-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patholympics_EDA.py
267 lines (148 loc) · 5.91 KB
/
olympics_EDA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# coding: utf-8
# In[1]:
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
get_ipython().run_line_magic('matplotlib', 'inline')
sns.set_style('whitegrid')
# In[2]:
athlete = pd.read_csv('athlete_events.csv')
print(athlete.head(10))
print('\n')
print(athlete.info())
#Can we predict what type of athletes (or countries maybe), or find any patters related to medaling vs not?
#Can we show a breakdown of how countries have fared over time in the olympic games?
#Did the years that sport-enhancing drugs came into play show a difference?
# In[3]:
#drop athletes who didn't earn a medal
df_medals = athlete.dropna(subset=['Medal'])
#split into summer and winter olympics
summer_medals = df_medals.drop(df_medals[df_medals['Season']=='Winter'].index)
winter_medals = df_medals.drop(df_medals[df_medals['Season']=='Summer'].index)
# In[4]:
summer_medals['Team'].nunique()
# In[6]:
summer_medals.head()
# In[14]:
summer_medals['Event'].nunique()
# In[ ]:
summer_medals['Event'].unique()
# In[ ]:
winter_medals['Event'].nunique()
# In[ ]:
winter_medals['Event'].unique()
# In[ ]:
winter_medals['Team'].nunique()
# In[ ]:
winter_medals['Team'].unique()
# In[ ]:
sns.pairplot(summer_medals.dropna(), hue='Sex', kind = 'reg')
# In[15]:
#A test on two countries
df_fin = summer_medals[summer_medals['Team'] == 'Finland']
df_usa = summer_medals[summer_medals['Team'] == 'United States']
# In[16]:
plt.figure(figsize=(40,15))
sns.swarmplot(x='Year', y='Height', data=df_fin, size=15)
# In[18]:
plt.figure(figsize=(40,15))
sns.swarmplot(x='Year', y='Height', data=df_usa)
# In[19]:
#Drop all the athletes who didn't earn medals for the USA in the Olympics
df_usa_medals = df_usa.dropna(subset=['Medal'])
#Group athletes by year and count them
usa_groupby_year = df_usa_medals.groupby('Year')
usa_medal_count = usa_groupby_year.count()
#reset the index to count "Year" as a real column
#Chart the number of Medals won during each year of the olympics
sns.lmplot(x='Year', y='Medal',data=usa_medal_count.reset_index(), size=10)
# In[ ]:
#repeat for Finland
df_fin_medals = df_fin.dropna(subset=['Medal'])
fin_groupby_year = df_fin_medals.groupby('Year')
fin_medal_count = fin_groupby_year.count()
sns.lmplot(x='Year', y='Medal',data=fin_medal_count.reset_index(), size=10)
# In[ ]:
#Now Winter
winter_fin = winter_medals[winter_medals['Team'] == 'Finland']
winter_usa = winter_medals[winter_medals['Team'] == 'United States']
winter_fin_medals = winter_fin.dropna(subset=['Medal'])
winter_fin_year = winter_fin_medals.groupby('Year')
winter_fin_count = winter_fin_year.count()
sns.lmplot(x='Year', y='Medal',data=winter_fin_count.reset_index(), size=10)
# In[ ]:
groupby_year = summer_medals.groupby('Year')
medal_count = groupby_year.count()
medal_count.head()
# In[ ]:
#count of total number of medals won total over the years in Summer Olympics
sns.lmplot(x='Year', y='Medal',data=medal_count.reset_index(), size=10)
# In[ ]:
#China
df_china = summer_medals[summer_medals['Team'] == 'China']
df_china_medals = df_china.dropna(subset=['Medal'])
china_groupby_year = df_china_medals.groupby('Year')
china_medal_count = china_groupby_year.count()
sns.lmplot(x='Year', y='Medal',data=china_medal_count.reset_index(), size=10)
# In[ ]:
"""
-What about the use of sport enhancing drugs in the early 50s? Will we see a sharp rise in the
medal count for developed countries such as china, usa, and russia?
-Doesn't seem to look like that happened. Comforting to the sport lovers out there
"""
# In[ ]:
summer_by_team = summer_medals.groupby('Team')
summer_count = summer_by_team.count()
summer_count
# In[ ]:
plt.figure(figsize = (20,10))
df_france = summer_medals[summer_medals['Team'] == 'France']
df_france_medals = df_france.dropna(subset=['Medal'])
france_groupby_year = df_france_medals.groupby('Year')
france_medal_count = france_groupby_year.count()
france = france_medal_count.reset_index()
plt.plot(france['Year'], france['Medal'])
df_italy = summer_medals[summer_medals['Team'] == 'Italy']
df_italy_medals = df_italy.dropna(subset=['Medal'])
italy_groupby_year = df_italy_medals.groupby('Year')
italy_medal_count = italy_groupby_year.count()
italy = italy_medal_count.reset_index()
plt.plot(italy['Year'], italy['Medal'])
df_hungary = summer_medals[summer_medals['Team'] == 'Hungary']
df_hungary_medals = df_hungary.dropna(subset=['Medal'])
hungary_groupby_year = df_hungary_medals.groupby('Year')
hungary_medal_count = hungary_groupby_year.count()
hungary = hungary_medal_count.reset_index()
plt.plot(hungary['Year'], hungary['Medal'])
df_sweden = summer_medals[summer_medals['Team'] == 'Sweden']
df_sweden_medals = df_sweden.dropna(subset=['Medal'])
sweden_groupby_year = df_sweden_medals.groupby('Year')
sweden_medal_count = sweden_groupby_year.count()
sweden = sweden_medal_count.reset_index()
plt.plot(sweden['Year'], sweden['Medal'])
df_uk = summer_medals[summer_medals['Team'] == 'United Kingdom']
df_uk_medals = df_uk.dropna(subset=['Medal'])
uk_groupby_year = df_uk_medals.groupby('Year')
uk_medal_count = uk_groupby_year.count()
uk = uk_medal_count.reset_index()
plt.plot(uk['Year'], uk['Medal'])
df_russia = summer_medals[summer_medals['Team'] == 'Russia']
df_russia_medals = df_russia.dropna(subset=['Medal'])
russia_groupby_year = df_russia_medals.groupby('Year')
russia_medal_count = russia_groupby_year.count()
russia = russia_medal_count.reset_index()
plt.plot(russia['Year'], russia['Medal'])
china = china_medal_count.reset_index()
usa = usa_medal_count.reset_index()
finland =fin_medal_count.reset_index()
plt.plot(china['Year'], china['Medal'])
plt.plot(usa['Year'], usa['Medal'])
plt.plot(finland['Year'], finland['Medal'])
# In[ ]:
#looks like height vs weight has the strongest correlation in the years the olympics has continued
#plt.figure(figsize = (20,10))
#sns.heatmap(winter_medals.corr())
# In[ ]:
plt.figure(figsize=(20,10))
sns.heatmap(summer_medals.corr())