-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathbch_decoder.v
342 lines (297 loc) · 8.92 KB
/
bch_decoder.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
/*
* BCH Encode/Decoder Modules
*
* Copyright 2014 - Russ Dill <[email protected]>
* Distributed under 2-clause BSD license as contained in COPYING file.
*/
`timescale 1ns / 1ps
module bch_decoder #(
parameter T = 3,
parameter DATA_BITS = 5,
parameter BITS = 1,
parameter SYN_REG_RATIO = 1,
parameter ERR_REG_RATIO = 1,
parameter SYN_PIPELINE_STAGES = 0,
parameter ERR_PIPELINE_STAGES = 0,
parameter ACCUM = 1,
parameter NCHANNEL = 4,
parameter NKEY = 2,
parameter NCHIEN = 1
) (
input clk,
input [NCHANNEL*BITS-1:0] data,
input [NCHANNEL-1:0] syn_start,
output [NCHANNEL-1:0] syn_ready,
output reg [NCHANNEL*BITS-1:0] err_out = 0,
output reg [NCHANNEL-1:0] first_out = 0
);
`include "bch_params.vh"
localparam TCQ = 1;
localparam BCH_PARAMS = bch_params(DATA_BITS, T);
localparam NREDUCED = NKEY - NCHIEN;
parameter CHANNEL_SZ = $clog2(NCHANNEL+1);
parameter KEY_SZ = $clog2(NKEY+1);
wire [NCHANNEL*`BCH_SYNDROMES_SZ(BCH_PARAMS)-1:0] syndromes;
wire [NCHANNEL-1:0] syn_done;
reg [NCHANNEL-1:0] syn_full = 0;
bch_syndrome #(BCH_PARAMS, BITS, SYN_REG_RATIO, SYN_PIPELINE_STAGES) u_bch_syndrome [NCHANNEL-1:0] (
.clk(clk),
.start(syn_start && syn_ready),
.ready(syn_ready),
.ce(1'b1),
.data_in(data),
.syndromes(syndromes),
.done(syn_done)
);
/* Round robin accept syndromes */
reg [CHANNEL_SZ-1:0] channel = 0;
reg [CHANNEL_SZ-1:0] curr_channel = 0;
reg [NKEY*CHANNEL_SZ-1:0] key_channel = 0;
reg [KEY_SZ-1:0] key_in = 0;
reg [`BCH_SYNDROMES_SZ(BCH_PARAMS)-1:0] syndrome = 0;
reg ready = 1;
reg err_pres_check = 0;
reg [NCHANNEL-1:0] do_skip = 0; /* Output channel should do a skip */
reg [NCHANNEL-1:0] do_full = 0; /* Output channel should output from mux */
wire errors_present_done;
reg errors_present_done_sticky = 0;
wire errors_present;
wire [`BCH_SYNDROMES_SZ(BCH_PARAMS)-1:0] syndrome_sel;
wire [NKEY-1:0] key_ready;
mux #(NCHANNEL, `BCH_SYNDROMES_SZ(BCH_PARAMS)) u_syndrome_mux (
.in(syndromes),
.sel(channel),
.out(syndrome_sel)
);
bch_errors_present #(BCH_PARAMS, 2) u_errors (
.clk(clk),
.start(err_pres_check),
.syndromes(syndrome),
.done(errors_present_done),
.errors_present(errors_present)
);
always @(posedge clk) begin
do_skip <= #TCQ 0;
if (ready) begin
/* Wait for the next available syndrome */
if (syn_done[channel]) begin
syndrome <= #TCQ syndrome_sel;
ready <= #TCQ 0;
err_pres_check <= #TCQ 1;
if (channel == NCHANNEL - 1)
channel <= #TCQ 0;
else
channel <= #TCQ channel + 1'b1;
curr_channel <= #TCQ channel;
end else
err_pres_check <= #TCQ 0;
errors_present_done_sticky <= #TCQ 0;
end else begin
err_pres_check <= #TCQ 0;
if (errors_present_done && !errors_present) begin
/* Syndrome was empty, skip */
ready <= #TCQ 1;
errors_present_done_sticky <= #TCQ 0;
do_skip[curr_channel] <= #TCQ 1;
end else if (errors_present_done || errors_present_done_sticky) begin
/* We have a syndrome, wait for the next key solver */
if (key_ready[key_in]) begin
ready <= #TCQ 1;
key_channel[key_in*CHANNEL_SZ+:CHANNEL_SZ] <= #TCQ curr_channel;
if (key_in == NKEY - 1)
key_in <= #TCQ 0;
else
key_in <= #TCQ key_in + 1'b1;
errors_present_done_sticky <= #TCQ 0;
end else
errors_present_done_sticky <= #TCQ 1;
end
end
end
wire [NKEY-1:0] key_start;
genvar i;
generate
for (i = 0; i < NKEY; i = i + 1) begin : KEY_START
assign key_start[i] = (errors_present_done && errors_present) ||
errors_present_done_sticky && i == key_in;
end
endgenerate
wire [NKEY-1:0] key_done;
wire [NKEY*`BCH_SIGMA_SZ(BCH_PARAMS)-1:0] sigma;
wire [NKEY*`BCH_ERR_SZ(BCH_PARAMS)-1:0] err_count;
wire [NKEY-1:0] key_ack_done;
bch_sigma_bma_serial #(BCH_PARAMS) u_bma [NKEY-1:0] (
.clk(clk),
.start(key_start),
.ready(key_ready),
.syndromes(syndrome),
.sigma(sigma),
.done(key_done),
.ack_done(key_ack_done),
.err_count(err_count)
);
/* Round robin accept key output */
reg [`BCH_SIGMA_SZ(BCH_PARAMS)-1:0] curr_sigma = 1;
reg [KEY_SZ-1:0] key_out = 0;
reg ready_out = 1;
reg [`BCH_ERR_SZ(BCH_PARAMS)-1:0] curr_err_count = 0;
reg [$clog2(NCHIEN+1)-1:0] chien = 0;
reg [$clog2(NREDUCED+1)-1:0] reduced = 0;
reg [CHANNEL_SZ-1:0] curr_key_channel = 0;
reg [NCHIEN-1:0] chien_busy = 0;
reg [NREDUCED-1:0] reduced_busy = 0;
reg [NCHIEN-1:0] chien_start = 0;
reg [NREDUCED-1:0] reduced_start = 0;
reg [NCHIEN*CHANNEL_SZ-1:0] chien_channel = 0;
reg [NREDUCED*CHANNEL_SZ-1:0] reduced_channel = 0;
wire [NCHANNEL-1:0] output_last;
reg [NCHANNEL*KEY_SZ-1:0] output_mux = 0;
wire [`BCH_SIGMA_SZ(BCH_PARAMS)-1:0] sigma_sel;
wire [CHANNEL_SZ-1:0] key_channel_sel;
wire [`BCH_ERR_SZ(BCH_PARAMS)-1:0] err_count_sel;
generate
for (i = 0; i < NKEY; i = i + 1) begin : KEY_ACK
assign key_ack_done[i] = i == key_out && ready_out;
end
endgenerate
mux #(NKEY, `BCH_SIGMA_SZ(BCH_PARAMS)) u_sigma_mux(sigma, key_out, sigma_sel);
mux #(NKEY, CHANNEL_SZ) u_key_channel_mux(key_channel, key_in, key_channel_sel);
mux #(NKEY, `BCH_ERR_SZ(BCH_PARAMS)) u_err_count_mux(err_count, key_out, err_count_sel);
/* FIXME: In !NREDUCED case, we can line them up 1 to 1, avoiding crossbar/RR */
always @(posedge clk) begin
do_full <= #TCQ 0;
chien_start <= #TCQ 0;
if (NREDUCED) begin
reduced_start <= #TCQ 0;
end
if (ready_out) begin
/* Get the next ready polynomial equation */
if (key_done[key_out]) begin
curr_sigma <= #TCQ sigma_sel;
curr_key_channel <= #TCQ key_channel_sel;
curr_err_count <= #TCQ err_count_sel;
ready_out <= #TCQ 0;
if (key_out == NKEY - 1)
key_out <= #TCQ 0;
else
key_out <= #TCQ key_out + 1'b1;
end
end else begin
/* Get the next chien unit */
if (NREDUCED && curr_err_count == 1) begin
/* Reduced */
if (!reduced_busy[reduced]) begin
do_full[curr_key_channel] <= #TCQ 1;
output_mux[curr_key_channel*KEY_SZ+:KEY_SZ] <= #TCQ reduced + NCHIEN;
reduced_channel[reduced*CHANNEL_SZ+:CHANNEL_SZ] <= #TCQ curr_key_channel;
reduced_start[reduced] <= #TCQ 1;
ready_out <= #TCQ 1;
if (reduced == NREDUCED - 1)
reduced <= #TCQ 0;
else
reduced <= #TCQ reduced + 1'b1;
end
end else begin
/* Traditional */
if (!chien_busy[chien]) begin
do_full[curr_key_channel] <= #TCQ 1;
output_mux[curr_key_channel*KEY_SZ+:KEY_SZ] <= #TCQ chien;
chien_channel[chien*CHANNEL_SZ+:CHANNEL_SZ] <= #TCQ curr_key_channel;
chien_start[chien] <= #TCQ 1;
ready_out <= #TCQ 1;
if (chien == NCHIEN - 1)
chien <= #TCQ 0;
else
chien <= #TCQ chien + 1'b1;
end
end
end
end
wire [NCHIEN-1:0] chien_first;
wire [BITS*NCHIEN-1:0] chien_err;
bch_error_tmec #(BCH_PARAMS, BITS, ERR_REG_RATIO, ERR_PIPELINE_STAGES, ACCUM) u_error_tmec [NCHIEN-1:0] (
.clk(clk),
.start(chien_start),
.sigma(curr_sigma),
.first(chien_first),
.err(chien_err)
);
generate
for (i = 0; i < NCHIEN; i = i + 1) begin : CHIEN_BUSY
wire [CHANNEL_SZ-1:0] n;
assign n = chien_channel[i*CHANNEL_SZ+:CHANNEL_SZ];
always @(posedge clk) begin
if (chien_start[i])
chien_busy[i] <= #TCQ 1;
else if (output_last[n])
chien_busy[i] <= #TCQ 0;
end
end
wire [NREDUCED-1:0] reduced_first;
wire [BITS*NREDUCED-1:0] reduced_err;
if (NREDUCED) begin
bch_error_one #(BCH_PARAMS, BITS, ERR_PIPELINE_STAGES) u_error_one [NREDUCED-1:0] (
.clk(clk),
.start(reduced_start),
.sigma(curr_sigma[`BCH_M(BCH_PARAMS)*2-1:0]),
.first(reduced_first),
.err(reduced_err)
);
for (i = 0; i < NREDUCED; i = i + 1) begin : REDUCED_BUSY
wire [CHANNEL_SZ-1:0] n;
assign n = reduced_channel[i*CHANNEL_SZ+:CHANNEL_SZ];
always @(posedge clk) begin
if (reduced_start[i])
reduced_busy[i] <= #TCQ 1;
else if (output_last[n])
reduced_busy[i] <= #TCQ 0;
end
end
end
endgenerate
/* Combine two solvers */
wire [NKEY-1:0] first;
wire [BITS*NKEY-1:0] err;
assign err = {reduced_err, chien_err};
assign first = {reduced_first, chien_first};
/* Output stages */
generate
for (i = 0; i < NCHANNEL; i = i + 1) begin : CHANNEL
reg busy = 0;
reg queue_skip = 0;
reg skipping = 0;
reg full = 0;
wire [KEY_SZ-1:0] mux;
wire valid;
assign mux = output_mux[i*KEY_SZ+:KEY_SZ];
bch_chien_counter #(BCH_PARAMS, BITS) u_error_count (
.clk(clk),
.first(!busy && (do_full[i] || queue_skip)),
.valid(valid),
.last(output_last[i])
);
always @(posedge clk) begin
err_out[i*BITS+:BITS] <= #TCQ err[mux*BITS+:BITS];
first_out[i] <= #TCQ (full && first[mux]) || (queue_skip && !busy);
/* Make sure we catch it in case it comes in while we
* are busy */
if (do_skip[i])
queue_skip <= #TCQ 1;
if (busy) begin
if (output_last[i]) begin
busy <= #TCQ 0;
skipping <= #TCQ 0;
full <=# TCQ 0;
end
end else if (queue_skip) begin
queue_skip <= #TCQ 0;
busy <= #TCQ 1;
skipping <= #TCQ 1;
end else if (do_full[i]) begin
busy <= #TCQ 1;
full <= #TCQ 1;
end
end
end
endgenerate
endmodule