-
Notifications
You must be signed in to change notification settings - Fork 12.8k
/
ip.rs
1901 lines (1799 loc) · 61.8 KB
/
ip.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#![unstable(
feature = "ip",
reason = "extra functionality has not been \
scrutinized to the level that it should \
be to be stable",
issue = "27709"
)]
// Tests for this module
#[cfg(all(test, not(target_os = "emscripten")))]
mod tests;
use crate::cmp::Ordering;
use crate::fmt::{self, Write as FmtWrite};
use crate::hash;
use crate::io::Write as IoWrite;
use crate::mem::transmute;
use crate::sys::net::netc as c;
use crate::sys_common::{AsInner, FromInner, IntoInner};
/// An IP address, either IPv4 or IPv6.
///
/// This enum can contain either an [`Ipv4Addr`] or an [`Ipv6Addr`], see their
/// respective documentation for more details.
///
/// The size of an `IpAddr` instance may vary depending on the target operating
/// system.
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// let localhost_v4 = IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1));
/// let localhost_v6 = IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
///
/// assert_eq!("127.0.0.1".parse(), Ok(localhost_v4));
/// assert_eq!("::1".parse(), Ok(localhost_v6));
///
/// assert_eq!(localhost_v4.is_ipv6(), false);
/// assert_eq!(localhost_v4.is_ipv4(), true);
/// ```
#[stable(feature = "ip_addr", since = "1.7.0")]
#[derive(Copy, Clone, Eq, PartialEq, Hash, PartialOrd, Ord)]
pub enum IpAddr {
/// An IPv4 address.
#[stable(feature = "ip_addr", since = "1.7.0")]
V4(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv4Addr),
/// An IPv6 address.
#[stable(feature = "ip_addr", since = "1.7.0")]
V6(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv6Addr),
}
/// An IPv4 address.
///
/// IPv4 addresses are defined as 32-bit integers in [IETF RFC 791].
/// They are usually represented as four octets.
///
/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
///
/// The size of an `Ipv4Addr` struct may vary depending on the target operating
/// system.
///
/// [IETF RFC 791]: https://tools.ietf.org/html/rfc791
///
/// # Textual representation
///
/// `Ipv4Addr` provides a [`FromStr`] implementation. The four octets are in decimal
/// notation, divided by `.` (this is called "dot-decimal notation").
///
/// [`FromStr`]: crate::str::FromStr
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let localhost = Ipv4Addr::new(127, 0, 0, 1);
/// assert_eq!("127.0.0.1".parse(), Ok(localhost));
/// assert_eq!(localhost.is_loopback(), true);
/// ```
#[derive(Copy)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Ipv4Addr {
inner: c::in_addr,
}
/// An IPv6 address.
///
/// IPv6 addresses are defined as 128-bit integers in [IETF RFC 4291].
/// They are usually represented as eight 16-bit segments.
///
/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
///
/// The size of an `Ipv6Addr` struct may vary depending on the target operating
/// system.
///
/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
///
/// # Textual representation
///
/// `Ipv6Addr` provides a [`FromStr`] implementation. There are many ways to represent
/// an IPv6 address in text, but in general, each segments is written in hexadecimal
/// notation, and segments are separated by `:`. For more information, see
/// [IETF RFC 5952].
///
/// [`FromStr`]: crate::str::FromStr
/// [IETF RFC 5952]: https://tools.ietf.org/html/rfc5952
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
///
/// let localhost = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
/// assert_eq!("::1".parse(), Ok(localhost));
/// assert_eq!(localhost.is_loopback(), true);
/// ```
#[derive(Copy)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Ipv6Addr {
inner: c::in6_addr,
}
#[allow(missing_docs)]
#[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)]
pub enum Ipv6MulticastScope {
InterfaceLocal,
LinkLocal,
RealmLocal,
AdminLocal,
SiteLocal,
OrganizationLocal,
Global,
}
impl IpAddr {
/// Returns [`true`] for the special 'unspecified' address.
///
/// See the documentation for [`Ipv4Addr::is_unspecified()`] and
/// [`Ipv6Addr::is_unspecified()`] for more details.
///
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)).is_unspecified(), true);
/// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)).is_unspecified(), true);
/// ```
#[stable(feature = "ip_shared", since = "1.12.0")]
pub fn is_unspecified(&self) -> bool {
match self {
IpAddr::V4(ip) => ip.is_unspecified(),
IpAddr::V6(ip) => ip.is_unspecified(),
}
}
/// Returns [`true`] if this is a loopback address.
///
/// See the documentation for [`Ipv4Addr::is_loopback()`] and
/// [`Ipv6Addr::is_loopback()`] for more details.
///
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).is_loopback(), true);
/// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1)).is_loopback(), true);
/// ```
#[stable(feature = "ip_shared", since = "1.12.0")]
pub fn is_loopback(&self) -> bool {
match self {
IpAddr::V4(ip) => ip.is_loopback(),
IpAddr::V6(ip) => ip.is_loopback(),
}
}
/// Returns [`true`] if the address appears to be globally routable.
///
/// See the documentation for [`Ipv4Addr::is_global()`] and
/// [`Ipv6Addr::is_global()`] for more details.
///
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(80, 9, 12, 3)).is_global(), true);
/// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1)).is_global(), true);
/// ```
pub fn is_global(&self) -> bool {
match self {
IpAddr::V4(ip) => ip.is_global(),
IpAddr::V6(ip) => ip.is_global(),
}
}
/// Returns [`true`] if this is a multicast address.
///
/// See the documentation for [`Ipv4Addr::is_multicast()`] and
/// [`Ipv6Addr::is_multicast()`] for more details.
///
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(224, 254, 0, 0)).is_multicast(), true);
/// assert_eq!(IpAddr::V6(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0)).is_multicast(), true);
/// ```
#[stable(feature = "ip_shared", since = "1.12.0")]
pub fn is_multicast(&self) -> bool {
match self {
IpAddr::V4(ip) => ip.is_multicast(),
IpAddr::V6(ip) => ip.is_multicast(),
}
}
/// Returns [`true`] if this address is in a range designated for documentation.
///
/// See the documentation for [`Ipv4Addr::is_documentation()`] and
/// [`Ipv6Addr::is_documentation()`] for more details.
///
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_documentation(), true);
/// assert_eq!(
/// IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_documentation(),
/// true
/// );
/// ```
pub fn is_documentation(&self) -> bool {
match self {
IpAddr::V4(ip) => ip.is_documentation(),
IpAddr::V6(ip) => ip.is_documentation(),
}
}
/// Returns [`true`] if this address is an [`IPv4` address], and [`false`]
/// otherwise.
///
/// [`true`]: ../../std/primitive.bool.html
/// [`false`]: ../../std/primitive.bool.html
/// [`IPv4` address]: IpAddr::V4
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv4(), true);
/// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv4(), false);
/// ```
#[stable(feature = "ipaddr_checker", since = "1.16.0")]
pub fn is_ipv4(&self) -> bool {
matches!(self, IpAddr::V4(_))
}
/// Returns [`true`] if this address is an [`IPv6` address], and [`false`]
/// otherwise.
///
/// [`true`]: ../../std/primitive.bool.html
/// [`false`]: ../../std/primitive.bool.html
/// [`IPv6` address]: IpAddr::V6
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv6(), false);
/// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv6(), true);
/// ```
#[stable(feature = "ipaddr_checker", since = "1.16.0")]
pub fn is_ipv6(&self) -> bool {
matches!(self, IpAddr::V6(_))
}
}
impl Ipv4Addr {
/// Creates a new IPv4 address from four eight-bit octets.
///
/// The result will represent the IP address `a`.`b`.`c`.`d`.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::new(127, 0, 0, 1);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_ipv4", since = "1.32.0")]
pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr {
// `s_addr` is stored as BE on all machine and the array is in BE order.
// So the native endian conversion method is used so that it's never swapped.
Ipv4Addr { inner: c::in_addr { s_addr: u32::from_ne_bytes([a, b, c, d]) } }
}
/// An IPv4 address with the address pointing to localhost: 127.0.0.1.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::LOCALHOST;
/// assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1));
/// ```
#[stable(feature = "ip_constructors", since = "1.30.0")]
pub const LOCALHOST: Self = Ipv4Addr::new(127, 0, 0, 1);
/// An IPv4 address representing an unspecified address: 0.0.0.0
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::UNSPECIFIED;
/// assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0));
/// ```
#[stable(feature = "ip_constructors", since = "1.30.0")]
pub const UNSPECIFIED: Self = Ipv4Addr::new(0, 0, 0, 0);
/// An IPv4 address representing the broadcast address: 255.255.255.255
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::BROADCAST;
/// assert_eq!(addr, Ipv4Addr::new(255, 255, 255, 255));
/// ```
#[stable(feature = "ip_constructors", since = "1.30.0")]
pub const BROADCAST: Self = Ipv4Addr::new(255, 255, 255, 255);
/// Returns the four eight-bit integers that make up this address.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::new(127, 0, 0, 1);
/// assert_eq!(addr.octets(), [127, 0, 0, 1]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn octets(&self) -> [u8; 4] {
// This returns the order we want because s_addr is stored in big-endian.
self.inner.s_addr.to_ne_bytes()
}
/// Returns [`true`] for the special 'unspecified' address (0.0.0.0).
///
/// This property is defined in _UNIX Network Programming, Second Edition_,
/// W. Richard Stevens, p. 891; see also [ip7].
///
/// [`true`]: ../../std/primitive.bool.html
/// [ip7]: http://man7.org/linux/man-pages/man7/ip.7.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true);
/// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false);
/// ```
#[stable(feature = "ip_shared", since = "1.12.0")]
#[rustc_const_stable(feature = "const_ipv4", since = "1.32.0")]
pub const fn is_unspecified(&self) -> bool {
self.inner.s_addr == 0
}
/// Returns [`true`] if this is a loopback address (127.0.0.0/8).
///
/// This property is defined by [IETF RFC 1122].
///
/// [`true`]: ../../std/primitive.bool.html
/// [IETF RFC 1122]: https://tools.ietf.org/html/rfc1122
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true);
/// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_loopback(&self) -> bool {
self.octets()[0] == 127
}
/// Returns [`true`] if this is a private address.
///
/// The private address ranges are defined in [IETF RFC 1918] and include:
///
/// - 10.0.0.0/8
/// - 172.16.0.0/12
/// - 192.168.0.0/16
///
/// [`true`]: ../../std/primitive.bool.html
/// [IETF RFC 1918]: https://tools.ietf.org/html/rfc1918
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true);
/// assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true);
/// assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true);
/// assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true);
/// assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false);
/// assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true);
/// assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_private(&self) -> bool {
match self.octets() {
[10, ..] => true,
[172, b, ..] if b >= 16 && b <= 31 => true,
[192, 168, ..] => true,
_ => false,
}
}
/// Returns [`true`] if the address is link-local (169.254.0.0/16).
///
/// This property is defined by [IETF RFC 3927].
///
/// [`true`]: ../../std/primitive.bool.html
/// [IETF RFC 3927]: https://tools.ietf.org/html/rfc3927
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true);
/// assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true);
/// assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_link_local(&self) -> bool {
match self.octets() {
[169, 254, ..] => true,
_ => false,
}
}
/// Returns [`true`] if the address appears to be globally routable.
/// See [iana-ipv4-special-registry][ipv4-sr].
///
/// The following return [`false`]:
///
/// - private addresses (see [`Ipv4Addr::is_private()`])
/// - the loopback address (see [`Ipv4Addr::is_loopback()`])
/// - the link-local address (see [`Ipv4Addr::is_link_local()`])
/// - the broadcast address (see [`Ipv4Addr::is_broadcast()`])
/// - addresses used for documentation (see [`Ipv4Addr::is_documentation()`])
/// - the unspecified address (see [`Ipv4Addr::is_unspecified()`]), and the whole
/// 0.0.0.0/8 block
/// - addresses reserved for future protocols (see
/// [`Ipv4Addr::is_ietf_protocol_assignment()`], except
/// `192.0.0.9/32` and `192.0.0.10/32` which are globally routable
/// - addresses reserved for future use (see [`Ipv4Addr::is_reserved()`]
/// - addresses reserved for networking devices benchmarking (see
/// [`Ipv4Addr::is_benchmarking()`])
///
/// [`true`]: ../../std/primitive.bool.html
/// [`false`]: ../../std/primitive.bool.html
/// [ipv4-sr]: https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::Ipv4Addr;
///
/// // private addresses are not global
/// assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false);
/// assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false);
/// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false);
///
/// // the 0.0.0.0/8 block is not global
/// assert_eq!(Ipv4Addr::new(0, 1, 2, 3).is_global(), false);
/// // in particular, the unspecified address is not global
/// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_global(), false);
///
/// // the loopback address is not global
/// assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_global(), false);
///
/// // link local addresses are not global
/// assert_eq!(Ipv4Addr::new(169, 254, 45, 1).is_global(), false);
///
/// // the broadcast address is not global
/// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_global(), false);
///
/// // the address space designated for documentation is not global
/// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_global(), false);
/// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_global(), false);
/// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_global(), false);
///
/// // shared addresses are not global
/// assert_eq!(Ipv4Addr::new(100, 100, 0, 0).is_global(), false);
///
/// // addresses reserved for protocol assignment are not global
/// assert_eq!(Ipv4Addr::new(192, 0, 0, 0).is_global(), false);
/// assert_eq!(Ipv4Addr::new(192, 0, 0, 255).is_global(), false);
///
/// // addresses reserved for future use are not global
/// assert_eq!(Ipv4Addr::new(250, 10, 20, 30).is_global(), false);
///
/// // addresses reserved for network devices benchmarking are not global
/// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_global(), false);
///
/// // All the other addresses are global
/// assert_eq!(Ipv4Addr::new(1, 1, 1, 1).is_global(), true);
/// assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true);
/// ```
pub fn is_global(&self) -> bool {
// check if this address is 192.0.0.9 or 192.0.0.10. These addresses are the only two
// globally routable addresses in the 192.0.0.0/24 range.
if u32::from(*self) == 0xc0000009 || u32::from(*self) == 0xc000000a {
return true;
}
!self.is_private()
&& !self.is_loopback()
&& !self.is_link_local()
&& !self.is_broadcast()
&& !self.is_documentation()
&& !self.is_shared()
&& !self.is_ietf_protocol_assignment()
&& !self.is_reserved()
&& !self.is_benchmarking()
// Make sure the address is not in 0.0.0.0/8
&& self.octets()[0] != 0
}
/// Returns [`true`] if this address is part of the Shared Address Space defined in
/// [IETF RFC 6598] (`100.64.0.0/10`).
///
/// [`true`]: ../../std/primitive.bool.html
/// [IETF RFC 6598]: https://tools.ietf.org/html/rfc6598
///
/// # Examples
///
/// ```
/// #![feature(ip)]
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(100, 64, 0, 0).is_shared(), true);
/// assert_eq!(Ipv4Addr::new(100, 127, 255, 255).is_shared(), true);
/// assert_eq!(Ipv4Addr::new(100, 128, 0, 0).is_shared(), false);
/// ```
pub fn is_shared(&self) -> bool {
self.octets()[0] == 100 && (self.octets()[1] & 0b1100_0000 == 0b0100_0000)
}
/// Returns [`true`] if this address is part of `192.0.0.0/24`, which is reserved to
/// IANA for IETF protocol assignments, as documented in [IETF RFC 6890].
///
/// Note that parts of this block are in use:
///
/// - `192.0.0.8/32` is the "IPv4 dummy address" (see [IETF RFC 7600])
/// - `192.0.0.9/32` is the "Port Control Protocol Anycast" (see [IETF RFC 7723])
/// - `192.0.0.10/32` is used for NAT traversal (see [IETF RFC 8155])
///
/// [`true`]: ../../std/primitive.bool.html
/// [IETF RFC 6890]: https://tools.ietf.org/html/rfc6890
/// [IETF RFC 7600]: https://tools.ietf.org/html/rfc7600
/// [IETF RFC 7723]: https://tools.ietf.org/html/rfc7723
/// [IETF RFC 8155]: https://tools.ietf.org/html/rfc8155
///
/// # Examples
///
/// ```
/// #![feature(ip)]
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(192, 0, 0, 0).is_ietf_protocol_assignment(), true);
/// assert_eq!(Ipv4Addr::new(192, 0, 0, 8).is_ietf_protocol_assignment(), true);
/// assert_eq!(Ipv4Addr::new(192, 0, 0, 9).is_ietf_protocol_assignment(), true);
/// assert_eq!(Ipv4Addr::new(192, 0, 0, 255).is_ietf_protocol_assignment(), true);
/// assert_eq!(Ipv4Addr::new(192, 0, 1, 0).is_ietf_protocol_assignment(), false);
/// assert_eq!(Ipv4Addr::new(191, 255, 255, 255).is_ietf_protocol_assignment(), false);
/// ```
pub fn is_ietf_protocol_assignment(&self) -> bool {
self.octets()[0] == 192 && self.octets()[1] == 0 && self.octets()[2] == 0
}
/// Returns [`true`] if this address part of the `198.18.0.0/15` range, which is reserved for
/// network devices benchmarking. This range is defined in [IETF RFC 2544] as `192.18.0.0`
/// through `198.19.255.255` but [errata 423] corrects it to `198.18.0.0/15`.
///
/// [`true`]: ../../std/primitive.bool.html
/// [IETF RFC 2544]: https://tools.ietf.org/html/rfc2544
/// [errata 423]: https://www.rfc-editor.org/errata/eid423
///
/// # Examples
///
/// ```
/// #![feature(ip)]
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(198, 17, 255, 255).is_benchmarking(), false);
/// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_benchmarking(), true);
/// assert_eq!(Ipv4Addr::new(198, 19, 255, 255).is_benchmarking(), true);
/// assert_eq!(Ipv4Addr::new(198, 20, 0, 0).is_benchmarking(), false);
/// ```
pub fn is_benchmarking(&self) -> bool {
self.octets()[0] == 198 && (self.octets()[1] & 0xfe) == 18
}
/// Returns [`true`] if this address is reserved by IANA for future use. [IETF RFC 1112]
/// defines the block of reserved addresses as `240.0.0.0/4`. This range normally includes the
/// broadcast address `255.255.255.255`, but this implementation explicitly excludes it, since
/// it is obviously not reserved for future use.
///
/// [`true`]: ../../std/primitive.bool.html
/// [IETF RFC 1112]: https://tools.ietf.org/html/rfc1112
///
/// # Warning
///
/// As IANA assigns new addresses, this method will be
/// updated. This may result in non-reserved addresses being
/// treated as reserved in code that relies on an outdated version
/// of this method.
///
/// # Examples
///
/// ```
/// #![feature(ip)]
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(240, 0, 0, 0).is_reserved(), true);
/// assert_eq!(Ipv4Addr::new(255, 255, 255, 254).is_reserved(), true);
///
/// assert_eq!(Ipv4Addr::new(239, 255, 255, 255).is_reserved(), false);
/// // The broadcast address is not considered as reserved for future use by this implementation
/// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_reserved(), false);
/// ```
pub fn is_reserved(&self) -> bool {
self.octets()[0] & 240 == 240 && !self.is_broadcast()
}
/// Returns [`true`] if this is a multicast address (224.0.0.0/4).
///
/// Multicast addresses have a most significant octet between 224 and 239,
/// and is defined by [IETF RFC 5771].
///
/// [`true`]: ../../std/primitive.bool.html
/// [IETF RFC 5771]: https://tools.ietf.org/html/rfc5771
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true);
/// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true);
/// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_multicast(&self) -> bool {
self.octets()[0] >= 224 && self.octets()[0] <= 239
}
/// Returns [`true`] if this is a broadcast address (255.255.255.255).
///
/// A broadcast address has all octets set to 255 as defined in [IETF RFC 919].
///
/// [`true`]: ../../std/primitive.bool.html
/// [IETF RFC 919]: https://tools.ietf.org/html/rfc919
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true);
/// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_broadcast(&self) -> bool {
self == &Self::BROADCAST
}
/// Returns [`true`] if this address is in a range designated for documentation.
///
/// This is defined in [IETF RFC 5737]:
///
/// - 192.0.2.0/24 (TEST-NET-1)
/// - 198.51.100.0/24 (TEST-NET-2)
/// - 203.0.113.0/24 (TEST-NET-3)
///
/// [`true`]: ../../std/primitive.bool.html
/// [IETF RFC 5737]: https://tools.ietf.org/html/rfc5737
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true);
/// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true);
/// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true);
/// assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_documentation(&self) -> bool {
match self.octets() {
[192, 0, 2, _] => true,
[198, 51, 100, _] => true,
[203, 0, 113, _] => true,
_ => false,
}
}
/// Converts this address to an IPv4-compatible [`IPv6` address].
///
/// a.b.c.d becomes ::a.b.c.d
///
/// [`IPv6` address]: Ipv6Addr
///
/// # Examples
///
/// ```
/// use std::net::{Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(
/// Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(),
/// Ipv6Addr::new(0, 0, 0, 0, 0, 0, 49152, 767)
/// );
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn to_ipv6_compatible(&self) -> Ipv6Addr {
let [a, b, c, d] = self.octets();
Ipv6Addr::from([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, b, c, d])
}
/// Converts this address to an IPv4-mapped [`IPv6` address].
///
/// a.b.c.d becomes ::ffff:a.b.c.d
///
/// [`IPv6` address]: Ipv6Addr
///
/// # Examples
///
/// ```
/// use std::net::{Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(),
/// Ipv6Addr::new(0, 0, 0, 0, 0, 65535, 49152, 767));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn to_ipv6_mapped(&self) -> Ipv6Addr {
let [a, b, c, d] = self.octets();
Ipv6Addr::from([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, a, b, c, d])
}
}
#[stable(feature = "ip_addr", since = "1.7.0")]
impl fmt::Display for IpAddr {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
IpAddr::V4(ip) => ip.fmt(fmt),
IpAddr::V6(ip) => ip.fmt(fmt),
}
}
}
#[stable(feature = "ip_addr", since = "1.7.0")]
impl fmt::Debug for IpAddr {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(self, fmt)
}
}
#[stable(feature = "ip_from_ip", since = "1.16.0")]
impl From<Ipv4Addr> for IpAddr {
/// Copies this address to a new `IpAddr::V4`.
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv4Addr};
///
/// let addr = Ipv4Addr::new(127, 0, 0, 1);
///
/// assert_eq!(
/// IpAddr::V4(addr),
/// IpAddr::from(addr)
/// )
/// ```
fn from(ipv4: Ipv4Addr) -> IpAddr {
IpAddr::V4(ipv4)
}
}
#[stable(feature = "ip_from_ip", since = "1.16.0")]
impl From<Ipv6Addr> for IpAddr {
/// Copies this address to a new `IpAddr::V6`.
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv6Addr};
///
/// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
///
/// assert_eq!(
/// IpAddr::V6(addr),
/// IpAddr::from(addr)
/// );
/// ```
fn from(ipv6: Ipv6Addr) -> IpAddr {
IpAddr::V6(ipv6)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for Ipv4Addr {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
let octets = self.octets();
// Fast Path: if there's no alignment stuff, write directly to the buffer
if fmt.precision().is_none() && fmt.width().is_none() {
write!(fmt, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3])
} else {
const IPV4_BUF_LEN: usize = 15; // Long enough for the longest possible IPv4 address
let mut buf = [0u8; IPV4_BUF_LEN];
let mut buf_slice = &mut buf[..];
// Note: The call to write should never fail, hence the unwrap
write!(buf_slice, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3]).unwrap();
let len = IPV4_BUF_LEN - buf_slice.len();
// This unsafe is OK because we know what is being written to the buffer
let buf = unsafe { crate::str::from_utf8_unchecked(&buf[..len]) };
fmt.pad(buf)
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Debug for Ipv4Addr {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(self, fmt)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Clone for Ipv4Addr {
fn clone(&self) -> Ipv4Addr {
*self
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialEq for Ipv4Addr {
fn eq(&self, other: &Ipv4Addr) -> bool {
self.inner.s_addr == other.inner.s_addr
}
}
#[stable(feature = "ip_cmp", since = "1.16.0")]
impl PartialEq<Ipv4Addr> for IpAddr {
fn eq(&self, other: &Ipv4Addr) -> bool {
match self {
IpAddr::V4(v4) => v4 == other,
IpAddr::V6(_) => false,
}
}
}
#[stable(feature = "ip_cmp", since = "1.16.0")]
impl PartialEq<IpAddr> for Ipv4Addr {
fn eq(&self, other: &IpAddr) -> bool {
match other {
IpAddr::V4(v4) => self == v4,
IpAddr::V6(_) => false,
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Eq for Ipv4Addr {}
#[stable(feature = "rust1", since = "1.0.0")]
impl hash::Hash for Ipv4Addr {
fn hash<H: hash::Hasher>(&self, s: &mut H) {
// NOTE:
// * hash in big endian order
// * in netbsd, `in_addr` has `repr(packed)`, we need to
// copy `s_addr` to avoid unsafe borrowing
{ self.inner.s_addr }.hash(s)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialOrd for Ipv4Addr {
fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
Some(self.cmp(other))
}
}
#[stable(feature = "ip_cmp", since = "1.16.0")]
impl PartialOrd<Ipv4Addr> for IpAddr {
fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
match self {
IpAddr::V4(v4) => v4.partial_cmp(other),
IpAddr::V6(_) => Some(Ordering::Greater),
}
}
}
#[stable(feature = "ip_cmp", since = "1.16.0")]
impl PartialOrd<IpAddr> for Ipv4Addr {
fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
match other {
IpAddr::V4(v4) => self.partial_cmp(v4),
IpAddr::V6(_) => Some(Ordering::Less),
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Ord for Ipv4Addr {
fn cmp(&self, other: &Ipv4Addr) -> Ordering {
// Compare as native endian
u32::from_be(self.inner.s_addr).cmp(&u32::from_be(other.inner.s_addr))
}
}
impl IntoInner<c::in_addr> for Ipv4Addr {
fn into_inner(self) -> c::in_addr {
self.inner
}
}
#[stable(feature = "ip_u32", since = "1.1.0")]
impl From<Ipv4Addr> for u32 {
/// Converts an `Ipv4Addr` into a host byte order `u32`.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::new(0xca, 0xfe, 0xba, 0xbe);
/// assert_eq!(0xcafebabe, u32::from(addr));
/// ```
fn from(ip: Ipv4Addr) -> u32 {
let ip = ip.octets();
u32::from_be_bytes(ip)
}
}
#[stable(feature = "ip_u32", since = "1.1.0")]
impl From<u32> for Ipv4Addr {
/// Converts a host byte order `u32` into an `Ipv4Addr`.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::from(0xcafebabe);
/// assert_eq!(Ipv4Addr::new(0xca, 0xfe, 0xba, 0xbe), addr);
/// ```
fn from(ip: u32) -> Ipv4Addr {
Ipv4Addr::from(ip.to_be_bytes())
}
}
#[stable(feature = "from_slice_v4", since = "1.9.0")]