-
Notifications
You must be signed in to change notification settings - Fork 12.8k
/
error_reporting.rs
1180 lines (1073 loc) · 50.9 KB
/
error_reporting.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::{
FulfillmentError,
FulfillmentErrorCode,
MismatchedProjectionTypes,
Obligation,
ObligationCause,
ObligationCauseCode,
OutputTypeParameterMismatch,
TraitNotObjectSafe,
PredicateObligation,
SelectionContext,
SelectionError,
ObjectSafetyViolation,
};
use errors::DiagnosticBuilder;
use fmt_macros::{Parser, Piece, Position};
use hir::{self, intravisit, Local, Pat, Body};
use hir::intravisit::{Visitor, NestedVisitorMap};
use hir::map::NodeExpr;
use hir::def_id::DefId;
use infer::{self, InferCtxt};
use infer::type_variable::TypeVariableOrigin;
use rustc::lint::builtin::EXTRA_REQUIREMENT_IN_IMPL;
use std::fmt;
use syntax::ast::{self, NodeId};
use ty::{self, AdtKind, ToPredicate, ToPolyTraitRef, Ty, TyCtxt, TypeFoldable, TyInfer, TyVar};
use ty::error::{ExpectedFound, TypeError};
use ty::fast_reject;
use ty::fold::TypeFolder;
use ty::subst::Subst;
use ty::SubtypePredicate;
use util::nodemap::{FxHashMap, FxHashSet};
use syntax_pos::{DUMMY_SP, Span};
#[derive(Debug, PartialEq, Eq, Hash)]
pub struct TraitErrorKey<'tcx> {
span: Span,
predicate: ty::Predicate<'tcx>
}
impl<'a, 'gcx, 'tcx> TraitErrorKey<'tcx> {
fn from_error(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
e: &FulfillmentError<'tcx>) -> Self {
let predicate =
infcx.resolve_type_vars_if_possible(&e.obligation.predicate);
TraitErrorKey {
span: e.obligation.cause.span,
predicate: infcx.tcx.erase_regions(&predicate)
}
}
}
struct FindLocalByTypeVisitor<'a, 'gcx: 'a + 'tcx, 'tcx: 'a> {
infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
target_ty: &'a Ty<'tcx>,
hir_map: &'a hir::map::Map<'gcx>,
found_local_pattern: Option<&'gcx Pat>,
found_arg_pattern: Option<&'gcx Pat>,
}
impl<'a, 'gcx, 'tcx> FindLocalByTypeVisitor<'a, 'gcx, 'tcx> {
fn node_matches_type(&mut self, node_id: &'gcx NodeId) -> bool {
match self.infcx.tables.borrow().node_types.get(node_id) {
Some(&ty) => {
let ty = self.infcx.resolve_type_vars_if_possible(&ty);
ty.walk().any(|inner_ty| {
inner_ty == *self.target_ty || match (&inner_ty.sty, &self.target_ty.sty) {
(&TyInfer(TyVar(a_vid)), &TyInfer(TyVar(b_vid))) => {
self.infcx
.type_variables
.borrow_mut()
.sub_unified(a_vid, b_vid)
}
_ => false,
}
})
}
_ => false,
}
}
}
impl<'a, 'gcx, 'tcx> Visitor<'gcx> for FindLocalByTypeVisitor<'a, 'gcx, 'tcx> {
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'gcx> {
NestedVisitorMap::OnlyBodies(&self.hir_map)
}
fn visit_local(&mut self, local: &'gcx Local) {
if self.found_local_pattern.is_none() && self.node_matches_type(&local.id) {
self.found_local_pattern = Some(&*local.pat);
}
intravisit::walk_local(self, local);
}
fn visit_body(&mut self, body: &'gcx Body) {
for argument in &body.arguments {
if self.found_arg_pattern.is_none() && self.node_matches_type(&argument.id) {
self.found_arg_pattern = Some(&*argument.pat);
}
}
intravisit::walk_body(self, body);
}
}
impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> {
pub fn report_fulfillment_errors(&self, errors: &Vec<FulfillmentError<'tcx>>) {
for error in errors {
self.report_fulfillment_error(error);
}
}
fn report_fulfillment_error(&self,
error: &FulfillmentError<'tcx>) {
let error_key = TraitErrorKey::from_error(self, error);
debug!("report_fulfillment_errors({:?}) - key={:?}",
error, error_key);
if !self.reported_trait_errors.borrow_mut().insert(error_key) {
debug!("report_fulfillment_errors: skipping duplicate");
return;
}
match error.code {
FulfillmentErrorCode::CodeSelectionError(ref e) => {
self.report_selection_error(&error.obligation, e);
}
FulfillmentErrorCode::CodeProjectionError(ref e) => {
self.report_projection_error(&error.obligation, e);
}
FulfillmentErrorCode::CodeAmbiguity => {
self.maybe_report_ambiguity(&error.obligation);
}
FulfillmentErrorCode::CodeSubtypeError(ref expected_found, ref err) => {
self.report_mismatched_types(&error.obligation.cause,
expected_found.expected,
expected_found.found,
err.clone())
.emit();
}
}
}
fn report_projection_error(&self,
obligation: &PredicateObligation<'tcx>,
error: &MismatchedProjectionTypes<'tcx>)
{
let predicate =
self.resolve_type_vars_if_possible(&obligation.predicate);
if predicate.references_error() {
return
}
self.probe(|_| {
let err_buf;
let mut err = &error.err;
let mut values = None;
// try to find the mismatched types to report the error with.
//
// this can fail if the problem was higher-ranked, in which
// cause I have no idea for a good error message.
if let ty::Predicate::Projection(ref data) = predicate {
let mut selcx = SelectionContext::new(self);
let (data, _) = self.replace_late_bound_regions_with_fresh_var(
obligation.cause.span,
infer::LateBoundRegionConversionTime::HigherRankedType,
data);
let normalized = super::normalize_projection_type(
&mut selcx,
data.projection_ty,
obligation.cause.clone(),
0
);
if let Err(error) = self.eq_types(
false, &obligation.cause,
data.ty, normalized.value
) {
values = Some(infer::ValuePairs::Types(ExpectedFound {
expected: normalized.value,
found: data.ty,
}));
err_buf = error;
err = &err_buf;
}
}
let mut diag = struct_span_err!(
self.tcx.sess, obligation.cause.span, E0271,
"type mismatch resolving `{}`", predicate
);
self.note_type_err(&mut diag, &obligation.cause, None, values, err);
self.note_obligation_cause(&mut diag, obligation);
diag.emit();
});
}
fn fuzzy_match_tys(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
/// returns the fuzzy category of a given type, or None
/// if the type can be equated to any type.
fn type_category<'tcx>(t: Ty<'tcx>) -> Option<u32> {
match t.sty {
ty::TyBool => Some(0),
ty::TyChar => Some(1),
ty::TyStr => Some(2),
ty::TyInt(..) | ty::TyUint(..) | ty::TyInfer(ty::IntVar(..)) => Some(3),
ty::TyFloat(..) | ty::TyInfer(ty::FloatVar(..)) => Some(4),
ty::TyRef(..) | ty::TyRawPtr(..) => Some(5),
ty::TyArray(..) | ty::TySlice(..) => Some(6),
ty::TyFnDef(..) | ty::TyFnPtr(..) => Some(7),
ty::TyDynamic(..) => Some(8),
ty::TyClosure(..) => Some(9),
ty::TyTuple(..) => Some(10),
ty::TyProjection(..) => Some(11),
ty::TyParam(..) => Some(12),
ty::TyAnon(..) => Some(13),
ty::TyNever => Some(14),
ty::TyAdt(adt, ..) => match adt.adt_kind() {
AdtKind::Struct => Some(15),
AdtKind::Union => Some(16),
AdtKind::Enum => Some(17),
},
ty::TyInfer(..) | ty::TyError => None
}
}
match (type_category(a), type_category(b)) {
(Some(cat_a), Some(cat_b)) => match (&a.sty, &b.sty) {
(&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) => def_a == def_b,
_ => cat_a == cat_b
},
// infer and error can be equated to all types
_ => true
}
}
fn impl_similar_to(&self,
trait_ref: ty::PolyTraitRef<'tcx>,
obligation: &PredicateObligation<'tcx>)
-> Option<DefId>
{
let tcx = self.tcx;
let trait_ref = tcx.erase_late_bound_regions(&trait_ref);
let trait_self_ty = trait_ref.self_ty();
let mut self_match_impls = vec![];
let mut fuzzy_match_impls = vec![];
self.tcx.trait_def(trait_ref.def_id)
.for_each_relevant_impl(self.tcx, trait_self_ty, |def_id| {
let impl_substs = self.fresh_substs_for_item(obligation.cause.span, def_id);
let impl_trait_ref = tcx
.impl_trait_ref(def_id)
.unwrap()
.subst(tcx, impl_substs);
let impl_self_ty = impl_trait_ref.self_ty();
if let Ok(..) = self.can_equate(&trait_self_ty, &impl_self_ty) {
self_match_impls.push(def_id);
if trait_ref.substs.types().skip(1)
.zip(impl_trait_ref.substs.types().skip(1))
.all(|(u,v)| self.fuzzy_match_tys(u, v))
{
fuzzy_match_impls.push(def_id);
}
}
});
let impl_def_id = if self_match_impls.len() == 1 {
self_match_impls[0]
} else if fuzzy_match_impls.len() == 1 {
fuzzy_match_impls[0]
} else {
return None
};
if tcx.has_attr(impl_def_id, "rustc_on_unimplemented") {
Some(impl_def_id)
} else {
None
}
}
fn on_unimplemented_note(&self,
trait_ref: ty::PolyTraitRef<'tcx>,
obligation: &PredicateObligation<'tcx>) -> Option<String> {
let def_id = self.impl_similar_to(trait_ref, obligation)
.unwrap_or(trait_ref.def_id());
let trait_ref = trait_ref.skip_binder();
let span = obligation.cause.span;
let mut report = None;
if let Some(item) = self.tcx
.get_attrs(def_id)
.into_iter()
.filter(|a| a.check_name("rustc_on_unimplemented"))
.next()
{
let err_sp = item.span.substitute_dummy(span);
let trait_str = self.tcx.item_path_str(trait_ref.def_id);
if let Some(istring) = item.value_str() {
let istring = &*istring.as_str();
let generics = self.tcx.generics_of(trait_ref.def_id);
let generic_map = generics.types.iter().map(|param| {
(param.name.as_str().to_string(),
trait_ref.substs.type_for_def(param).to_string())
}).collect::<FxHashMap<String, String>>();
let parser = Parser::new(istring);
let mut errored = false;
let err: String = parser.filter_map(|p| {
match p {
Piece::String(s) => Some(s),
Piece::NextArgument(a) => match a.position {
Position::ArgumentNamed(s) => match generic_map.get(s) {
Some(val) => Some(val),
None => {
span_err!(self.tcx.sess, err_sp, E0272,
"the #[rustc_on_unimplemented] attribute on trait \
definition for {} refers to non-existent type \
parameter {}",
trait_str, s);
errored = true;
None
}
},
_ => {
span_err!(self.tcx.sess, err_sp, E0273,
"the #[rustc_on_unimplemented] attribute on trait \
definition for {} must have named format arguments, eg \
`#[rustc_on_unimplemented = \"foo {{T}}\"]`",
trait_str);
errored = true;
None
}
}
}
}).collect();
// Report only if the format string checks out
if !errored {
report = Some(err);
}
} else {
span_err!(self.tcx.sess, err_sp, E0274,
"the #[rustc_on_unimplemented] attribute on \
trait definition for {} must have a value, \
eg `#[rustc_on_unimplemented = \"foo\"]`",
trait_str);
}
}
report
}
fn find_similar_impl_candidates(&self,
trait_ref: ty::PolyTraitRef<'tcx>)
-> Vec<ty::TraitRef<'tcx>>
{
let simp = fast_reject::simplify_type(self.tcx,
trait_ref.skip_binder().self_ty(),
true);
let mut impl_candidates = Vec::new();
let trait_def = self.tcx.trait_def(trait_ref.def_id());
match simp {
Some(simp) => trait_def.for_each_impl(self.tcx, |def_id| {
let imp = self.tcx.impl_trait_ref(def_id).unwrap();
let imp_simp = fast_reject::simplify_type(self.tcx,
imp.self_ty(),
true);
if let Some(imp_simp) = imp_simp {
if simp != imp_simp {
return;
}
}
impl_candidates.push(imp);
}),
None => trait_def.for_each_impl(self.tcx, |def_id| {
impl_candidates.push(
self.tcx.impl_trait_ref(def_id).unwrap());
})
};
impl_candidates
}
fn report_similar_impl_candidates(&self,
impl_candidates: Vec<ty::TraitRef<'tcx>>,
err: &mut DiagnosticBuilder)
{
if impl_candidates.is_empty() {
return;
}
let end = if impl_candidates.len() <= 5 {
impl_candidates.len()
} else {
4
};
err.help(&format!("the following implementations were found:{}{}",
&impl_candidates[0..end].iter().map(|candidate| {
format!("\n {:?}", candidate)
}).collect::<String>(),
if impl_candidates.len() > 5 {
format!("\nand {} others", impl_candidates.len() - 4)
} else {
"".to_owned()
}
));
}
/// Reports that an overflow has occurred and halts compilation. We
/// halt compilation unconditionally because it is important that
/// overflows never be masked -- they basically represent computations
/// whose result could not be truly determined and thus we can't say
/// if the program type checks or not -- and they are unusual
/// occurrences in any case.
pub fn report_overflow_error<T>(&self,
obligation: &Obligation<'tcx, T>,
suggest_increasing_limit: bool) -> !
where T: fmt::Display + TypeFoldable<'tcx>
{
let predicate =
self.resolve_type_vars_if_possible(&obligation.predicate);
let mut err = struct_span_err!(self.tcx.sess, obligation.cause.span, E0275,
"overflow evaluating the requirement `{}`",
predicate);
if suggest_increasing_limit {
self.suggest_new_overflow_limit(&mut err);
}
self.note_obligation_cause(&mut err, obligation);
err.emit();
self.tcx.sess.abort_if_errors();
bug!();
}
/// Reports that a cycle was detected which led to overflow and halts
/// compilation. This is equivalent to `report_overflow_error` except
/// that we can give a more helpful error message (and, in particular,
/// we do not suggest increasing the overflow limit, which is not
/// going to help).
pub fn report_overflow_error_cycle(&self, cycle: &[PredicateObligation<'tcx>]) -> ! {
let cycle = self.resolve_type_vars_if_possible(&cycle.to_owned());
assert!(cycle.len() > 0);
debug!("report_overflow_error_cycle: cycle={:?}", cycle);
self.report_overflow_error(&cycle[0], false);
}
pub fn report_extra_impl_obligation(&self,
error_span: Span,
item_name: ast::Name,
_impl_item_def_id: DefId,
trait_item_def_id: DefId,
requirement: &fmt::Display,
lint_id: Option<ast::NodeId>) // (*)
-> DiagnosticBuilder<'tcx>
{
// (*) This parameter is temporary and used only for phasing
// in the bug fix to #18937. If it is `Some`, it has a kind of
// weird effect -- the diagnostic is reported as a lint, and
// the builder which is returned is marked as canceled.
let mut err =
struct_span_err!(self.tcx.sess,
error_span,
E0276,
"impl has stricter requirements than trait");
if let Some(trait_item_span) = self.tcx.hir.span_if_local(trait_item_def_id) {
let span = self.tcx.sess.codemap().def_span(trait_item_span);
err.span_label(span, format!("definition of `{}` from trait", item_name));
}
err.span_label(
error_span,
format!("impl has extra requirement {}", requirement));
if let Some(node_id) = lint_id {
self.tcx.sess.add_lint_diagnostic(EXTRA_REQUIREMENT_IN_IMPL,
node_id,
(*err).clone());
err.cancel();
}
err
}
/// Get the parent trait chain start
fn get_parent_trait_ref(&self, code: &ObligationCauseCode<'tcx>) -> Option<String> {
match code {
&ObligationCauseCode::BuiltinDerivedObligation(ref data) => {
let parent_trait_ref = self.resolve_type_vars_if_possible(
&data.parent_trait_ref);
match self.get_parent_trait_ref(&data.parent_code) {
Some(t) => Some(t),
None => Some(format!("{}", parent_trait_ref.0.self_ty())),
}
}
_ => None,
}
}
pub fn report_selection_error(&self,
obligation: &PredicateObligation<'tcx>,
error: &SelectionError<'tcx>)
{
let span = obligation.cause.span;
let mut err = match *error {
SelectionError::Unimplemented => {
if let ObligationCauseCode::CompareImplMethodObligation {
item_name, impl_item_def_id, trait_item_def_id, lint_id
} = obligation.cause.code {
self.report_extra_impl_obligation(
span,
item_name,
impl_item_def_id,
trait_item_def_id,
&format!("`{}`", obligation.predicate),
lint_id)
.emit();
return;
}
match obligation.predicate {
ty::Predicate::Trait(ref trait_predicate) => {
let trait_predicate =
self.resolve_type_vars_if_possible(trait_predicate);
if self.tcx.sess.has_errors() && trait_predicate.references_error() {
return;
}
let trait_ref = trait_predicate.to_poly_trait_ref();
let (post_message, pre_message) =
self.get_parent_trait_ref(&obligation.cause.code)
.map(|t| (format!(" in `{}`", t), format!("within `{}`, ", t)))
.unwrap_or((String::new(), String::new()));
let mut err = struct_span_err!(
self.tcx.sess,
span,
E0277,
"the trait bound `{}` is not satisfied{}",
trait_ref.to_predicate(),
post_message);
let unimplemented_note = self.on_unimplemented_note(trait_ref, obligation);
if let Some(ref s) = unimplemented_note {
// If it has a custom "#[rustc_on_unimplemented]"
// error message, let's display it as the label!
err.span_label(span, s.as_str());
err.help(&format!("{}the trait `{}` is not implemented for `{}`",
pre_message,
trait_ref,
trait_ref.self_ty()));
} else {
err.span_label(span,
&*format!("{}the trait `{}` is not implemented for `{}`",
pre_message,
trait_ref,
trait_ref.self_ty()));
}
// Try to report a help message
if !trait_ref.has_infer_types() &&
self.predicate_can_apply(trait_ref) {
// If a where-clause may be useful, remind the
// user that they can add it.
//
// don't display an on-unimplemented note, as
// these notes will often be of the form
// "the type `T` can't be frobnicated"
// which is somewhat confusing.
err.help(&format!("consider adding a `where {}` bound",
trait_ref.to_predicate()));
} else if unimplemented_note.is_none() {
// Can't show anything else useful, try to find similar impls.
let impl_candidates = self.find_similar_impl_candidates(trait_ref);
self.report_similar_impl_candidates(impl_candidates, &mut err);
}
err
}
ty::Predicate::Subtype(ref predicate) => {
// Errors for Subtype predicates show up as
// `FulfillmentErrorCode::CodeSubtypeError`,
// not selection error.
span_bug!(span, "subtype requirement gave wrong error: `{:?}`", predicate)
}
ty::Predicate::Equate(ref predicate) => {
let predicate = self.resolve_type_vars_if_possible(predicate);
let err = self.equality_predicate(&obligation.cause,
&predicate).err().unwrap();
struct_span_err!(self.tcx.sess, span, E0278,
"the requirement `{}` is not satisfied (`{}`)",
predicate, err)
}
ty::Predicate::RegionOutlives(ref predicate) => {
let predicate = self.resolve_type_vars_if_possible(predicate);
let err = self.region_outlives_predicate(&obligation.cause,
&predicate).err().unwrap();
struct_span_err!(self.tcx.sess, span, E0279,
"the requirement `{}` is not satisfied (`{}`)",
predicate, err)
}
ty::Predicate::Projection(..) | ty::Predicate::TypeOutlives(..) => {
let predicate =
self.resolve_type_vars_if_possible(&obligation.predicate);
struct_span_err!(self.tcx.sess, span, E0280,
"the requirement `{}` is not satisfied",
predicate)
}
ty::Predicate::ObjectSafe(trait_def_id) => {
let violations = self.tcx.object_safety_violations(trait_def_id);
self.tcx.report_object_safety_error(span,
trait_def_id,
violations)
}
ty::Predicate::ClosureKind(closure_def_id, kind) => {
let found_kind = self.closure_kind(closure_def_id).unwrap();
let closure_span = self.tcx.hir.span_if_local(closure_def_id).unwrap();
let mut err = struct_span_err!(
self.tcx.sess, closure_span, E0525,
"expected a closure that implements the `{}` trait, \
but this closure only implements `{}`",
kind,
found_kind);
err.span_note(
obligation.cause.span,
&format!("the requirement to implement \
`{}` derives from here", kind));
err.emit();
return;
}
ty::Predicate::WellFormed(ty) => {
// WF predicates cannot themselves make
// errors. They can only block due to
// ambiguity; otherwise, they always
// degenerate into other obligations
// (which may fail).
span_bug!(span, "WF predicate not satisfied for {:?}", ty);
}
}
}
OutputTypeParameterMismatch(ref expected_trait_ref, ref actual_trait_ref, ref e) => {
let expected_trait_ref = self.resolve_type_vars_if_possible(&*expected_trait_ref);
let actual_trait_ref = self.resolve_type_vars_if_possible(&*actual_trait_ref);
if actual_trait_ref.self_ty().references_error() {
return;
}
let expected_trait_ty = expected_trait_ref.self_ty();
let found_span = expected_trait_ty.ty_to_def_id().and_then(|did| {
self.tcx.hir.span_if_local(did)
});
if let &TypeError::TupleSize(ref expected_found) = e {
// Expected `|x| { }`, found `|x, y| { }`
self.report_arg_count_mismatch(span,
found_span,
expected_found.expected,
expected_found.found,
expected_trait_ty.is_closure())
} else if let &TypeError::Sorts(ref expected_found) = e {
let expected = if let ty::TyTuple(tys, _) = expected_found.expected.sty {
tys.len()
} else {
1
};
let found = if let ty::TyTuple(tys, _) = expected_found.found.sty {
tys.len()
} else {
1
};
if expected != found {
// Expected `|| { }`, found `|x, y| { }`
// Expected `fn(x) -> ()`, found `|| { }`
self.report_arg_count_mismatch(span,
found_span,
expected,
found,
expected_trait_ty.is_closure())
} else {
self.report_type_argument_mismatch(span,
found_span,
expected_trait_ty,
expected_trait_ref,
actual_trait_ref,
e)
}
} else {
self.report_type_argument_mismatch(span,
found_span,
expected_trait_ty,
expected_trait_ref,
actual_trait_ref,
e)
}
}
TraitNotObjectSafe(did) => {
let violations = self.tcx.object_safety_violations(did);
self.tcx.report_object_safety_error(span, did,
violations)
}
};
self.note_obligation_cause(&mut err, obligation);
err.emit();
}
fn report_type_argument_mismatch(&self,
span: Span,
found_span: Option<Span>,
expected_ty: Ty<'tcx>,
expected_ref: ty::PolyTraitRef<'tcx>,
found_ref: ty::PolyTraitRef<'tcx>,
type_error: &TypeError<'tcx>)
-> DiagnosticBuilder<'tcx>
{
let mut err = struct_span_err!(self.tcx.sess, span, E0281,
"type mismatch: `{}` implements the trait `{}`, but the trait `{}` is required",
expected_ty,
expected_ref,
found_ref);
err.span_label(span, format!("{}", type_error));
if let Some(sp) = found_span {
err.span_label(span, format!("requires `{}`", found_ref));
err.span_label(sp, format!("implements `{}`", expected_ref));
}
err
}
fn report_arg_count_mismatch(&self,
span: Span,
found_span: Option<Span>,
expected: usize,
found: usize,
is_closure: bool)
-> DiagnosticBuilder<'tcx>
{
let mut err = struct_span_err!(self.tcx.sess, span, E0593,
"{} takes {} argument{} but {} argument{} {} required",
if is_closure { "closure" } else { "function" },
found,
if found == 1 { "" } else { "s" },
expected,
if expected == 1 { "" } else { "s" },
if expected == 1 { "is" } else { "are" });
err.span_label(span, format!("expected {} that takes {} argument{}",
if is_closure { "closure" } else { "function" },
expected,
if expected == 1 { "" } else { "s" }));
if let Some(span) = found_span {
err.span_label(span, format!("takes {} argument{}",
found,
if found == 1 { "" } else { "s" }));
}
err
}
}
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
pub fn recursive_type_with_infinite_size_error(self,
type_def_id: DefId)
-> DiagnosticBuilder<'tcx>
{
assert!(type_def_id.is_local());
let span = self.hir.span_if_local(type_def_id).unwrap();
let span = self.sess.codemap().def_span(span);
let mut err = struct_span_err!(self.sess, span, E0072,
"recursive type `{}` has infinite size",
self.item_path_str(type_def_id));
err.span_label(span, "recursive type has infinite size");
err.help(&format!("insert indirection (e.g., a `Box`, `Rc`, or `&`) \
at some point to make `{}` representable",
self.item_path_str(type_def_id)));
err
}
pub fn report_object_safety_error(self,
span: Span,
trait_def_id: DefId,
violations: Vec<ObjectSafetyViolation>)
-> DiagnosticBuilder<'tcx>
{
let trait_str = self.item_path_str(trait_def_id);
let span = self.sess.codemap().def_span(span);
let mut err = struct_span_err!(
self.sess, span, E0038,
"the trait `{}` cannot be made into an object",
trait_str);
err.span_label(span, format!("the trait `{}` cannot be made into an object", trait_str));
let mut reported_violations = FxHashSet();
for violation in violations {
if !reported_violations.insert(violation.clone()) {
continue;
}
err.note(&violation.error_msg());
}
err
}
}
impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> {
fn maybe_report_ambiguity(&self, obligation: &PredicateObligation<'tcx>) {
// Unable to successfully determine, probably means
// insufficient type information, but could mean
// ambiguous impls. The latter *ought* to be a
// coherence violation, so we don't report it here.
let predicate = self.resolve_type_vars_if_possible(&obligation.predicate);
let body_id = hir::BodyId { node_id: obligation.cause.body_id };
let span = obligation.cause.span;
debug!("maybe_report_ambiguity(predicate={:?}, obligation={:?})",
predicate,
obligation);
// Ambiguity errors are often caused as fallout from earlier
// errors. So just ignore them if this infcx is tainted.
if self.is_tainted_by_errors() {
return;
}
match predicate {
ty::Predicate::Trait(ref data) => {
let trait_ref = data.to_poly_trait_ref();
let self_ty = trait_ref.self_ty();
if predicate.references_error() {
return;
}
// Typically, this ambiguity should only happen if
// there are unresolved type inference variables
// (otherwise it would suggest a coherence
// failure). But given #21974 that is not necessarily
// the case -- we can have multiple where clauses that
// are only distinguished by a region, which results
// in an ambiguity even when all types are fully
// known, since we don't dispatch based on region
// relationships.
// This is kind of a hack: it frequently happens that some earlier
// error prevents types from being fully inferred, and then we get
// a bunch of uninteresting errors saying something like "<generic
// #0> doesn't implement Sized". It may even be true that we
// could just skip over all checks where the self-ty is an
// inference variable, but I was afraid that there might be an
// inference variable created, registered as an obligation, and
// then never forced by writeback, and hence by skipping here we'd
// be ignoring the fact that we don't KNOW the type works
// out. Though even that would probably be harmless, given that
// we're only talking about builtin traits, which are known to be
// inhabited. But in any case I just threw in this check for
// has_errors() to be sure that compilation isn't happening
// anyway. In that case, why inundate the user.
if !self.tcx.sess.has_errors() {
if
self.tcx.lang_items.sized_trait()
.map_or(false, |sized_id| sized_id == trait_ref.def_id())
{
self.need_type_info(body_id, span, self_ty);
} else {
let mut err = struct_span_err!(self.tcx.sess,
span, E0283,
"type annotations required: \
cannot resolve `{}`",
predicate);
self.note_obligation_cause(&mut err, obligation);
err.emit();
}
}
}
ty::Predicate::WellFormed(ty) => {
// Same hacky approach as above to avoid deluging user
// with error messages.
if !ty.references_error() && !self.tcx.sess.has_errors() {
self.need_type_info(body_id, span, ty);
}
}
ty::Predicate::Subtype(ref data) => {
if data.references_error() || self.tcx.sess.has_errors() {
// no need to overload user in such cases
} else {
let &SubtypePredicate { a_is_expected: _, a, b } = data.skip_binder();
// both must be type variables, or the other would've been instantiated
assert!(a.is_ty_var() && b.is_ty_var());
self.need_type_info(hir::BodyId { node_id: obligation.cause.body_id },
obligation.cause.span,
a);
}
}
_ => {
if !self.tcx.sess.has_errors() {
let mut err = struct_span_err!(self.tcx.sess,
obligation.cause.span, E0284,
"type annotations required: \
cannot resolve `{}`",
predicate);
self.note_obligation_cause(&mut err, obligation);
err.emit();
}
}
}
}
/// Returns whether the trait predicate may apply for *some* assignment
/// to the type parameters.
fn predicate_can_apply(&self, pred: ty::PolyTraitRef<'tcx>) -> bool {
struct ParamToVarFolder<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
var_map: FxHashMap<Ty<'tcx>, Ty<'tcx>>
}
impl<'a, 'gcx, 'tcx> TypeFolder<'gcx, 'tcx> for ParamToVarFolder<'a, 'gcx, 'tcx> {
fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'tcx> { self.infcx.tcx }
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
if let ty::TyParam(ty::ParamTy {name, ..}) = ty.sty {
let infcx = self.infcx;
self.var_map.entry(ty).or_insert_with(||
infcx.next_ty_var(
TypeVariableOrigin::TypeParameterDefinition(DUMMY_SP, name)))
} else {
ty.super_fold_with(self)
}
}
}
self.probe(|_| {
let mut selcx = SelectionContext::new(self);
let cleaned_pred = pred.fold_with(&mut ParamToVarFolder {
infcx: self,
var_map: FxHashMap()
});
let cleaned_pred = super::project::normalize(
&mut selcx,
ObligationCause::dummy(),
&cleaned_pred
).value;
let obligation = Obligation::new(
ObligationCause::dummy(),
cleaned_pred.to_predicate()
);
selcx.evaluate_obligation(&obligation)
})
}
fn extract_type_name(&self, ty: &'a Ty<'tcx>) -> String {
if let ty::TyInfer(ty::TyVar(ty_vid)) = (*ty).sty {
let ty_vars = self.type_variables.borrow();
if let TypeVariableOrigin::TypeParameterDefinition(_, name) =
*ty_vars.var_origin(ty_vid) {
name.to_string()
} else {
ty.to_string()
}
} else {
ty.to_string()
}
}
pub fn need_type_info(&self, body_id: hir::BodyId, span: Span, ty: Ty<'tcx>) {
let ty = self.resolve_type_vars_if_possible(&ty);
let name = self.extract_type_name(&ty);