- Logs messages in a compact binary format
- Fast
- Hundreds of millions of logs per second
- Average latency of 2-7 ns for basic data types
- See benchmarks
- Provides an unpacker to deflate the log messages
- Uses fmtlib to format the logs
- Synchronous logging - not thread safe
- Header-only library
- Single header file version available here
- Requires C++20
- MIT License
The following code logs 1 billion integers to file.
#include <binary_log/binary_log.hpp>
int main()
{
binary_log::binary_log log("log.out");
for (int i = 0; i < 1E9; ++i)
BINARY_LOG(log, "Hello logger, msg number: {}", i);
}
On a modern workstation desktop, the above code executes in ~3.5s
.
Type | Value |
---|---|
Time Taken | 3.5 s |
Throughput | 1.4 Gb/s |
Performance | 286 million logs/s |
Average Latency | 3.5 ns |
File Size | ~5 GB |
foo@bar:~/dev/binary_log$ time ./build/examples/billion_integers/billion_integers
real 0m3.561s
user 0m2.422s
sys 0m1.141s
foo@bar:~/dev/binary_log$ ls -lart log.out*
-rw-r--r-- 1 pranav pranav 6 Dec 6 07:52 log.out.runlength
-rw-r--r-- 1 pranav pranav 32 Dec 6 07:52 log.out.index
-rw-r--r-- 1 pranav pranav 4999934337 Dec 6 07:52 log.out
These binary log files can be deflated using the provided unpacker app:
foo@bar:~/dev/binary_log$ time ./build/tools/unpacker/unpacker log.out > log.deflated
real 2m19.853s
user 1m16.078s
sys 0m50.969s
foo@bar:~/dev/binary_log$ ls -lart log.deflated
-rw-r--r-- 1 pranav pranav 35888888890 Dec 6 08:09 log.deflated
foo@bar:~/dev/binary_log$ wc -l log.deflated
1000000000 log.deflated
foo@bar:~/dev/binary_log$ $ head log.deflated
Hello logger, msg number: 0
Hello logger, msg number: 1
Hello logger, msg number: 2
Hello logger, msg number: 3
Hello logger, msg number: 4
Hello logger, msg number: 5
Hello logger, msg number: 6
Hello logger, msg number: 7
Hello logger, msg number: 8
Hello logger, msg number: 9
foo@bar:~/dev/binary_log$ tail log.deflated
Hello logger, msg number: 999999990
Hello logger, msg number: 999999991
Hello logger, msg number: 999999992
Hello logger, msg number: 999999993
Hello logger, msg number: 999999994
Hello logger, msg number: 999999995
Hello logger, msg number: 999999996
Hello logger, msg number: 999999997
Hello logger, msg number: 999999998
Hello logger, msg number: 999999999
Type | Value |
---|---|
Time Taken | 2m 19s |
Throughput | 258 MB/s |
Original File Size | ~5 GB |
Deflated File Size | ~35 GB |
Log Compression | 7x |
See benchmarks section for more performance metrics.
- Implement a single-threaded, synchronous logger - Do not provide thread safety
- If the user wants multi-threaded behavior, the user can choose and implement their own queueing solution
- There are numerous well-known lock-free queues available for this purpose (moody::concurrentqueue, atomic_queue etc.) - let the user choose the technology they want to use.
- The latency of enqueuing into a lock-free queue is large enough to matter
- Users who do not care about multi-threaded scenarios should not suffer the cost
- Looking at the atomic_queue benchmarks, the average round-trip latency across many state-of-the-art multi-producer, multi-consumer queues, to send and receive a 4-byte integer (between 2 threads, using 2 queues) is around 150-250 ns.
- Avoid writing static information more than once
- Examples of static information: the format string, the number of format args, and type of each format arg
- Store the static information in an "index" file
- Store the dynamic information in the log file (refer to the index file where possible)
- Do as little work as possible in the runtime hot path
- No formatting of any kind
- All formatting will happen offline using an unpacker that deflates the binary logs
binary_log
splits the logging into three files:
- Index file contains all the static information from the logs, e.g., format string, number of args, type of each arg etc.
- If a format argument is marked as constant using
binary_log::constant
, the value of the arg is also stored in the index file
- If a format argument is marked as constant using
- Log file contains two pieces of information per log call:
- An index into the index table (in the index file) to know which format string was used
- If runlength encoding is working, this index might not be written, instead the final runlength will be written to the runlengths file
- The value of each argument
- An index into the index table (in the index file) to know which format string was used
- Runlength file contains runlengths - If a log call is made 5 times, this information is stored here (instead of storing the index 5 times in the log file)
- NOTE: Runlengths are only stored if the runlength > 1 (to avoid the inflation case with RLE)
binary_log
packs integers based on value. An argument of type uint64_t
with a value of 19
will be packed as a uint8_t
, saving 7 bytes of space (actually 6, one byte is required to store the number of bytes consumed by the integer)
Consider the example:
uint64_t value = 19;
BINARY_LOG(log, "{}", value);
Here is the index file:
foo@bar:~/dev/binary_log$ hexdump -C log.out.index
00000000 02 7b 7d 01 05 00 |.{}...|
00000006
This index file has 6 bytes of information:
0x02
- Length of the format string0x7b 0x7d
- This is the format string"{}"
0x01
- This is the number of arguments required0x05
- This is the type of the argumentuint64_t
(according to this enum class)0x00
- To indicate that this value is not a "constant"
Here is the log file
foo@bar:~/dev/binary_log$ hexdump -C log.out
00000000 00 01 13 |...|
00000003
The log file has 3 bytes:
0x00
indicates that the first format string in the table (in the index file) is being used0x01
indicates that the integer argument takes up 1 byte0x13
is the value - the decimal19
One can specify a log format argument as a constant by wrapping the value with binary_log::constant(...)
. When this is detected, the value is stored in the index file instead of the log file as it is now considered "static information" and does not change between calls.
for (auto i = 0; i < 1E9; ++i) {
BINARY_LOG(log, "Joystick {}: x_min={}, x_max={}, y_min={}, y_max={}",
binary_log::constant("Nintendo Joycon"),
binary_log::constant(-0.6),
binary_log::constant(+0.65),
binary_log::constant(-0.54),
binary_log::constant(+0.71));
}
The above loop runs in under 500 ms
. The final output is compact at just 118 bytes
and contains all the information needed to deflate the log (if needed).
File | Size |
---|---|
log.out | 1 byte |
log.out.runlength | 6 bytes |
log.out.index | 111 bytes |
foo@bar:~/dev/binary_log$ ls -lart log.out*
-rw-r--r-- 1 pranav pranav 6 Dec 5 08:41 log.out.runlength
-rw-r--r-- 1 pranav pranav 111 Dec 5 08:41 log.out.index
-rw-r--r-- 1 pranav pranav 1 Dec 5 08:41 log.out
foo@bar:~/dev/binary_log$ hexdump -C log.out.index
00000000 33 4a 6f 79 73 74 69 63 6b 20 7b 7d 3a 20 78 5f |3Joystick {}: x_|
00000010 6d 69 6e 3d 7b 7d 2c 20 78 5f 6d 61 78 3d 7b 7d |min={}, x_max={}|
00000020 2c 20 79 5f 6d 69 6e 3d 7b 7d 2c 20 79 5f 6d 61 |, y_min={}, y_ma|
00000030 78 3d 7b 7d 05 0c 0b 0b 0b 0b 01 0f 4e 69 6e 74 |x={}........Nint|
00000040 65 6e 64 6f 20 4a 6f 79 63 6f 6e 01 33 33 33 33 |endo Joycon.3333|
00000050 33 33 e3 bf 01 cd cc cc cc cc cc e4 3f 01 48 e1 |33..........?.H.|
00000060 7a 14 ae 47 e1 bf 01 b8 1e 85 eb 51 b8 e6 3f |z..G.......Q..?|
0000006f
Type | Value |
---|---|
Processor | 11th Gen Intel(R) Core(TM) i9-11900KF @ 3.50GHz 3.50 GHz |
Installed RAM | 32.0 GB (31.9 GB usable) |
SSD | ADATA SX8200PNP |
OS | Ubuntu 20.04 LTS running on WSL in Windows 11 |
C++ Compiler | g++ (Ubuntu 10.3.0-1ubuntu1~20.04) 10.3.0 |
foo@bar:~/dev/binary_log$ ./build/benchmark/binary_log_benchmark --benchmark_counters_tabular=true
2021-12-06T08:15:45-06:00
Running ./build/benchmark/binary_log_benchmark
Run on (16 X 3504 MHz CPU s)
Load Average: 0.52, 0.58, 0.59
------------------------------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations Latency Logs/s
------------------------------------------------------------------------------------------------------------------------
BM_binary_log_static_integer<uint8_t>/42 1.56 ns 1.57 ns 448000000 1.56948ns 637.156M/s
BM_binary_log_static_integer<uint16_t>/395 2.25 ns 2.25 ns 298666667 2.24958ns 444.527M/s
BM_binary_log_static_integer<uint32_t>/3123456789 3.58 ns 3.53 ns 194782609 3.52958ns 283.32M/s
BM_binary_log_static_integer<uint64_t>/9876543123456789 6.37 ns 6.42 ns 112000000 6.41741ns 155.826M/s
BM_binary_log_static_integer<int8_t>/-42 1.58 ns 1.57 ns 448000000 1.56948ns 637.156M/s
BM_binary_log_static_integer<int16_t>/-395 2.29 ns 2.29 ns 320000000 2.29492ns 435.745M/s
BM_binary_log_static_integer<int32_t>/-123456789 3.76 ns 3.75 ns 179200000 3.7493ns 266.716M/s
BM_binary_log_static_integer<int64_t>/-9876543123456789 6.31 ns 6.28 ns 112000000 6.2779ns 159.289M/s
BM_binary_log_static_float 3.02 ns 3.05 ns 235789474 3.04827ns 328.055M/s
BM_binary_log_static_double 5.64 ns 5.62 ns 100000000 5.625ns 177.778M/s
BM_binary_log_static_string 4.28 ns 4.33 ns 165925926 4.33175ns 230.853M/s
BM_binary_log_random_integer<uint8_t> 7.60 ns 7.50 ns 89600000 7.4986ns 133.358M/s
BM_binary_log_random_integer<uint16_t> 7.84 ns 7.85 ns 89600000 7.84738ns 127.431M/s
BM_binary_log_random_integer<uint32_t> 8.56 ns 8.58 ns 74666667 8.5798ns 116.553M/s
BM_binary_log_random_integer<uint64_t> 17.7 ns 17.6 ns 40727273 17.6479ns 56.664M/s
BM_binary_log_random_integer<int8_t> 8.00 ns 7.95 ns 74666667 7.95201ns 125.754M/s
BM_binary_log_random_integer<int16_t> 7.89 ns 7.85 ns 89600000 7.84738ns 127.431M/s
BM_binary_log_random_integer<int32_t> 8.77 ns 8.79 ns 74666667 8.78906ns 113.778M/s
BM_binary_log_random_integer<int64_t> 17.4 ns 17.6 ns 37333333 17.5781ns 56.8889M/s
BM_binary_log_random_real<float> 6.94 ns 6.84 ns 112000000 6.83594ns 146.286M/s
BM_binary_log_random_real<double> 12.7 ns 12.6 ns 49777778 12.5558ns 79.6444M/s
- The size of the format string is saved as a
uint8_t
- this means that the format string cannot be more than 256 characters, which I think is a reasonable assumption to make for a logging library. Often, in reality, the lines of a log file are around 80-120 characters in length. - The size of any string argument is also stored as a
uint8_t
- this again means that any string argument must be no more than 256 bytes in size.- In both the index file and the log file, strings are stored like this:
<string-length (1 byte)> <string-byte1> ... <string-byten>
- In both the index file and the log file, strings are stored like this:
- The index file contains a table of metadata - an index table. Each entry in the log file might use an index to refer to row in the index table (I say might because if there is a runlength > 1, the index will be stored in the runlength file). The type of this index is
uint8_t
. This data type choice has one major implication: The max size of the index table is 256 (since the max index is 255) - this means that a user can callBINARY_LOG(...)
in at most 256 unique lines of code with a specificbinary_log
object. This should be sufficient for small to medium size applications but may not be adequate for larger applications where one logger is used withBINARY_LOG(...)
through out the application in more than 256 places.- One could expose this data type as a template parameter but the unpacker will need to be updated to correctly parse, e.g., a
uint16_t
for the index instead of auint8_t
- Note that switching to
uint16_t
here means that every log call will store an extra byte to be able to refer to an entry in the index table - an extra byte per call could be an extra 1GB over billion log calls.
- One could expose this data type as a template parameter but the unpacker will need to be updated to correctly parse, e.g., a
- The unit tests assume little endian representation for multi-byte data, e.g., int, float etc.
binary_log
supports a limited number of types of format arguments. They are:
bool,
char,
uint8_t, uint16_t, uint32_t, uint64_t
int8_t, int16_t, int32_t, int64_t,
float, double,
const char*,
std::string,
std::string_view
See the BUILDING document.
python3 utils/amalgamate/amalgamate.py -c single_include.json -s .
See the CONTRIBUTING document.
The project is available under the MIT license.