-
Notifications
You must be signed in to change notification settings - Fork 420
/
CaptionModel.py
302 lines (254 loc) · 14.5 KB
/
CaptionModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# This file contains ShowAttendTell and AllImg model
# ShowAttendTell is from Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
# https://arxiv.org/abs/1502.03044
# AllImg is a model where
# img feature is concatenated with word embedding at every time step as the input of lstm
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import *
import misc.utils as utils
class CaptionModel(nn.Module):
def __init__(self, opt):
super(CaptionModel, self).__init__()
self.vocab_size = opt.vocab_size
self.input_encoding_size = opt.input_encoding_size
self.rnn_type = opt.rnn_type
self.rnn_size = opt.rnn_size
self.num_layers = opt.num_layers
self.drop_prob_lm = opt.drop_prob_lm
self.seq_length = opt.seq_length
self.fc_feat_size = opt.fc_feat_size
self.att_feat_size = opt.att_feat_size
self.ss_prob = 0.0 # Schedule sampling probability
self.linear = nn.Linear(self.fc_feat_size, self.num_layers * self.rnn_size) # feature to rnn_size
self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size)
self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1)
self.dropout = nn.Dropout(self.drop_prob_lm)
self.init_weights()
def init_weights(self):
initrange = 0.1
self.embed.weight.data.uniform_(-initrange, initrange)
self.logit.bias.data.fill_(0)
self.logit.weight.data.uniform_(-initrange, initrange)
def init_hidden(self, fc_feats):
image_map = self.linear(fc_feats).view(-1, self.num_layers, self.rnn_size).transpose(0, 1)
if self.rnn_type == 'lstm':
return (image_map, image_map)
else:
return image_map
def forward(self, fc_feats, att_feats, seq):
batch_size = fc_feats.size(0)
state = self.init_hidden(fc_feats)
outputs = []
for i in range(seq.size(1) - 1):
if self.training and i >= 1 and self.ss_prob > 0.0: # otherwiste no need to sample
sample_prob = fc_feats.data.new(batch_size).uniform_(0, 1)
sample_mask = sample_prob < self.ss_prob
if sample_mask.sum() == 0:
it = seq[:, i].clone()
else:
sample_ind = sample_mask.nonzero().view(-1)
it = seq[:, i].data.clone()
#prob_prev = torch.exp(outputs[-1].data.index_select(0, sample_ind)) # fetch prev distribution: shape Nx(M+1)
#it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1))
prob_prev = torch.exp(outputs[-1].data) # fetch prev distribution: shape Nx(M+1)
it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind))
it = Variable(it, requires_grad=False)
else:
it = seq[:, i].clone()
# break if all the sequences end
if i >= 1 and seq[:, i].data.sum() == 0:
break
xt = self.embed(it)
output, state = self.core(xt, fc_feats, att_feats, state)
output = F.log_softmax(self.logit(self.dropout(output)))
outputs.append(output)
return torch.cat([_.unsqueeze(1) for _ in outputs], 1)
def sample_beam(self, fc_feats, att_feats, opt={}):
beam_size = opt.get('beam_size', 10)
batch_size = fc_feats.size(0)
assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
seq = torch.LongTensor(self.seq_length, batch_size).zero_()
seqLogprobs = torch.FloatTensor(self.seq_length, batch_size)
# lets process every image independently for now, for simplicity
self.done_beams = [[] for _ in range(batch_size)]
for k in range(batch_size):
tmp_fc_feats = fc_feats[k:k+1].expand(beam_size, self.fc_feat_size)
tmp_att_feats = att_feats[k:k+1].expand(*((beam_size,)+att_feats.size()[1:])).contiguous()
state = self.init_hidden(tmp_fc_feats)
beam_seq = torch.LongTensor(self.seq_length, beam_size).zero_()
beam_seq_logprobs = torch.FloatTensor(self.seq_length, beam_size).zero_()
beam_logprobs_sum = torch.zeros(beam_size) # running sum of logprobs for each beam
done_beams = []
for t in range(self.seq_length + 1):
if t == 0: # input <bos>
it = fc_feats.data.new(beam_size).long().zero_()
xt = self.embed(Variable(it, requires_grad=False))
else:
"""pem a beam merge. that is,
for every previous beam we now many new possibilities to branch out
we need to resort our beams to maintain the loop invariant of keeping
the top beam_size most likely sequences."""
logprobsf = logprobs.float() # lets go to CPU for more efficiency in indexing operations
ys,ix = torch.sort(logprobsf,1,True) # sorted array of logprobs along each previous beam (last true = descending)
candidates = []
cols = min(beam_size, ys.size(1))
rows = beam_size
if t == 1: # at first time step only the first beam is active
rows = 1
for c in range(cols):
for q in range(rows):
# compute logprob of expanding beam q with word in (sorted) position c
local_logprob = ys[q,c]
candidate_logprob = beam_logprobs_sum[q] + local_logprob
candidates.append({'c':ix.data[q,c], 'q':q, 'p':candidate_logprob.data[0], 'r':local_logprob.data[0]})
candidates = sorted(candidates, key=lambda x: -x['p'])
# construct new beams
new_state = [_.clone() for _ in state]
if t > 1:
# well need these as reference when we fork beams around
beam_seq_prev = beam_seq[:t-1].clone()
beam_seq_logprobs_prev = beam_seq_logprobs[:t-1].clone()
for vix in range(beam_size):
v = candidates[vix]
# fork beam index q into index vix
if t > 1:
beam_seq[:t-1, vix] = beam_seq_prev[:, v['q']]
beam_seq_logprobs[:t-1, vix] = beam_seq_logprobs_prev[:, v['q']]
# rearrange recurrent states
for state_ix in range(len(new_state)):
# copy over state in previous beam q to new beam at vix
new_state[state_ix][0, vix] = state[state_ix][0, v['q']] # dimension one is time step
# append new end terminal at the end of this beam
beam_seq[t-1, vix] = v['c'] # c'th word is the continuation
beam_seq_logprobs[t-1, vix] = v['r'] # the raw logprob here
beam_logprobs_sum[vix] = v['p'] # the new (sum) logprob along this beam
if v['c'] == 0 or t == self.seq_length:
# END token special case here, or we reached the end.
# add the beam to a set of done beams
self.done_beams[k].append({'seq': beam_seq[:, vix].clone(),
'logps': beam_seq_logprobs[:, vix].clone(),
'p': beam_logprobs_sum[vix]
})
# encode as vectors
it = beam_seq[t-1]
xt = self.embed(Variable(it.cuda()))
if t >= 1:
state = new_state
output, state = self.core(xt, tmp_fc_feats, tmp_att_feats, state)
logprobs = F.log_softmax(self.logit(self.dropout(output)))
self.done_beams[k] = sorted(self.done_beams[k], key=lambda x: -x['p'])
seq[:, k] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
seqLogprobs[:, k] = self.done_beams[k][0]['logps']
# return the samples and their log likelihoods
return seq.transpose(0, 1), seqLogprobs.transpose(0, 1)
def sample(self, fc_feats, att_feats, opt={}):
sample_max = opt.get('sample_max', 1)
beam_size = opt.get('beam_size', 1)
temperature = opt.get('temperature', 1.0)
if beam_size > 1:
return self.sample_beam(fc_feats, att_feats, opt)
batch_size = fc_feats.size(0)
state = self.init_hidden(fc_feats)
seq = []
seqLogprobs = []
for t in range(self.seq_length + 1):
if t == 0: # input <bos>
it = fc_feats.data.new(batch_size).long().zero_()
elif sample_max:
sampleLogprobs, it = torch.max(logprobs.data, 1)
it = it.view(-1).long()
else:
if temperature == 1.0:
prob_prev = torch.exp(logprobs.data).cpu() # fetch prev distribution: shape Nx(M+1)
else:
# scale logprobs by temperature
prob_prev = torch.exp(torch.div(logprobs.data, temperature)).cpu()
it = torch.multinomial(prob_prev, 1).cuda()
sampleLogprobs = logprobs.gather(1, Variable(it, requires_grad=False)) # gather the logprobs at sampled positions
it = it.view(-1).long() # and flatten indices for downstream processing
xt = self.embed(Variable(it, requires_grad=False))
if t >= 1:
# stop when all finished
if t == 1:
unfinished = it > 0
else:
unfinished = unfinished * (it > 0)
if unfinished.sum() == 0:
break
it = it * unfinished.type_as(it)
seq.append(it) #seq[t] the input of t+2 time step
seqLogprobs.append(sampleLogprobs.view(-1))
output, state = self.core(xt, fc_feats, att_feats, state)
logprobs = F.log_softmax(self.logit(self.dropout(output)))
return torch.cat([_.unsqueeze(1) for _ in seq], 1), torch.cat([_.unsqueeze(1) for _ in seqLogprobs], 1)
class ShowAttendTellCore(nn.Module):
def __init__(self, opt):
super(ShowAttendTellCore, self).__init__()
self.input_encoding_size = opt.input_encoding_size
self.rnn_type = opt.rnn_type
self.rnn_size = opt.rnn_size
self.num_layers = opt.num_layers
self.drop_prob_lm = opt.drop_prob_lm
self.fc_feat_size = opt.fc_feat_size
self.att_feat_size = opt.att_feat_size
self.att_hid_size = opt.att_hid_size
self.rnn = getattr(nn, self.rnn_type.upper())(self.input_encoding_size + self.att_feat_size,
self.rnn_size, self.num_layers, bias=False, dropout=self.drop_prob_lm)
if self.att_hid_size > 0:
self.ctx2att = nn.Linear(self.att_feat_size, self.att_hid_size)
self.h2att = nn.Linear(self.rnn_size, self.att_hid_size)
self.alpha_net = nn.Linear(self.att_hid_size, 1)
else:
self.ctx2att = nn.Linear(self.att_feat_size, 1)
self.h2att = nn.Linear(self.rnn_size, 1)
def forward(self, xt, fc_feats, att_feats, state):
att_size = att_feats.numel() // att_feats.size(0) // self.att_feat_size
att = att_feats.view(-1, self.att_feat_size)
if self.att_hid_size > 0:
att = self.ctx2att(att) # (batch * att_size) * att_hid_size
att = att.view(-1, att_size, self.att_hid_size) # batch * att_size * att_hid_size
att_h = self.h2att(state[0][-1]) # batch * att_hid_size
att_h = att_h.unsqueeze(1).expand_as(att) # batch * att_size * att_hid_size
dot = att + att_h # batch * att_size * att_hid_size
dot = F.tanh(dot) # batch * att_size * att_hid_size
dot = dot.view(-1, self.att_hid_size) # (batch * att_size) * att_hid_size
dot = self.alpha_net(dot) # (batch * att_size) * 1
dot = dot.view(-1, att_size) # batch * att_size
else:
att = self.ctx2att(att)(att) # (batch * att_size) * 1
att = att.view(-1, att_size) # batch * att_size
att_h = self.h2att(state[0][-1]) # batch * 1
att_h = att_h.expand_as(att) # batch * att_size
dot = att_h + att # batch * att_size
weight = F.softmax(dot)
att_feats_ = att_feats.view(-1, att_size, self.att_feat_size) # batch * att_size * att_feat_size
att_res = torch.bmm(weight.unsqueeze(1), att_feats_).squeeze(1) # batch * att_feat_size
output, state = self.rnn(torch.cat([xt, att_res], 1).unsqueeze(0), state)
return output.squeeze(0), state
class AllImgCore(nn.Module):
def __init__(self, opt):
super(AllImgCore, self).__init__()
self.input_encoding_size = opt.input_encoding_size
self.rnn_type = opt.rnn_type
self.rnn_size = opt.rnn_size
self.num_layers = opt.num_layers
self.drop_prob_lm = opt.drop_prob_lm
self.fc_feat_size = opt.fc_feat_size
self.rnn = getattr(nn, self.rnn_type.upper())(self.input_encoding_size + self.fc_feat_size,
self.rnn_size, self.num_layers, bias=False, dropout=self.drop_prob_lm)
def forward(self, xt, fc_feats, att_feats, state):
output, state = self.rnn(torch.cat([xt, fc_feats], 1).unsqueeze(0), state)
return output.squeeze(0), state
class ShowAttendTellModel(CaptionModel):
def __init__(self, opt):
super(ShowAttendTellModel, self).__init__(opt)
self.core = ShowAttendTellCore(opt)
class AllImgModel(CaptionModel):
def __init__(self, opt):
super(AllImgModel, self).__init__(opt)
self.core = AllImgCore(opt)