DefId, ty::ClosureSubsts<'tcx>, ty::ClosureKind),
/// Implementation of a `Fn`-family trait by one of the anonymous
/// types generated for a fn pointer type (e.g., `fn(int)->int`)
FnPointerCandidate,
ObjectCandidate,
BuiltinObjectCandidate,
BuiltinUnsizeCandidate,
}
impl<'a, 'tcx> ty::Lift<'tcx> for SelectionCandidate<'a> {
type Lifted = SelectionCandidate<'tcx>;
fn lift_to_tcx<'b, 'gcx>(&self, tcx: TyCtxt<'b, 'gcx, 'tcx>) -> Option<Self::Lifted> {
Some(match *self {
BuiltinCandidate { has_nested } => {
BuiltinCandidate {
has_nested: has_nested
}
}
ImplCandidate(def_id) => ImplCandidate(def_id),
DefaultImplCandidate(def_id) => DefaultImplCandidate(def_id),
DefaultImplObjectCandidate(def_id) => {
DefaultImplObjectCandidate(def_id)
}
ProjectionCandidate => ProjectionCandidate,
FnPointerCandidate => FnPointerCandidate,
ObjectCandidate => ObjectCandidate,
BuiltinObjectCandidate => BuiltinObjectCandidate,
BuiltinUnsizeCandidate => BuiltinUnsizeCandidate,
ParamCandidate(ref trait_ref) => {
return tcx.lift(trait_ref).map(ParamCandidate);
}
ClosureCandidate(def_id, ref substs, kind) => {
return tcx.lift(substs).map(|substs| {
ClosureCandidate(def_id, substs, kind)
});
}
})
}
}
struct SelectionCandidateSet<'tcx> {
// a list of candidates that definitely apply to the current
// obligation (meaning: types unify).
vec: Vec<SelectionCandidate<'tcx>>,
// if this is true, then there were candidates that might or might
// not have applied, but we couldn't tell. This occurs when some
// of the input types are type variables, in which case there are
// various "builtin" rules that might or might not trigger.
ambiguous: bool,
}
#[derive(PartialEq,Eq,Debug,Clone)]
struct EvaluatedCandidate<'tcx> {
candidate: SelectionCandidate<'tcx>,
evaluation: EvaluationResult,
}
/// When does the builtin impl for `T: Trait` apply?
enum BuiltinImplConditions<'tcx> {
/// The impl is conditional on T1,T2,.. : Trait
Where(ty::Binder<Vec<Ty<'tcx>>>),
/// There is no built-in impl. There may be some other
/// candidate (a where-clause or user-defined impl).
None,
/// There is *no* impl for this, builtin or not. Ignore
/// all where-clauses.
Never,
/// It is unknown whether there is an impl.
Ambiguous
}
#[derive(Copy, Clone, Debug, PartialOrd, Ord, PartialEq, Eq)]
/// The result of trait evaluation. The order is important
/// here as the evaluation of a list is the maximum of the
/// evaluations.
enum EvaluationResult {
/// Evaluation successful
EvaluatedToOk,
/// Evaluation failed because of recursion - treated as ambiguous
EvaluatedToUnknown,
/// Evaluation is known to be ambiguous
EvaluatedToAmbig,
/// Evaluation failed
EvaluatedToErr,
}
#[derive(Clone)]
pub struct EvaluationCache<'tcx> {
hashmap: RefCell<FnvHashMap<ty::PolyTraitRef<'tcx>, EvaluationResult>>
}
impl<'cx, 'gcx, 'tcx> SelectionContext<'cx, 'gcx, 'tcx> {
pub fn new(infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>) -> SelectionContext<'cx, 'gcx, 'tcx> {
SelectionContext {
infcx: infcx,
freshener: infcx.freshener(),
intercrate: false,
inferred_obligations: SnapshotVec::new(),
}
}
pub fn intercrate(infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>) -> SelectionContext<'cx, 'gcx, 'tcx> {
SelectionContext {
infcx: infcx,
freshener: infcx.freshener(),
intercrate: true,
inferred_obligations: SnapshotVec::new(),
}
}
pub fn infcx(&self) -> &'cx InferCtxt<'cx, 'gcx, 'tcx> {
self.infcx
}
pub fn tcx(&self) -> TyCtxt<'cx, 'gcx, 'tcx> {
self.infcx.tcx
}
pub fn param_env(&self) -> &'cx ty::ParameterEnvironment<'tcx> {
self.infcx.param_env()
}
pub fn closure_typer(&self) -> &'cx InferCtxt<'cx, 'gcx, 'tcx> {
self.infcx
}
pub fn projection_mode(&self) -> ProjectionMode {
self.infcx.projection_mode()
}
/// Wraps the inference context's in_snapshot s.t. snapshot handling is only from the selection
/// context's self.
fn in_snapshot<R, F>(&mut self, f: F) -> R
where F: FnOnce(&mut Self, &infer::CombinedSnapshot) -> R
{
// The irrefutable nature of the operation means we don't need to snapshot the
// inferred_obligations vector.
self.infcx.in_snapshot(|snapshot| f(self, snapshot))
}
/// Wraps a probe s.t. obligations collected during it are ignored and old obligations are
/// retained.
fn probe<R, F>(&mut self, f: F) -> R
where F: FnOnce(&mut Self, &infer::CombinedSnapshot) -> R
{
let inferred_obligations_snapshot = self.inferred_obligations.start_snapshot();
let result = self.infcx.probe(|snapshot| f(self, snapshot));
self.inferred_obligations.rollback_to(inferred_obligations_snapshot);
result
}
/// Wraps a commit_if_ok s.t. obligations collected during it are not returned in selection if
/// the transaction fails and s.t. old obligations are retained.
fn commit_if_ok<T, E, F>(&mut self, f: F) -> Result<T, E> where
F: FnOnce(&mut Self, &infer::CombinedSnapshot) -> Result<T, E>
{
let inferred_obligations_snapshot = self.inferred_obligations.start_snapshot();
match self.infcx.commit_if_ok(|snapshot| f(self, snapshot)) {
Ok(ok) => {
self.inferred_obligations.commit(inferred_obligations_snapshot);
Ok(ok)
},
Err(err) => {
self.inferred_obligations.rollback_to(inferred_obligations_snapshot);
Err(err)
}
}
}
///////////////////////////////////////////////////////////////////////////
// Selection
//
// The selection phase tries to identify *how* an obligation will
// be resolved. For example, it will identify which impl or
// parameter bound is to be used. The process can be inconclusive
// if the self type in the obligation is not fully inferred. Selection
// can result in an error in one of two ways:
//
// 1. If no applicable impl or parameter bound can be found.
// 2. If the output type parameters in the obligation do not match
// those specified by the impl/bound. For example, if the obligation
// is `Vec<Foo>:Iterable<Bar>`, but the impl specifies
// `impl<T> Iterable<T> for Vec<T>`, than an error would result.
/// Attempts to satisfy the obligation. If successful, this will affect the surrounding
/// type environment by performing unification.
pub fn select(&mut self, obligation: &TraitObligation<'tcx>)
-> SelectionResult<'tcx, Selection<'tcx>> {
debug!("select({:?})", obligation);
assert!(!obligation.predicate.has_escaping_regions());
let dep_node = obligation.predicate.dep_node();
let _task = self.tcx().dep_graph.in_task(dep_node);
let stack = self.push_stack(TraitObligationStackList::empty(), obligation);
match self.candidate_from_obligation(&stack)? {
None => Ok(None),
Some(candidate) => {
let mut candidate = self.confirm_candidate(obligation, candidate)?;
// FIXME(#32730) remove this assertion once inferred obligations are propagated
// from inference
assert!(self.inferred_obligations.len() == 0);
let inferred_obligations = (*self.inferred_obligations).into_iter().cloned();
candidate.nested_obligations_mut().extend(inferred_obligations);
Ok(Some(candidate))
},
}
}
///////////////////////////////////////////////////////////////////////////
// EVALUATION
//
// Tests whether an obligation can be selected or whether an impl
// can be applied to particular types. It skips the "confirmation"
// step and hence completely ignores output type parameters.
//
// The result is "true" if the obligation *may* hold and "false" if
// we can be sure it does not.
/// Evaluates whether the obligation `obligation` can be satisfied (by any means).
pub fn evaluate_obligation(&mut self,
obligation: &PredicateObligation<'tcx>)
-> bool
{
debug!("evaluate_obligation({:?})",
obligation);
self.probe(|this, _| {
this.evaluate_predicate_recursively(TraitObligationStackList::empty(), obligation)
.may_apply()
})
}
/// Evaluates whether the obligation `obligation` can be satisfied,
/// and returns `false` if not certain. However, this is not entirely
/// accurate if inference variables are involved.
pub fn evaluate_obligation_conservatively(&mut self,
obligation: &PredicateObligation<'tcx>)
-> bool
{
debug!("evaluate_obligation_conservatively({:?})",
obligation);
self.probe(|this, _| {
this.evaluate_predicate_recursively(TraitObligationStackList::empty(), obligation)
== EvaluatedToOk
})
}
/// Evaluates the predicates in `predicates` recursively. Note that
/// this applies projections in the predicates, and therefore
/// is run within an inference probe.
fn evaluate_predicates_recursively<'a,'o,I>(&mut self,
stack: TraitObligationStackList<'o, 'tcx>,
predicates: I)
-> EvaluationResult
where I : Iterator<Item=&'a PredicateObligation<'tcx>>, 'tcx:'a
{
let mut result = EvaluatedToOk;
for obligation in predicates {
let eval = self.evaluate_predicate_recursively(stack, obligation);
debug!("evaluate_predicate_recursively({:?}) = {:?}",
obligation, eval);
match eval {
EvaluatedToErr => { return EvaluatedToErr; }
EvaluatedToAmbig => { result = EvaluatedToAmbig; }
EvaluatedToUnknown => {
if result < EvaluatedToUnknown {
result = EvaluatedToUnknown;
}
}
EvaluatedToOk => { }
}
}
result
}
fn evaluate_predicate_recursively<'o>(&mut self,
previous_stack: TraitObligationStackList<'o, 'tcx>,
obligation: &PredicateObligation<'tcx>)
-> EvaluationResult
{
debug!("evaluate_predicate_recursively({:?})",
obligation);
// Check the cache from the tcx of predicates that we know
// have been proven elsewhere. This cache only contains
// predicates that are global in scope and hence unaffected by
// the current environment.
if self.tcx().fulfilled_predicates.borrow().check_duplicate(&obligation.predicate) {
return EvaluatedToOk;
}
match obligation.predicate {
ty::Predicate::Rfc1592(..) => EvaluatedToOk,
ty::Predicate::Trait(ref t) => {
assert!(!t.has_escaping_regions());
let obligation = obligation.with(t.clone());
self.evaluate_obligation_recursively(previous_stack, &obligation)
}
ty::Predicate::Equate(ref p) => {
// does this code ever run?
match self.infcx.equality_predicate(obligation.cause.span, p) {
Ok(InferOk { obligations, .. }) => {
self.inferred_obligations.extend(obligations);
EvaluatedToOk
},
Err(_) => EvaluatedToErr
}
}
ty::Predicate::WellFormed(ty) => {
match ty::wf::obligations(self.infcx, obligation.cause.body_id,
ty, obligation.cause.span) {
Some(obligations) =>
self.evaluate_predicates_recursively(previous_stack, obligations.iter()),
None =>
EvaluatedToAmbig,
}
}
ty::Predicate::TypeOutlives(..) | ty::Predicate::RegionOutlives(..) => {
// we do not consider region relationships when
// evaluating trait matches
EvaluatedToOk
}
ty::Predicate::ObjectSafe(trait_def_id) => {
if self.tcx().is_object_safe(trait_def_id) {
EvaluatedToOk
} else {
EvaluatedToErr
}
}
ty::Predicate::Projection(ref data) => {
let project_obligation = obligation.with(data.clone());
match project::poly_project_and_unify_type(self, &project_obligation) {
Ok(Some(subobligations)) => {
self.evaluate_predicates_recursively(previous_stack,
subobligations.iter())
}
Ok(None) => {
EvaluatedToAmbig
}
Err(_) => {
EvaluatedToErr
}
}
}
ty::Predicate::ClosureKind(closure_def_id, kind) => {
match self.infcx.closure_kind(closure_def_id) {
Some(closure_kind) => {
if closure_kind.extends(kind) {
EvaluatedToOk
} else {
EvaluatedToErr
}
}
None => {
EvaluatedToAmbig
}
}
}
}
}
fn evaluate_obligation_recursively<'o>(&mut self,
previous_stack: TraitObligationStackList<'o, 'tcx>,
obligation: &TraitObligation<'tcx>)
-> EvaluationResult
{
debug!("evaluate_obligation_recursively({:?})",
obligation);
let stack = self.push_stack(previous_stack, obligation);
let fresh_trait_ref = stack.fresh_trait_ref;
if let Some(result) = self.check_evaluation_cache(fresh_trait_ref) {
debug!("CACHE HIT: EVAL({:?})={:?}",
fresh_trait_ref,
result);
return result;
}
let result = self.evaluate_stack(&stack);
debug!("CACHE MISS: EVAL({:?})={:?}",
fresh_trait_ref,
result);
self.insert_evaluation_cache(fresh_trait_ref, result);
result
}
fn evaluate_stack<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>)
-> EvaluationResult
{
// In intercrate mode, whenever any of the types are unbound,
// there can always be an impl. Even if there are no impls in
// this crate, perhaps the type would be unified with
// something from another crate that does provide an impl.
//
// In intra mode, we must still be conservative. The reason is
// that we want to avoid cycles. Imagine an impl like:
//
// impl<T:Eq> Eq for Vec<T>
//
// and a trait reference like `$0 : Eq` where `$0` is an
// unbound variable. When we evaluate this trait-reference, we
// will unify `$0` with `Vec<$1>` (for some fresh variable
// `$1`), on the condition that `$1 : Eq`. We will then wind
// up with many candidates (since that are other `Eq` impls
// that apply) and try to winnow things down. This results in
// a recursive evaluation that `$1 : Eq` -- as you can
// imagine, this is just where we started. To avoid that, we
// check for unbound variables and return an ambiguous (hence possible)
// match if we've seen this trait before.
//
// This suffices to allow chains like `FnMut` implemented in
// terms of `Fn` etc, but we could probably make this more
// precise still.
let input_types = stack.fresh_trait_ref.0.input_types();
let unbound_input_types = input_types.iter().any(|ty| ty.is_fresh());
if unbound_input_types && self.intercrate {
debug!("evaluate_stack({:?}) --> unbound argument, intercrate --> ambiguous",
stack.fresh_trait_ref);
return EvaluatedToAmbig;
}
if unbound_input_types &&
stack.iter().skip(1).any(
|prev| self.match_fresh_trait_refs(&stack.fresh_trait_ref,
&prev.fresh_trait_ref))
{
debug!("evaluate_stack({:?}) --> unbound argument, recursive --> giving up",
stack.fresh_trait_ref);
return EvaluatedToUnknown;
}
// If there is any previous entry on the stack that precisely
// matches this obligation, then we can assume that the
// obligation is satisfied for now (still all other conditions
// must be met of course). One obvious case this comes up is
// marker traits like `Send`. Think of a linked list:
//
// struct List<T> { data: T, next: Option<Box<List<T>>> {
//
// `Box<List<T>>` will be `Send` if `T` is `Send` and
// `Option<Box<List<T>>>` is `Send`, and in turn
// `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
// `Send`.
//
// Note that we do this comparison using the `fresh_trait_ref`
// fields. Because these have all been skolemized using
// `self.freshener`, we can be sure that (a) this will not
// affect the inferencer state and (b) that if we see two
// skolemized types with the same index, they refer to the
// same unbound type variable.
if
stack.iter()
.skip(1) // skip top-most frame
.any(|prev| stack.fresh_trait_ref == prev.fresh_trait_ref)
{
debug!("evaluate_stack({:?}) --> recursive",
stack.fresh_trait_ref);
return EvaluatedToOk;
}
match self.candidate_from_obligation(stack) {
Ok(Some(c)) => self.evaluate_candidate(stack, &c),
Ok(None) => EvaluatedToAmbig,
Err(..) => EvaluatedToErr
}
}
/// Further evaluate `candidate` to decide whether all type parameters match and whether nested
/// obligations are met. Returns true if `candidate` remains viable after this further
/// scrutiny.
fn evaluate_candidate<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
candidate: &SelectionCandidate<'tcx>)
-> EvaluationResult
{
debug!("evaluate_candidate: depth={} candidate={:?}",
stack.obligation.recursion_depth, candidate);
let result = self.probe(|this, _| {
let candidate = (*candidate).clone();
match this.confirm_candidate(stack.obligation, candidate) {
Ok(selection) => {
this.evaluate_predicates_recursively(
stack.list(),
selection.nested_obligations().iter())
}
Err(..) => EvaluatedToErr
}
});
debug!("evaluate_candidate: depth={} result={:?}",
stack.obligation.recursion_depth, result);
result
}
fn check_evaluation_cache(&self, trait_ref: ty::PolyTraitRef<'tcx>)
-> Option<EvaluationResult>
{
if self.can_use_global_caches() {
let cache = self.tcx().evaluation_cache.hashmap.borrow();
if let Some(cached) = cache.get(&trait_ref) {
return Some(cached.clone());
}
}
self.infcx.evaluation_cache.hashmap.borrow().get(&trait_ref).cloned()
}
fn insert_evaluation_cache(&mut self,
trait_ref: ty::PolyTraitRef<'tcx>,
result: EvaluationResult)
{
// Avoid caching results that depend on more than just the trait-ref:
// The stack can create EvaluatedToUnknown, and closure signatures
// being yet uninferred can create "spurious" EvaluatedToAmbig
// and EvaluatedToOk.
if result == EvaluatedToUnknown ||
((result == EvaluatedToAmbig || result == EvaluatedToOk)
&& trait_ref.has_closure_types())
{
return;
}
if self.can_use_global_caches() {
let mut cache = self.tcx().evaluation_cache.hashmap.borrow_mut();
if let Some(trait_ref) = self.tcx().lift_to_global(&trait_ref) {
cache.insert(trait_ref, result);
return;
}
}
self.infcx.evaluation_cache.hashmap.borrow_mut().insert(trait_ref, result);
}
///////////////////////////////////////////////////////////////////////////
// CANDIDATE ASSEMBLY
//
// The selection process begins by examining all in-scope impls,
// caller obligations, and so forth and assembling a list of
// candidates. See `README.md` and the `Candidate` type for more
// details.
fn candidate_from_obligation<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>)
-> SelectionResult<'tcx, SelectionCandidate<'tcx>>
{
// Watch out for overflow. This intentionally bypasses (and does
// not update) the cache.
let recursion_limit = self.infcx.tcx.sess.recursion_limit.get();
if stack.obligation.recursion_depth >= recursion_limit {
self.infcx().report_overflow_error(&stack.obligation, true);
}
// Check the cache. Note that we skolemize the trait-ref
// separately rather than using `stack.fresh_trait_ref` -- this
// is because we want the unbound variables to be replaced
// with fresh skolemized types starting from index 0.
let cache_fresh_trait_pred =
self.infcx.freshen(stack.obligation.predicate.clone());
debug!("candidate_from_obligation(cache_fresh_trait_pred={:?}, obligation={:?})",
cache_fresh_trait_pred,
stack);
assert!(!stack.obligation.predicate.has_escaping_regions());
match self.check_candidate_cache(&cache_fresh_trait_pred) {
Some(c) => {
debug!("CACHE HIT: SELECT({:?})={:?}",
cache_fresh_trait_pred,
c);
return c;
}
None => { }
}
// If no match, compute result and insert into cache.
let candidate = self.candidate_from_obligation_no_cache(stack);
if self.should_update_candidate_cache(&cache_fresh_trait_pred, &candidate) {
debug!("CACHE MISS: SELECT({:?})={:?}",
cache_fresh_trait_pred, candidate);
self.insert_candidate_cache(cache_fresh_trait_pred, candidate.clone());
}
candidate
}
// Treat negative impls as unimplemented
fn filter_negative_impls(&self, candidate: SelectionCandidate<'tcx>)
-> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
if let ImplCandidate(def_id) = candidate {
if self.tcx().trait_impl_polarity(def_id) == Some(hir::ImplPolarity::Negative) {
return Err(Unimplemented)
}
}
Ok(Some(candidate))
}
fn candidate_from_obligation_no_cache<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>)
-> SelectionResult<'tcx, SelectionCandidate<'tcx>>
{
if stack.obligation.predicate.references_error() {
// If we encounter a `TyError`, we generally prefer the
// most "optimistic" result in response -- that is, the
// one least likely to report downstream errors. But
// because this routine is shared by coherence and by
// trait selection, there isn't an obvious "right" choice
// here in that respect, so we opt to just return
// ambiguity and let the upstream clients sort it out.
return Ok(None);
}
if !self.is_knowable(stack) {
debug!("coherence stage: not knowable");
return Ok(None);
}
let candidate_set = self.assemble_candidates(stack)?;
if candidate_set.ambiguous {
debug!("candidate set contains ambig");
return Ok(None);
}
let mut candidates = candidate_set.vec;
debug!("assembled {} candidates for {:?}: {:?}",
candidates.len(),
stack,
candidates);
// At this point, we know that each of the entries in the
// candidate set is *individually* applicable. Now we have to
// figure out if they contain mutual incompatibilities. This
// frequently arises if we have an unconstrained input type --
// for example, we are looking for $0:Eq where $0 is some
// unconstrained type variable. In that case, we'll get a
// candidate which assumes $0 == int, one that assumes $0 ==
// usize, etc. This spells an ambiguity.
// If there is more than one candidate, first winnow them down
// by considering extra conditions (nested obligations and so
// forth). We don't winnow if there is exactly one
// candidate. This is a relatively minor distinction but it
// can lead to better inference and error-reporting. An
// example would be if there was an impl:
//
// impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
//
// and we were to see some code `foo.push_clone()` where `boo`
// is a `Vec<Bar>` and `Bar` does not implement `Clone`. If
// we were to winnow, we'd wind up with zero candidates.
// Instead, we select the right impl now but report `Bar does
// not implement Clone`.
if candidates.len() == 1 {
return self.filter_negative_impls(candidates.pop().unwrap());
}
// Winnow, but record the exact outcome of evaluation, which
// is needed for specialization.
let mut candidates: Vec<_> = candidates.into_iter().filter_map(|c| {
let eval = self.evaluate_candidate(stack, &c);
if eval.may_apply() {
Some(EvaluatedCandidate {
candidate: c,
evaluation: eval,
})
} else {
None
}
}).collect();
// If there are STILL multiple candidate, we can further
// reduce the list by dropping duplicates -- including
// resolving specializations.
if candidates.len() > 1 {
let mut i = 0;
while i < candidates.len() {
let is_dup =
(0..candidates.len())
.filter(|&j| i != j)
.any(|j| self.candidate_should_be_dropped_in_favor_of(&candidates[i],
&candidates[j]));
if is_dup {
debug!("Dropping candidate #{}/{}: {:?}",
i, candidates.len(), candidates[i]);
candidates.swap_remove(i);
} else {
debug!("Retaining candidate #{}/{}: {:?}",
i, candidates.len(), candidates[i]);
i += 1;
}
}
}
// If there are *STILL* multiple candidates, give up and
// report ambiguity.
if candidates.len() > 1 {
debug!("multiple matches, ambig");
return Ok(None);
}
// If there are *NO* candidates, then there are no impls --
// that we know of, anyway. Note that in the case where there
// are unbound type variables within the obligation, it might
// be the case that you could still satisfy the obligation
// from another crate by instantiating the type variables with
// a type from another crate that does have an impl. This case
// is checked for in `evaluate_stack` (and hence users
// who might care about this case, like coherence, should use
// that function).
if candidates.is_empty() {
return Err(Unimplemented);
}
// Just one candidate left.
self.filter_negative_impls(candidates.pop().unwrap().candidate)
}
fn is_knowable<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>)
-> bool
{
debug!("is_knowable(intercrate={})", self.intercrate);
if !self.intercrate {
return true;
}
let obligation = &stack.obligation;
let predicate = self.infcx().resolve_type_vars_if_possible(&obligation.predicate);
// ok to skip binder because of the nature of the
// trait-ref-is-knowable check, which does not care about
// bound regions
let trait_ref = &predicate.skip_binder().trait_ref;
coherence::trait_ref_is_knowable(self.tcx(), trait_ref)
}
/// Returns true if the global caches can be used.
/// Do note that if the type itself is not in the
/// global tcx, the local caches will be used.
fn can_use_global_caches(&self) -> bool {
// If there are any where-clauses in scope, then we always use
// a cache local to this particular scope. Otherwise, we
// switch to a global cache. We used to try and draw
// finer-grained distinctions, but that led to a serious of
// annoying and weird bugs like #22019 and #18290. This simple
// rule seems to be pretty clearly safe and also still retains
// a very high hit rate (~95% when compiling rustc).
if !self.param_env().caller_bounds.is_empty() {
return false;
}
// Avoid using the master cache during coherence and just rely
// on the local cache. This effectively disables caching
// during coherence. It is really just a simplification to
// avoid us having to fear that coherence results "pollute"
// the master cache. Since coherence executes pretty quickly,
// it's not worth going to more trouble to increase the
// hit-rate I don't think.
if self.intercrate {
return false;
}
// Otherwise, we can use the global cache.
true
}
fn check_candidate_cache(&mut self,
cache_fresh_trait_pred: &ty::PolyTraitPredicate<'tcx>)