forked from groupon/spark-metrics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MetricsReceiver.scala
186 lines (172 loc) · 8.61 KB
/
MetricsReceiver.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/*
* Copyright (c) 2016, Groupon, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of GROUPON nor the names of its contributors may be
* used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.apache.spark.groupon.metrics
import java.util.concurrent.ConcurrentHashMap
import java.util.concurrent.TimeUnit
import com.codahale.metrics.{Clock, Counter, Gauge, Histogram, Meter, Metric, MetricRegistry, Reservoir, Timer}
import org.apache.spark.{SparkContext, SparkException}
import org.apache.spark.rpc.RpcEndpoint
import scala.collection.concurrent
import scala.collection.JavaConverters.mapAsScalaConcurrentMapConverter
/**
* MetricsReceiver is an [[RpcEndpoint]] on the driver node that collects data points for metrics from all the executors
* and aggregates them using the Codahale metrics library.
*
* This class interacts with Spark's [[org.apache.spark.metrics.MetricsSystem]] class to add the [[Metric]] instances
* created by this library to Spark's internal [[MetricRegistry]]. When the [[MetricsReceiver]] receives a data point
* from a [[SparkMetric]] that hasn't been seen before (identified by the `metricName` field in the [[MetricMessage]]),
* the [[MetricsReceiver]] creates an instance of a Codahale [[Metric]] that corresponds with the [[SparkMetric]].
*
* This new instance is then added to Spark's internal [[MetricRegistry]] via the
* [[org.apache.spark.metrics.MetricsSystem.registerSource()]] method. This is the only available API to add a new
* [[Metric]], but to add a [[org.apache.spark.metrics.source.Source]], we need to create a [[MetricRegistry]] as well.
* In other words, to add a new [[Metric]] to the Spark [[org.apache.spark.metrics.MetricsSystem]], we need to wrap a
* [[Metric]] in a [[MetricRegistry]], which is in turn wrapped by a [[org.apache.spark.metrics.source.Source]].
*
* The ideal implementation would be that the [[MetricsReceiver]] class has a single corresponding
* [[org.apache.spark.metrics.source.Source]] instance that contains a [[MetricRegistry]] which holds all the [[Metric]]
* instances created in the [[MetricsReceiver]]. Then, we could just register this one
* [[org.apache.spark.metrics.source.Source]] with Spark, and all of this library's [[Metric]] instances will be
* integrated with Spark.
*
* Unfortunately, this isn't possible due to the fact that Spark's internal [[MetricRegistry]] doesn't listen for
* updates to external [[MetricRegistry]] instances that were added in the
* [[org.apache.spark.metrics.MetricsSystem.registerSource()]] call. That method registers whatever [[Metric]] instances
* are in the [[MetricRegistry]] of the [[org.apache.spark.metrics.source.Source]] at that time, but any future updates
* to that [[MetricRegistry]] won't get propagated to Spark's internal [[MetricRegistry]].
*
* We could add a [[com.codahale.metrics.MetricRegistryListener]] to this library's [[MetricRegistry]], and whenever
* there is an update to that, we could propagate these changes to Spark's [[MetricRegistry]]. This would be possible
* if we had access to Spark's [[MetricRegistry]], but this is currently a private field in the
* [[org.apache.spark.metrics.MetricsSystem]].
*
* @param sparkContext app's [[SparkContext]]
* @param metricNamespace namespace of metrics used for publishing.
*/
private[metrics] class MetricsReceiver(val sparkContext: SparkContext,
val metricNamespace: String) extends RpcEndpoint {
override val rpcEnv = sparkContext.env.rpcEnv
// Tracks the last observed value for each Gauge
val lastGaugeValues: concurrent.Map[String, AnyVal] = new ConcurrentHashMap[String, AnyVal]().asScala
// Keeps track of all the Metric instances that are being published
val metrics: concurrent.Map[String, Metric] = new ConcurrentHashMap[String, Metric]().asScala
/**
* Handle the data points pushed from the executors.
*
* Performs the appropriate update operations on the [[Metric]] instances. If a `metricName` is seen for the first
* time, a [[Metric]] instance is created using the data from the [[MetricMessage]].
*/
override def receive: PartialFunction[Any, Unit] = {
case CounterMessage(metricName, value) => {
getOrCreateCounter(metricName).inc(value)
}
case HistogramMessage(metricName, value, reservoirClass) => {
getOrCreateHistogram(metricName, reservoirClass).update(value)
}
case MeterMessage(metricName, value) => {
getOrCreateMeter(metricName).mark(value)
}
case TimerMessage(metricName, value, reservoirClass, clockClass) => {
getOrCreateTimer(metricName, reservoirClass, clockClass).update(value, MetricsReceiver.DefaultTimeUnit)
}
case GaugeMessage(metricName, value) => {
lastGaugeValues.put(metricName, value)
getOrCreateGauge(metricName)
}
case message: Any => throw new SparkException(s"$self does not implement 'receive' for message: $message")
}
def getOrCreateCounter(metricName: String): Counter = {
metrics.getOrElseUpdate(metricName, {
val counter = new Counter()
registerMetricSource(metricName, counter)
counter
}).asInstanceOf[Counter]
}
def getOrCreateHistogram(metricName: String, reservoirClass: Class[_ <: Reservoir]): Histogram = {
metrics.getOrElseUpdate(metricName, {
val histogram = new Histogram(reservoirClass.newInstance())
registerMetricSource(metricName, histogram)
histogram
}).asInstanceOf[Histogram]
}
def getOrCreateMeter(metricName: String): Meter = {
metrics.getOrElseUpdate(metricName, {
val meter = new Meter()
registerMetricSource(metricName, meter)
meter
}).asInstanceOf[Meter]
}
def getOrCreateTimer(metricName: String, reservoirClass: Class[_ <: Reservoir], clockClass: Class[_ <: Clock]): Timer = {
metrics.getOrElseUpdate(metricName, {
val timer = new Timer(reservoirClass.newInstance(), clockClass.newInstance())
registerMetricSource(metricName, timer)
timer
}).asInstanceOf[Timer]
}
def getOrCreateGauge(metricName: String): Gauge[AnyVal] = {
metrics.getOrElseUpdate(metricName, {
val gauge = new Gauge[AnyVal] {
override def getValue: AnyVal = {
lastGaugeValues.get(metricName).get
}
}
registerMetricSource(metricName, gauge)
gauge
}).asInstanceOf[Gauge[AnyVal]]
}
/**
* Register a [[Metric]] with Spark's [[org.apache.spark.metrics.MetricsSystem]].
*
* Since updates to an external [[MetricRegistry]] that is already registered with the
* [[org.apache.spark.metrics.MetricsSystem]] aren't propagated to Spark's internal [[MetricRegistry]] instance, a new
* [[MetricRegistry]] must be created for each new [[Metric]] that needs to be published.
*
* @param metricName name of the Metric
* @param metric [[Metric]] instance to be published
*/
def registerMetricSource(metricName: String, metric: Metric): Unit = {
sparkContext.env.metricsSystem.registerSource(
new Source {
override val sourceName = s"${sparkContext.appName}.$metricNamespace"
override def metricRegistry: MetricRegistry = {
val metrics = new MetricRegistry
metrics.register(metricName, metric)
metrics
}
}
)
}
}
private[metrics] object MetricsReceiver {
val DefaultTimeUnit = TimeUnit.NANOSECONDS
val DefaultEndpointName = "MetricsReceiver"
}