-
Notifications
You must be signed in to change notification settings - Fork 23
/
linreg_eigen.cpp
588 lines (459 loc) · 17 KB
/
linreg_eigen.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
// linear regression via RcppEigen
// [[Rcpp::depends(RcppEigen)]]
#include "linreg_eigen.h"
#include <RcppEigen.h>
#include "r_message.h" // defines RQTL2_NODEBUG
using namespace Rcpp;
using namespace Eigen;
// calc X'X
MatrixXd calc_XpX(const MatrixXd& X)
{
const int n = X.cols();
return MatrixXd(n,n).setZero().selfadjointView<Lower>()
.rankUpdate(X.adjoint());
}
// least squares by "LLt" Cholesky decomposition
// [[Rcpp::export]]
List fit_linreg_eigenchol(const NumericMatrix& X, const NumericVector& y, const bool se)
{
const MatrixXd XX(as<Map<MatrixXd> >(X));
const VectorXd yy(as<Map<VectorXd> >(y));
const int n = XX.rows(), p=XX.cols();
#ifndef RQTL2_NODEBUG
if(n != y.size())
throw std::invalid_argument("nrow(X) != length(y)");
#endif
LLT<MatrixXd> llt ( calc_XpX(XX) );
VectorXd betahat = llt.solve(XX.adjoint() * yy);
VectorXd fitted = XX * betahat;
VectorXd resid = yy - fitted;
const int df = n-p;
const double s = resid.norm() / std::sqrt((double)df);
const double rss = resid.squaredNorm();
if(se) {
VectorXd SE = s * llt.matrixL().solve(MatrixXd::Identity(p,p)).colwise().norm();
return List::create(Named("coef") = betahat,
Named("fitted") = fitted,
Named("resid") = resid,
Named("rss") = rss,
Named("sigma") = s,
Named("rank") = p,
Named("df") = df,
Named("SE") = SE);
} else {
return List::create(Named("coef") = betahat,
Named("fitted") = fitted,
Named("resid") = resid,
Named("rss") = rss,
Named("sigma") = s,
Named("rank") = p,
Named("df") = df);
}
}
// least squares by "LLt" Cholesky decomposition
// return just the coefficients
// [[Rcpp::export]]
NumericVector calc_coef_linreg_eigenchol(const NumericMatrix& X, const NumericVector& y)
{
#ifndef RQTL2_NODEBUG
if(X.rows() != y.size())
throw std::invalid_argument("nrow(X) != length(y)");
#endif
const MatrixXd XX(as<Map<MatrixXd> >(X));
const VectorXd yy(as<Map<VectorXd> >(y));
LLT<MatrixXd> llt ( calc_XpX(XX) );
NumericVector betahat(wrap(llt.solve(XX.adjoint() * yy)));
return betahat;
}
// least squares by "LLt" Cholesky decomposition
// return the coefficients and SEs
// [[Rcpp::export]]
List calc_coefSE_linreg_eigenchol(const NumericMatrix& X, const NumericVector& y)
{
#ifndef RQTL2_NODEBUG
if(X.rows() != y.size())
throw std::invalid_argument("nrow(X) != length(y)");
#endif
const MatrixXd XX(as<Map<MatrixXd> >(X));
const VectorXd yy(as<Map<VectorXd> >(y));
const int n = XX.rows(), p=XX.cols();
LLT<MatrixXd> llt ( calc_XpX(XX) );
VectorXd betahat = llt.solve(XX.adjoint() * yy);
VectorXd fitted = XX * betahat;
VectorXd resid = yy - fitted;
const int df = n-p;
const double s = resid.norm() / std::sqrt((double)df);
VectorXd se = s * llt.matrixL().solve(MatrixXd::Identity(p,p)).colwise().norm();
return List::create(Named("coef") = betahat,
Named("SE") = se);
}
// least squares by "LLt" Cholesky decomposition
// return just the residual sum of squares
// [[Rcpp::export]]
double calc_rss_eigenchol(const NumericMatrix& X, const NumericVector& y)
{
#ifndef RQTL2_NODEBUG
if(X.rows() != y.size())
throw std::invalid_argument("nrow(X) != length(y)");
#endif
const MatrixXd XX(as<Map<MatrixXd> >(X));
const VectorXd yy(as<Map<VectorXd> >(y));
LLT<MatrixXd> llt ( calc_XpX(XX) );
VectorXd betahat = llt.solve(XX.adjoint() * yy);
VectorXd fitted = XX * betahat;
VectorXd resid = yy - fitted;
return resid.squaredNorm();
}
// least squares by "LLt" Cholesky decomposition
// return just the fitted values
// [[Rcpp::export]]
NumericVector calc_fitted_linreg_eigenchol(const NumericMatrix& X, const NumericVector& y)
{
#ifndef RQTL2_NODEBUG
if(X.rows() != y.size())
throw std::invalid_argument("nrow(X) != length(y)");
#endif
const MatrixXd XX(as<Map<MatrixXd> >(X));
const VectorXd yy(as<Map<VectorXd> >(y));
LLT<MatrixXd> llt ( calc_XpX(XX) );
VectorXd betahat = llt.solve(XX.adjoint() * yy);
VectorXd fitted = XX * betahat;
return wrap(fitted);
}
// least squares by QR decomposition with column pivoting
// [[Rcpp::export]]
List fit_linreg_eigenqr(const NumericMatrix& X, const NumericVector& y,
const bool se, const double tol=1e-12)
{
#ifndef RQTL2_NODEBUG
if(X.rows() != y.size())
throw std::invalid_argument("nrow(X) != length(y)");
#endif
const MatrixXd XX(as<Map<MatrixXd> >(X));
const VectorXd yy(as<Map<VectorXd> >(y));
typedef ColPivHouseholderQR<MatrixXd> CPivQR;
typedef CPivQR::PermutationType Permutation;
const int n = XX.rows(), p = XX.cols();
CPivQR PQR( XX );
PQR.setThreshold(tol); // set tolerance
Permutation Pmat( PQR.colsPermutation() );
const int r = PQR.rank();
VectorXd betahat(p), fitted(n), SE(p);
if(r == p) { // full rank
betahat = PQR.solve(yy);
fitted = XX * betahat;
if(se) {
SE = Pmat * PQR.matrixQR().topRows(p).
triangularView<Upper>().
solve(MatrixXd::Identity(p, p)).
rowwise().norm();
}
} else {
MatrixXd Rinv( PQR.matrixQR().topLeftCorner(r,r).
triangularView<Upper>().
solve(MatrixXd::Identity(r,r)) );
VectorXd effects( PQR.householderQ().adjoint() * yy );
betahat.fill(::NA_REAL);
betahat.head(r) = Rinv * effects.head(r);
betahat = Pmat*betahat;
if(se) {
SE.fill(::NA_REAL);
SE.head(r) = Rinv.rowwise().norm();
SE = Pmat * SE;
}
effects.tail(n - r).setZero();
fitted = PQR.householderQ() * effects;
}
VectorXd resid = yy - fitted;
const double rss = resid.squaredNorm();
const int df = n - r;
const double sigma = std::sqrt(rss/(double)df);
if(se)
return List::create(Named("coef") = betahat,
Named("fitted") = fitted,
Named("resid") = resid,
Named("rss") = rss,
Named("sigma") = sigma,
Named("rank") = r,
Named("df") = df,
Named("SE") = sigma*SE);
else
return List::create(Named("coef") = betahat,
Named("fitted") = fitted,
Named("resid") = resid,
Named("rss") = rss,
Named("sigma") = sigma,
Named("rank") = r,
Named("df") = df);
}
// least squares by QR decomposition with column pivoting
// this just returns the coefficients
// [[Rcpp::export]]
NumericVector calc_coef_linreg_eigenqr(const NumericMatrix& X, const NumericVector& y,
const double tol=1e-12)
{
#ifndef RQTL2_NODEBUG
if(X.rows() != y.size())
throw std::invalid_argument("nrow(X) != length(y)");
#endif
const MatrixXd XX(as<Map<MatrixXd> >(X));
const VectorXd yy(as<Map<VectorXd> >(y));
typedef ColPivHouseholderQR<MatrixXd> CPivQR;
typedef CPivQR::PermutationType Permutation;
const int p = XX.cols();
CPivQR PQR( XX );
PQR.setThreshold(tol); // set tolerance
Permutation Pmat( PQR.colsPermutation() );
const int r = PQR.rank();
VectorXd betahat(p);
if(r == p) { // full rank
betahat = PQR.solve(yy);
} else {
MatrixXd Rinv( PQR.matrixQR().topLeftCorner(r,r).
triangularView<Upper>().
solve(MatrixXd::Identity(r,r)) );
VectorXd effects( PQR.householderQ().adjoint() * yy );
betahat.fill(::NA_REAL);
betahat.head(r) = Rinv * effects.head(r);
betahat = Pmat*betahat;
}
NumericVector result(wrap(betahat));
return result;
}
// least squares by QR decomposition with column pivoting
// return the coefficients and SEs
// [[Rcpp::export]]
List calc_coefSE_linreg_eigenqr(const NumericMatrix& X, const NumericVector& y,
const double tol=1e-12)
{
#ifndef RQTL2_NODEBUG
if(X.rows() != y.size())
throw std::invalid_argument("nrow(X) != length(y)");
#endif
const MatrixXd XX(as<Map<MatrixXd> >(X));
const VectorXd yy(as<Map<VectorXd> >(y));
typedef ColPivHouseholderQR<MatrixXd> CPivQR;
typedef CPivQR::PermutationType Permutation;
const int n = XX.rows(), p = XX.cols();
CPivQR PQR( XX );
PQR.setThreshold(tol); // set tolerance
Permutation Pmat( PQR.colsPermutation() );
const int r = PQR.rank();
VectorXd betahat(p), fitted(n), se(p);
if(r == p) { // full rank
betahat = PQR.solve(yy);
fitted = XX * betahat;
se = Pmat * PQR.matrixQR().topRows(p).
triangularView<Upper>().
solve(MatrixXd::Identity(p, p)).
rowwise().norm();
} else {
MatrixXd Rinv( PQR.matrixQR().topLeftCorner(r,r).
triangularView<Upper>().
solve(MatrixXd::Identity(r,r)) );
VectorXd effects( PQR.householderQ().adjoint() * yy );
betahat.fill(::NA_REAL);
betahat.head(r) = Rinv * effects.head(r);
betahat = Pmat*betahat;
se.fill(::NA_REAL);
se.head(r) = Rinv.rowwise().norm();
se = Pmat * se;
effects.tail(n - r).setZero();
fitted = PQR.householderQ() * effects;
}
VectorXd resid = yy - fitted;
const double rss = resid.squaredNorm();
const int df = n - r;
const double sigma = std::sqrt(rss/(double)df);
return List::create(Named("coef") = betahat,
Named("SE") = sigma*se);
}
// least squares by QR decomposition with column pivoting
// return just the residual sum of squares
// [[Rcpp::export]]
double calc_rss_eigenqr(const NumericMatrix& X, const NumericVector& y,
const double tol=1e-12)
{
#ifndef RQTL2_NODEBUG
if(X.rows() != y.size())
throw std::invalid_argument("nrow(X) != length(y)");
#endif
const MatrixXd XX(as<Map<MatrixXd> >(X));
const VectorXd yy(as<Map<VectorXd> >(y));
typedef Eigen::ColPivHouseholderQR<MatrixXd> CPivQR;
typedef CPivQR::PermutationType Permutation;
const int n = XX.rows(), p = XX.cols();
CPivQR PQR ( XX );
PQR.setThreshold(tol); // set tolerance
Permutation Pmat = PQR.colsPermutation();
const int r = PQR.rank();
VectorXd fitted(n);
if(r == p) { // full rank
VectorXd betahat = PQR.solve(yy);
fitted = XX * betahat;
} else {
MatrixXd Rinv = PQR.matrixQR().topLeftCorner(r,r)
.triangularView<Upper>().solve(MatrixXd::Identity(r,r));
VectorXd effects = PQR.householderQ().adjoint() * yy;
effects.tail(n - r).setZero();
fitted = PQR.householderQ() * effects;
}
VectorXd resid = yy - fitted;
return resid.squaredNorm();
}
// least squares by QR decomposition with column pivoting
// return just the fitted values
// [[Rcpp::export]]
NumericVector calc_fitted_linreg_eigenqr(const NumericMatrix& X, const NumericVector& y,
const double tol=1e-12)
{
#ifndef RQTL2_NODEBUG
if(X.rows() != y.size())
throw std::invalid_argument("nrow(X) != length(y)");
#endif
const MatrixXd XX(as<Map<MatrixXd> >(X));
const VectorXd yy(as<Map<VectorXd> >(y));
typedef Eigen::ColPivHouseholderQR<MatrixXd> CPivQR;
typedef CPivQR::PermutationType Permutation;
const int n = XX.rows(), p = XX.cols();
CPivQR PQR ( XX );
PQR.setThreshold(tol); // set tolerance
Permutation Pmat = PQR.colsPermutation();
const int r = PQR.rank();
VectorXd fitted(n);
if(r == p) { // full rank
VectorXd betahat = PQR.solve(yy);
fitted = XX * betahat;
} else {
MatrixXd Rinv = PQR.matrixQR().topLeftCorner(r,r)
.triangularView<Upper>().solve(MatrixXd::Identity(r,r));
VectorXd effects = PQR.householderQ().adjoint() * yy;
effects.tail(n - r).setZero();
fitted = PQR.householderQ() * effects;
}
return wrap(fitted);
}
// least squares by "LLt" Cholesky decomposition, with matrix Y
// return vector of RSS
// [[Rcpp::export]]
NumericVector calc_mvrss_eigenchol(const NumericMatrix& X, const NumericMatrix& Y)
{
#ifndef RQTL2_NODEBUG
if(X.rows() != Y.rows())
throw std::invalid_argument("nrow(X) != length(y)");
#endif
const int ncolY = Y.cols();
const int ncolX = X.cols();
const MatrixXd XX(as<Map<MatrixXd> >(X));
const MatrixXd YY(as<Map<MatrixXd> >(Y));
LLT<MatrixXd> llt ( calc_XpX(XX) );
MatrixXd XXpY(XX.adjoint() * YY);
MatrixXd betahat(ncolX,ncolY);
for(int i=0; i<ncolY; i++)
betahat.col(i) = llt.solve(XXpY.col(i));
MatrixXd fitted = XX * betahat;
MatrixXd resid = YY - fitted;
NumericVector rss(wrap(resid.colwise().squaredNorm().transpose()));
return rss;
}
// least squares by QR decomposition with column pivoting, with matrix Y
// return vector of RSS
// [[Rcpp::export]]
NumericVector calc_mvrss_eigenqr(const NumericMatrix& X, const NumericMatrix& Y,
const double tol=1e-12)
{
#ifndef RQTL2_NODEBUG
if(X.rows() != Y.rows())
throw std::invalid_argument("nrow(X) != length(y)");
#endif
const MatrixXd XX(as<Map<MatrixXd> >(X));
const MatrixXd YY(as<Map<MatrixXd> >(Y));
typedef Eigen::ColPivHouseholderQR<MatrixXd> CPivQR;
typedef CPivQR::PermutationType Permutation;
const int n = XX.rows(), p = XX.cols();
const int k = YY.cols();
CPivQR PQR ( XX );
PQR.setThreshold(tol); // set tolerance
Permutation Pmat = PQR.colsPermutation();
const int r = PQR.rank();
MatrixXd fitted(n,k);
if(r == p) { // full rank
MatrixXd betahat(p,k);
for(int i=0; i<k; i++)
betahat.col(i) = PQR.solve(YY.col(i));
fitted = XX * betahat;
} else {
MatrixXd Rinv = PQR.matrixQR().topLeftCorner(r,r)
.triangularView<Upper>().solve(MatrixXd::Identity(r,r));
for(int i=0; i<k; i++) {
VectorXd effects = PQR.householderQ().adjoint() * YY.col(i);
effects.tail(n - r).setZero();
fitted.col(i) = PQR.householderQ() * effects;
}
}
MatrixXd resid = YY - fitted;
NumericVector rss(wrap(resid.colwise().squaredNorm().transpose()));
return rss;
}
// least squares by "LLt" Cholesky decomposition, with matrix Y
// return matrix of residuals
// [[Rcpp::export]]
NumericMatrix calc_resid_eigenchol(const NumericMatrix& X, const NumericMatrix& Y)
{
#ifndef RQTL2_NODEBUG
if(X.rows() != Y.rows())
throw std::invalid_argument("nrow(X) != length(y)");
#endif
const int ncolY = Y.cols();
const int ncolX = X.cols();
const MatrixXd XX(as<Map<MatrixXd> >(X));
const MatrixXd YY(as<Map<MatrixXd> >(Y));
LLT<MatrixXd> llt ( calc_XpX(XX) );
MatrixXd XXpY(XX.adjoint() * YY);
MatrixXd betahat(ncolX,ncolY);
for(int i=0; i<ncolY; i++)
betahat.col(i) = llt.solve(XXpY.col(i));
MatrixXd fitted = XX * betahat;
MatrixXd resid = YY - fitted;
NumericMatrix result(wrap(resid));
return result;
}
// least squares by QR decomposition with column pivoting, with matrix Y
// return matrix of residuals
// [[Rcpp::export]]
NumericMatrix calc_resid_eigenqr(const NumericMatrix& X, const NumericMatrix& Y,
const double tol=1e-12)
{
#ifndef RQTL2_NODEBUG
if(X.rows() != Y.rows())
throw std::invalid_argument("nrow(X) != length(y)");
#endif
const MatrixXd XX(as<Map<MatrixXd> >(X));
const MatrixXd YY(as<Map<MatrixXd> >(Y));
typedef Eigen::ColPivHouseholderQR<MatrixXd> CPivQR;
typedef CPivQR::PermutationType Permutation;
const int n = XX.rows(), p = XX.cols();
const int k = YY.cols();
CPivQR PQR ( XX );
PQR.setThreshold(tol); // set tolerance
Permutation Pmat = PQR.colsPermutation();
const int r = PQR.rank();
MatrixXd fitted(n,k);
if(r == p) { // full rank
MatrixXd betahat(p,k);
for(int i=0; i<k; i++)
betahat.col(i) = PQR.solve(YY.col(i));
fitted = XX * betahat;
} else {
MatrixXd Rinv = PQR.matrixQR().topLeftCorner(r,r)
.triangularView<Upper>().solve(MatrixXd::Identity(r,r));
for(int i=0; i<k; i++) {
VectorXd effects = PQR.householderQ().adjoint() * YY.col(i);
effects.tail(n - r).setZero();
fitted.col(i) = PQR.householderQ() * effects;
}
}
MatrixXd resid = YY - fitted;
NumericMatrix result(wrap(resid));
return result;
}