-
Notifications
You must be signed in to change notification settings - Fork 12.9k
/
graph.rs
1128 lines (990 loc) · 43.7 KB
/
graph.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::profiling::QueryInvocationId;
use rustc_data_structures::sharded::{self, Sharded};
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::sync::{AtomicU32, AtomicU64, Lock, Lrc, Ordering};
use rustc_data_structures::unlikely;
use rustc_errors::Diagnostic;
use rustc_index::vec::{Idx, IndexVec};
use parking_lot::{Condvar, Mutex};
use smallvec::{smallvec, SmallVec};
use std::collections::hash_map::Entry;
use std::env;
use std::hash::Hash;
use std::marker::PhantomData;
use std::mem;
use std::sync::atomic::Ordering::Relaxed;
use super::debug::EdgeFilter;
use super::prev::PreviousDepGraph;
use super::query::DepGraphQuery;
use super::serialized::{SerializedDepGraph, SerializedDepNodeIndex};
use super::{DepContext, DepKind, DepNode, WorkProductId};
#[derive(Clone)]
pub struct DepGraph<K: DepKind> {
data: Option<Lrc<DepGraphData<K>>>,
/// This field is used for assigning DepNodeIndices when running in
/// non-incremental mode. Even in non-incremental mode we make sure that
/// each task has a `DepNodeIndex` that uniquely identifies it. This unique
/// ID is used for self-profiling.
virtual_dep_node_index: Lrc<AtomicU32>,
}
rustc_index::newtype_index! {
pub struct DepNodeIndex { .. }
}
impl DepNodeIndex {
pub const INVALID: DepNodeIndex = DepNodeIndex::MAX;
}
impl std::convert::From<DepNodeIndex> for QueryInvocationId {
#[inline]
fn from(dep_node_index: DepNodeIndex) -> Self {
QueryInvocationId(dep_node_index.as_u32())
}
}
#[derive(PartialEq)]
pub enum DepNodeColor {
Red,
Green(DepNodeIndex),
}
impl DepNodeColor {
pub fn is_green(self) -> bool {
match self {
DepNodeColor::Red => false,
DepNodeColor::Green(_) => true,
}
}
}
struct DepGraphData<K: DepKind> {
/// The new encoding of the dependency graph, optimized for red/green
/// tracking. The `current` field is the dependency graph of only the
/// current compilation session: We don't merge the previous dep-graph into
/// current one anymore.
current: CurrentDepGraph<K>,
/// The dep-graph from the previous compilation session. It contains all
/// nodes and edges as well as all fingerprints of nodes that have them.
previous: PreviousDepGraph<K>,
colors: DepNodeColorMap,
/// A set of loaded diagnostics that is in the progress of being emitted.
emitting_diagnostics: Mutex<FxHashSet<DepNodeIndex>>,
/// Used to wait for diagnostics to be emitted.
emitting_diagnostics_cond_var: Condvar,
/// When we load, there may be `.o` files, cached MIR, or other such
/// things available to us. If we find that they are not dirty, we
/// load the path to the file storing those work-products here into
/// this map. We can later look for and extract that data.
previous_work_products: FxHashMap<WorkProductId, WorkProduct>,
dep_node_debug: Lock<FxHashMap<DepNode<K>, String>>,
}
pub fn hash_result<HashCtxt, R>(hcx: &mut HashCtxt, result: &R) -> Option<Fingerprint>
where
R: HashStable<HashCtxt>,
{
let mut stable_hasher = StableHasher::new();
result.hash_stable(hcx, &mut stable_hasher);
Some(stable_hasher.finish())
}
impl<K: DepKind> DepGraph<K> {
pub fn new(
prev_graph: PreviousDepGraph<K>,
prev_work_products: FxHashMap<WorkProductId, WorkProduct>,
) -> DepGraph<K> {
let prev_graph_node_count = prev_graph.node_count();
DepGraph {
data: Some(Lrc::new(DepGraphData {
previous_work_products: prev_work_products,
dep_node_debug: Default::default(),
current: CurrentDepGraph::new(prev_graph_node_count),
emitting_diagnostics: Default::default(),
emitting_diagnostics_cond_var: Condvar::new(),
previous: prev_graph,
colors: DepNodeColorMap::new(prev_graph_node_count),
})),
virtual_dep_node_index: Lrc::new(AtomicU32::new(0)),
}
}
pub fn new_disabled() -> DepGraph<K> {
DepGraph { data: None, virtual_dep_node_index: Lrc::new(AtomicU32::new(0)) }
}
/// Returns `true` if we are actually building the full dep-graph, and `false` otherwise.
#[inline]
pub fn is_fully_enabled(&self) -> bool {
self.data.is_some()
}
pub fn query(&self) -> DepGraphQuery<K> {
let data = self.data.as_ref().unwrap().current.data.lock();
let nodes: Vec<_> = data.iter().map(|n| n.node).collect();
let mut edges = Vec::new();
for (from, edge_targets) in data.iter().map(|d| (d.node, &d.edges)) {
for &edge_target in edge_targets.iter() {
let to = data[edge_target].node;
edges.push((from, to));
}
}
DepGraphQuery::new(&nodes[..], &edges[..])
}
pub fn assert_ignored(&self) {
if let Some(..) = self.data {
K::read_deps(|task_deps| {
assert!(task_deps.is_none(), "expected no task dependency tracking");
})
}
}
pub fn with_ignore<OP, R>(&self, op: OP) -> R
where
OP: FnOnce() -> R,
{
K::with_deps(None, op)
}
/// Starts a new dep-graph task. Dep-graph tasks are specified
/// using a free function (`task`) and **not** a closure -- this
/// is intentional because we want to exercise tight control over
/// what state they have access to. In particular, we want to
/// prevent implicit 'leaks' of tracked state into the task (which
/// could then be read without generating correct edges in the
/// dep-graph -- see the [rustc dev guide] for more details on
/// the dep-graph). To this end, the task function gets exactly two
/// pieces of state: the context `cx` and an argument `arg`. Both
/// of these bits of state must be of some type that implements
/// `DepGraphSafe` and hence does not leak.
///
/// The choice of two arguments is not fundamental. One argument
/// would work just as well, since multiple values can be
/// collected using tuples. However, using two arguments works out
/// to be quite convenient, since it is common to need a context
/// (`cx`) and some argument (e.g., a `DefId` identifying what
/// item to process).
///
/// For cases where you need some other number of arguments:
///
/// - If you only need one argument, just use `()` for the `arg`
/// parameter.
/// - If you need 3+ arguments, use a tuple for the
/// `arg` parameter.
///
/// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/incremental-compilation.html
pub fn with_task<Ctxt: DepContext<DepKind = K>, A, R>(
&self,
key: DepNode<K>,
cx: Ctxt,
arg: A,
task: fn(Ctxt, A) -> R,
hash_result: impl FnOnce(&mut Ctxt::StableHashingContext, &R) -> Option<Fingerprint>,
) -> (R, DepNodeIndex) {
self.with_task_impl(
key,
cx,
arg,
false,
task,
|_key| {
Some(TaskDeps {
#[cfg(debug_assertions)]
node: Some(_key),
reads: SmallVec::new(),
read_set: Default::default(),
phantom_data: PhantomData,
})
},
|data, key, fingerprint, task| data.complete_task(key, task.unwrap(), fingerprint),
hash_result,
)
}
fn with_task_impl<Ctxt: DepContext<DepKind = K>, A, R>(
&self,
key: DepNode<K>,
cx: Ctxt,
arg: A,
no_tcx: bool,
task: fn(Ctxt, A) -> R,
create_task: fn(DepNode<K>) -> Option<TaskDeps<K>>,
finish_task_and_alloc_depnode: fn(
&CurrentDepGraph<K>,
DepNode<K>,
Fingerprint,
Option<TaskDeps<K>>,
) -> DepNodeIndex,
hash_result: impl FnOnce(&mut Ctxt::StableHashingContext, &R) -> Option<Fingerprint>,
) -> (R, DepNodeIndex) {
if let Some(ref data) = self.data {
let task_deps = create_task(key).map(Lock::new);
// In incremental mode, hash the result of the task. We don't
// do anything with the hash yet, but we are computing it
// anyway so that
// - we make sure that the infrastructure works and
// - we can get an idea of the runtime cost.
let mut hcx = cx.create_stable_hashing_context();
let result = if no_tcx {
task(cx, arg)
} else {
K::with_deps(task_deps.as_ref(), || task(cx, arg))
};
let current_fingerprint = hash_result(&mut hcx, &result);
let dep_node_index = finish_task_and_alloc_depnode(
&data.current,
key,
current_fingerprint.unwrap_or(Fingerprint::ZERO),
task_deps.map(|lock| lock.into_inner()),
);
let print_status = cfg!(debug_assertions) && cx.debug_dep_tasks();
// Determine the color of the new DepNode.
if let Some(prev_index) = data.previous.node_to_index_opt(&key) {
let prev_fingerprint = data.previous.fingerprint_by_index(prev_index);
let color = if let Some(current_fingerprint) = current_fingerprint {
if current_fingerprint == prev_fingerprint {
if print_status {
eprintln!("[task::green] {:?}", key);
}
DepNodeColor::Green(dep_node_index)
} else {
if print_status {
eprintln!("[task::red] {:?}", key);
}
DepNodeColor::Red
}
} else {
if print_status {
eprintln!("[task::unknown] {:?}", key);
}
// Mark the node as Red if we can't hash the result
DepNodeColor::Red
};
debug_assert!(
data.colors.get(prev_index).is_none(),
"DepGraph::with_task() - Duplicate DepNodeColor \
insertion for {:?}",
key
);
data.colors.insert(prev_index, color);
} else {
if print_status {
eprintln!("[task::new] {:?}", key);
}
}
(result, dep_node_index)
} else {
(task(cx, arg), self.next_virtual_depnode_index())
}
}
/// Executes something within an "anonymous" task, that is, a task the
/// `DepNode` of which is determined by the list of inputs it read from.
pub fn with_anon_task<OP, R>(&self, dep_kind: K, op: OP) -> (R, DepNodeIndex)
where
OP: FnOnce() -> R,
{
if let Some(ref data) = self.data {
let task_deps = Lock::new(TaskDeps::default());
let result = K::with_deps(Some(&task_deps), op);
let task_deps = task_deps.into_inner();
let dep_node_index = data.current.complete_anon_task(dep_kind, task_deps);
(result, dep_node_index)
} else {
(op(), self.next_virtual_depnode_index())
}
}
/// Executes something within an "eval-always" task which is a task
/// that runs whenever anything changes.
pub fn with_eval_always_task<Ctxt: DepContext<DepKind = K>, A, R>(
&self,
key: DepNode<K>,
cx: Ctxt,
arg: A,
task: fn(Ctxt, A) -> R,
hash_result: impl FnOnce(&mut Ctxt::StableHashingContext, &R) -> Option<Fingerprint>,
) -> (R, DepNodeIndex) {
self.with_task_impl(
key,
cx,
arg,
false,
task,
|_| None,
|data, key, fingerprint, _| data.alloc_node(key, smallvec![], fingerprint),
hash_result,
)
}
#[inline]
pub fn read(&self, v: DepNode<K>) {
if let Some(ref data) = self.data {
let map = data.current.node_to_node_index.get_shard_by_value(&v).lock();
if let Some(dep_node_index) = map.get(&v).copied() {
std::mem::drop(map);
data.read_index(dep_node_index);
} else {
panic!("DepKind {:?} should be pre-allocated but isn't.", v.kind)
}
}
}
#[inline]
pub fn read_index(&self, dep_node_index: DepNodeIndex) {
if let Some(ref data) = self.data {
data.read_index(dep_node_index);
}
}
#[inline]
pub fn dep_node_index_of(&self, dep_node: &DepNode<K>) -> DepNodeIndex {
self.data
.as_ref()
.unwrap()
.current
.node_to_node_index
.get_shard_by_value(dep_node)
.lock()
.get(dep_node)
.cloned()
.unwrap()
}
#[inline]
pub fn dep_node_exists(&self, dep_node: &DepNode<K>) -> bool {
if let Some(ref data) = self.data {
data.current
.node_to_node_index
.get_shard_by_value(&dep_node)
.lock()
.contains_key(dep_node)
} else {
false
}
}
#[inline]
pub fn fingerprint_of(&self, dep_node_index: DepNodeIndex) -> Fingerprint {
let data = self.data.as_ref().expect("dep graph enabled").current.data.lock();
data[dep_node_index].fingerprint
}
pub fn prev_fingerprint_of(&self, dep_node: &DepNode<K>) -> Option<Fingerprint> {
self.data.as_ref().unwrap().previous.fingerprint_of(dep_node)
}
#[inline]
pub fn prev_dep_node_index_of(&self, dep_node: &DepNode<K>) -> SerializedDepNodeIndex {
self.data.as_ref().unwrap().previous.node_to_index(dep_node)
}
/// Checks whether a previous work product exists for `v` and, if
/// so, return the path that leads to it. Used to skip doing work.
pub fn previous_work_product(&self, v: &WorkProductId) -> Option<WorkProduct> {
self.data.as_ref().and_then(|data| data.previous_work_products.get(v).cloned())
}
/// Access the map of work-products created during the cached run. Only
/// used during saving of the dep-graph.
pub fn previous_work_products(&self) -> &FxHashMap<WorkProductId, WorkProduct> {
&self.data.as_ref().unwrap().previous_work_products
}
#[inline(always)]
pub fn register_dep_node_debug_str<F>(&self, dep_node: DepNode<K>, debug_str_gen: F)
where
F: FnOnce() -> String,
{
let dep_node_debug = &self.data.as_ref().unwrap().dep_node_debug;
if dep_node_debug.borrow().contains_key(&dep_node) {
return;
}
let debug_str = debug_str_gen();
dep_node_debug.borrow_mut().insert(dep_node, debug_str);
}
pub fn dep_node_debug_str(&self, dep_node: DepNode<K>) -> Option<String> {
self.data.as_ref()?.dep_node_debug.borrow().get(&dep_node).cloned()
}
pub fn edge_deduplication_data(&self) -> Option<(u64, u64)> {
if cfg!(debug_assertions) {
let current_dep_graph = &self.data.as_ref().unwrap().current;
Some((
current_dep_graph.total_read_count.load(Relaxed),
current_dep_graph.total_duplicate_read_count.load(Relaxed),
))
} else {
None
}
}
pub fn serialize(&self) -> SerializedDepGraph<K> {
let data = self.data.as_ref().unwrap().current.data.lock();
let fingerprints: IndexVec<SerializedDepNodeIndex, _> =
data.iter().map(|d| d.fingerprint).collect();
let nodes: IndexVec<SerializedDepNodeIndex, _> = data.iter().map(|d| d.node).collect();
let total_edge_count: usize = data.iter().map(|d| d.edges.len()).sum();
let mut edge_list_indices = IndexVec::with_capacity(nodes.len());
let mut edge_list_data = Vec::with_capacity(total_edge_count);
for (current_dep_node_index, edges) in data.iter_enumerated().map(|(i, d)| (i, &d.edges)) {
let start = edge_list_data.len() as u32;
// This should really just be a memcpy :/
edge_list_data.extend(edges.iter().map(|i| SerializedDepNodeIndex::new(i.index())));
let end = edge_list_data.len() as u32;
debug_assert_eq!(current_dep_node_index.index(), edge_list_indices.len());
edge_list_indices.push((start, end));
}
debug_assert!(edge_list_data.len() <= u32::MAX as usize);
debug_assert_eq!(edge_list_data.len(), total_edge_count);
SerializedDepGraph { nodes, fingerprints, edge_list_indices, edge_list_data }
}
pub fn node_color(&self, dep_node: &DepNode<K>) -> Option<DepNodeColor> {
if let Some(ref data) = self.data {
if let Some(prev_index) = data.previous.node_to_index_opt(dep_node) {
return data.colors.get(prev_index);
} else {
// This is a node that did not exist in the previous compilation
// session, so we consider it to be red.
return Some(DepNodeColor::Red);
}
}
None
}
/// Try to read a node index for the node dep_node.
/// A node will have an index, when it's already been marked green, or when we can mark it
/// green. This function will mark the current task as a reader of the specified node, when
/// a node index can be found for that node.
pub fn try_mark_green_and_read<Ctxt: DepContext<DepKind = K>>(
&self,
tcx: Ctxt,
dep_node: &DepNode<K>,
) -> Option<(SerializedDepNodeIndex, DepNodeIndex)> {
self.try_mark_green(tcx, dep_node).map(|(prev_index, dep_node_index)| {
debug_assert!(self.is_green(&dep_node));
self.read_index(dep_node_index);
(prev_index, dep_node_index)
})
}
pub fn try_mark_green<Ctxt: DepContext<DepKind = K>>(
&self,
tcx: Ctxt,
dep_node: &DepNode<K>,
) -> Option<(SerializedDepNodeIndex, DepNodeIndex)> {
debug_assert!(!dep_node.kind.is_eval_always());
// Return None if the dep graph is disabled
let data = self.data.as_ref()?;
// Return None if the dep node didn't exist in the previous session
let prev_index = data.previous.node_to_index_opt(dep_node)?;
match data.colors.get(prev_index) {
Some(DepNodeColor::Green(dep_node_index)) => Some((prev_index, dep_node_index)),
Some(DepNodeColor::Red) => None,
None => {
// This DepNode and the corresponding query invocation existed
// in the previous compilation session too, so we can try to
// mark it as green by recursively marking all of its
// dependencies green.
self.try_mark_previous_green(tcx, data, prev_index, &dep_node)
.map(|dep_node_index| (prev_index, dep_node_index))
}
}
}
/// Try to mark a dep-node which existed in the previous compilation session as green.
fn try_mark_previous_green<Ctxt: DepContext<DepKind = K>>(
&self,
tcx: Ctxt,
data: &DepGraphData<K>,
prev_dep_node_index: SerializedDepNodeIndex,
dep_node: &DepNode<K>,
) -> Option<DepNodeIndex> {
debug!("try_mark_previous_green({:?}) - BEGIN", dep_node);
#[cfg(not(parallel_compiler))]
{
debug_assert!(
!data
.current
.node_to_node_index
.get_shard_by_value(dep_node)
.lock()
.contains_key(dep_node)
);
debug_assert!(data.colors.get(prev_dep_node_index).is_none());
}
// We never try to mark eval_always nodes as green
debug_assert!(!dep_node.kind.is_eval_always());
debug_assert_eq!(data.previous.index_to_node(prev_dep_node_index), *dep_node);
let prev_deps = data.previous.edge_targets_from(prev_dep_node_index);
let mut current_deps = SmallVec::new();
for &dep_dep_node_index in prev_deps {
let dep_dep_node_color = data.colors.get(dep_dep_node_index);
match dep_dep_node_color {
Some(DepNodeColor::Green(node_index)) => {
// This dependency has been marked as green before, we are
// still fine and can continue with checking the other
// dependencies.
debug!(
"try_mark_previous_green({:?}) --- found dependency {:?} to \
be immediately green",
dep_node,
data.previous.index_to_node(dep_dep_node_index)
);
current_deps.push(node_index);
}
Some(DepNodeColor::Red) => {
// We found a dependency the value of which has changed
// compared to the previous compilation session. We cannot
// mark the DepNode as green and also don't need to bother
// with checking any of the other dependencies.
debug!(
"try_mark_previous_green({:?}) - END - dependency {:?} was \
immediately red",
dep_node,
data.previous.index_to_node(dep_dep_node_index)
);
return None;
}
None => {
let dep_dep_node = &data.previous.index_to_node(dep_dep_node_index);
// We don't know the state of this dependency. If it isn't
// an eval_always node, let's try to mark it green recursively.
if !dep_dep_node.kind.is_eval_always() {
debug!(
"try_mark_previous_green({:?}) --- state of dependency {:?} \
is unknown, trying to mark it green",
dep_node, dep_dep_node
);
let node_index = self.try_mark_previous_green(
tcx,
data,
dep_dep_node_index,
dep_dep_node,
);
if let Some(node_index) = node_index {
debug!(
"try_mark_previous_green({:?}) --- managed to MARK \
dependency {:?} as green",
dep_node, dep_dep_node
);
current_deps.push(node_index);
continue;
}
}
// We failed to mark it green, so we try to force the query.
debug!(
"try_mark_previous_green({:?}) --- trying to force \
dependency {:?}",
dep_node, dep_dep_node
);
if tcx.try_force_from_dep_node(dep_dep_node) {
let dep_dep_node_color = data.colors.get(dep_dep_node_index);
match dep_dep_node_color {
Some(DepNodeColor::Green(node_index)) => {
debug!(
"try_mark_previous_green({:?}) --- managed to \
FORCE dependency {:?} to green",
dep_node, dep_dep_node
);
current_deps.push(node_index);
}
Some(DepNodeColor::Red) => {
debug!(
"try_mark_previous_green({:?}) - END - \
dependency {:?} was red after forcing",
dep_node, dep_dep_node
);
return None;
}
None => {
if !tcx.has_errors_or_delayed_span_bugs() {
panic!(
"try_mark_previous_green() - Forcing the DepNode \
should have set its color"
)
} else {
// If the query we just forced has resulted in
// some kind of compilation error, we cannot rely on
// the dep-node color having been properly updated.
// This means that the query system has reached an
// invalid state. We let the compiler continue (by
// returning `None`) so it can emit error messages
// and wind down, but rely on the fact that this
// invalid state will not be persisted to the
// incremental compilation cache because of
// compilation errors being present.
debug!(
"try_mark_previous_green({:?}) - END - \
dependency {:?} resulted in compilation error",
dep_node, dep_dep_node
);
return None;
}
}
}
} else {
// The DepNode could not be forced.
debug!(
"try_mark_previous_green({:?}) - END - dependency {:?} \
could not be forced",
dep_node, dep_dep_node
);
return None;
}
}
}
}
// If we got here without hitting a `return` that means that all
// dependencies of this DepNode could be marked as green. Therefore we
// can also mark this DepNode as green.
// There may be multiple threads trying to mark the same dep node green concurrently
let dep_node_index = {
// Copy the fingerprint from the previous graph,
// so we don't have to recompute it
let fingerprint = data.previous.fingerprint_by_index(prev_dep_node_index);
// We allocating an entry for the node in the current dependency graph and
// adding all the appropriate edges imported from the previous graph
data.current.intern_node(*dep_node, current_deps, fingerprint)
};
// ... emitting any stored diagnostic ...
// FIXME: Store the fact that a node has diagnostics in a bit in the dep graph somewhere
// Maybe store a list on disk and encode this fact in the DepNodeState
let diagnostics = tcx.load_diagnostics(prev_dep_node_index);
#[cfg(not(parallel_compiler))]
debug_assert!(
data.colors.get(prev_dep_node_index).is_none(),
"DepGraph::try_mark_previous_green() - Duplicate DepNodeColor \
insertion for {:?}",
dep_node
);
if unlikely!(!diagnostics.is_empty()) {
self.emit_diagnostics(tcx, data, dep_node_index, prev_dep_node_index, diagnostics);
}
// ... and finally storing a "Green" entry in the color map.
// Multiple threads can all write the same color here
data.colors.insert(prev_dep_node_index, DepNodeColor::Green(dep_node_index));
debug!("try_mark_previous_green({:?}) - END - successfully marked as green", dep_node);
Some(dep_node_index)
}
/// Atomically emits some loaded diagnostics.
/// This may be called concurrently on multiple threads for the same dep node.
#[cold]
#[inline(never)]
fn emit_diagnostics<Ctxt: DepContext<DepKind = K>>(
&self,
tcx: Ctxt,
data: &DepGraphData<K>,
dep_node_index: DepNodeIndex,
prev_dep_node_index: SerializedDepNodeIndex,
diagnostics: Vec<Diagnostic>,
) {
let mut emitting = data.emitting_diagnostics.lock();
if data.colors.get(prev_dep_node_index) == Some(DepNodeColor::Green(dep_node_index)) {
// The node is already green so diagnostics must have been emitted already
return;
}
if emitting.insert(dep_node_index) {
// We were the first to insert the node in the set so this thread
// must emit the diagnostics and signal other potentially waiting
// threads after.
mem::drop(emitting);
// Promote the previous diagnostics to the current session.
tcx.store_diagnostics(dep_node_index, diagnostics.clone().into());
let handle = tcx.diagnostic();
for diagnostic in diagnostics {
handle.emit_diagnostic(&diagnostic);
}
// Mark the node as green now that diagnostics are emitted
data.colors.insert(prev_dep_node_index, DepNodeColor::Green(dep_node_index));
// Remove the node from the set
data.emitting_diagnostics.lock().remove(&dep_node_index);
// Wake up waiters
data.emitting_diagnostics_cond_var.notify_all();
} else {
// We must wait for the other thread to finish emitting the diagnostic
loop {
data.emitting_diagnostics_cond_var.wait(&mut emitting);
if data.colors.get(prev_dep_node_index) == Some(DepNodeColor::Green(dep_node_index))
{
break;
}
}
}
}
// Returns true if the given node has been marked as green during the
// current compilation session. Used in various assertions
pub fn is_green(&self, dep_node: &DepNode<K>) -> bool {
self.node_color(dep_node).map(|c| c.is_green()).unwrap_or(false)
}
// This method loads all on-disk cacheable query results into memory, so
// they can be written out to the new cache file again. Most query results
// will already be in memory but in the case where we marked something as
// green but then did not need the value, that value will never have been
// loaded from disk.
//
// This method will only load queries that will end up in the disk cache.
// Other queries will not be executed.
pub fn exec_cache_promotions<Ctxt: DepContext<DepKind = K>>(&self, tcx: Ctxt) {
let _prof_timer = tcx.profiler().generic_activity("incr_comp_query_cache_promotion");
let data = self.data.as_ref().unwrap();
for prev_index in data.colors.values.indices() {
match data.colors.get(prev_index) {
Some(DepNodeColor::Green(_)) => {
let dep_node = data.previous.index_to_node(prev_index);
tcx.try_load_from_on_disk_cache(&dep_node);
}
None | Some(DepNodeColor::Red) => {
// We can skip red nodes because a node can only be marked
// as red if the query result was recomputed and thus is
// already in memory.
}
}
}
}
fn next_virtual_depnode_index(&self) -> DepNodeIndex {
let index = self.virtual_dep_node_index.fetch_add(1, Relaxed);
DepNodeIndex::from_u32(index)
}
}
/// A "work product" is an intermediate result that we save into the
/// incremental directory for later re-use. The primary example are
/// the object files that we save for each partition at code
/// generation time.
///
/// Each work product is associated with a dep-node, representing the
/// process that produced the work-product. If that dep-node is found
/// to be dirty when we load up, then we will delete the work-product
/// at load time. If the work-product is found to be clean, then we
/// will keep a record in the `previous_work_products` list.
///
/// In addition, work products have an associated hash. This hash is
/// an extra hash that can be used to decide if the work-product from
/// a previous compilation can be re-used (in addition to the dirty
/// edges check).
///
/// As the primary example, consider the object files we generate for
/// each partition. In the first run, we create partitions based on
/// the symbols that need to be compiled. For each partition P, we
/// hash the symbols in P and create a `WorkProduct` record associated
/// with `DepNode::CodegenUnit(P)`; the hash is the set of symbols
/// in P.
///
/// The next time we compile, if the `DepNode::CodegenUnit(P)` is
/// judged to be clean (which means none of the things we read to
/// generate the partition were found to be dirty), it will be loaded
/// into previous work products. We will then regenerate the set of
/// symbols in the partition P and hash them (note that new symbols
/// may be added -- for example, new monomorphizations -- even if
/// nothing in P changed!). We will compare that hash against the
/// previous hash. If it matches up, we can reuse the object file.
#[derive(Clone, Debug, Encodable, Decodable)]
pub struct WorkProduct {
pub cgu_name: String,
/// Saved file associated with this CGU.
pub saved_file: Option<String>,
}
#[derive(Clone)]
struct DepNodeData<K> {
node: DepNode<K>,
edges: EdgesVec,
fingerprint: Fingerprint,
}
/// `CurrentDepGraph` stores the dependency graph for the current session.
/// It will be populated as we run queries or tasks.
///
/// The nodes in it are identified by an index (`DepNodeIndex`).
/// The data for each node is stored in its `DepNodeData`, found in the `data` field.
///
/// We never remove nodes from the graph: they are only added.
///
/// This struct uses two locks internally. The `data` and `node_to_node_index` fields are
/// locked separately. Operations that take a `DepNodeIndex` typically just access
/// the data field.
///
/// The only operation that must manipulate both locks is adding new nodes, in which case
/// we first acquire the `node_to_node_index` lock and then, once a new node is to be inserted,
/// acquire the lock on `data.`
pub(super) struct CurrentDepGraph<K> {
data: Lock<IndexVec<DepNodeIndex, DepNodeData<K>>>,
node_to_node_index: Sharded<FxHashMap<DepNode<K>, DepNodeIndex>>,
/// Used to trap when a specific edge is added to the graph.
/// This is used for debug purposes and is only active with `debug_assertions`.
#[allow(dead_code)]
forbidden_edge: Option<EdgeFilter>,
/// Anonymous `DepNode`s are nodes whose IDs we compute from the list of
/// their edges. This has the beneficial side-effect that multiple anonymous
/// nodes can be coalesced into one without changing the semantics of the
/// dependency graph. However, the merging of nodes can lead to a subtle
/// problem during red-green marking: The color of an anonymous node from
/// the current session might "shadow" the color of the node with the same
/// ID from the previous session. In order to side-step this problem, we make
/// sure that anonymous `NodeId`s allocated in different sessions don't overlap.
/// This is implemented by mixing a session-key into the ID fingerprint of
/// each anon node. The session-key is just a random number generated when
/// the `DepGraph` is created.
anon_id_seed: Fingerprint,
/// These are simple counters that are for profiling and
/// debugging and only active with `debug_assertions`.
total_read_count: AtomicU64,
total_duplicate_read_count: AtomicU64,
}
impl<K: DepKind> CurrentDepGraph<K> {
fn new(prev_graph_node_count: usize) -> CurrentDepGraph<K> {
use std::time::{SystemTime, UNIX_EPOCH};
let duration = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
let nanos = duration.as_secs() * 1_000_000_000 + duration.subsec_nanos() as u64;
let mut stable_hasher = StableHasher::new();
nanos.hash(&mut stable_hasher);
let forbidden_edge = if cfg!(debug_assertions) {
match env::var("RUST_FORBID_DEP_GRAPH_EDGE") {
Ok(s) => match EdgeFilter::new(&s) {
Ok(f) => Some(f),
Err(err) => panic!("RUST_FORBID_DEP_GRAPH_EDGE invalid: {}", err),
},
Err(_) => None,
}
} else {
None
};
// Pre-allocate the dep node structures. We over-allocate a little so
// that we hopefully don't have to re-allocate during this compilation
// session. The over-allocation is 2% plus a small constant to account
// for the fact that in very small crates 2% might not be enough.
let new_node_count_estimate = (prev_graph_node_count * 102) / 100 + 200;
CurrentDepGraph {
data: Lock::new(IndexVec::with_capacity(new_node_count_estimate)),
node_to_node_index: Sharded::new(|| {
FxHashMap::with_capacity_and_hasher(
new_node_count_estimate / sharded::SHARDS,
Default::default(),
)
}),
anon_id_seed: stable_hasher.finish(),
forbidden_edge,
total_read_count: AtomicU64::new(0),
total_duplicate_read_count: AtomicU64::new(0),
}
}
fn complete_task(
&self,
node: DepNode<K>,
task_deps: TaskDeps<K>,
fingerprint: Fingerprint,
) -> DepNodeIndex {
self.alloc_node(node, task_deps.reads, fingerprint)
}
fn complete_anon_task(&self, kind: K, task_deps: TaskDeps<K>) -> DepNodeIndex {
debug_assert!(!kind.is_eval_always());
let mut hasher = StableHasher::new();
// The dep node indices are hashed here instead of hashing the dep nodes of the
// dependencies. These indices may refer to different nodes per session, but this isn't
// a problem here because we that ensure the final dep node hash is per session only by
// combining it with the per session random number `anon_id_seed`. This hash only need
// to map the dependencies to a single value on a per session basis.
task_deps.reads.hash(&mut hasher);
let target_dep_node = DepNode {
kind,
// Fingerprint::combine() is faster than sending Fingerprint
// through the StableHasher (at least as long as StableHasher
// is so slow).
hash: self.anon_id_seed.combine(hasher.finish()),
};
self.intern_node(target_dep_node, task_deps.reads, Fingerprint::ZERO)
}
fn alloc_node(
&self,
dep_node: DepNode<K>,
edges: EdgesVec,
fingerprint: Fingerprint,
) -> DepNodeIndex {
debug_assert!(
!self.node_to_node_index.get_shard_by_value(&dep_node).lock().contains_key(&dep_node)
);