Aperol is a featherweight framework for configuration of Python objects based on dependency injection.
Requires Python >= 3.10.
Install Aperol from PyPI:
$ pip install aperol
Define a basic configuration file dummy.yaml
:
imports:
- random
a: -1
b.type: math.pi
c.type: uniform
d:
type: uniform()
a: 10
b: 11
Python objects are specified by the type
keyword.
In the example above, uniform
is resolved to the random
module specified in the imports
section.
On the other hand, pi
is explicitly imported
from the math
module.
Load the config file using Aperol and use the configured objects:
>>> import random
>>> random.seed(0) # seed set for reproducibility
>>> import aperol
>>> configured = aperol.parse_config("dummy.yaml")
>>> configured["a"]
-1
>>> configured["b"]
3.141592653589793
>>> configured["c"]
_DelayedConstructor(factory=<bound method Random.uniform of <random.Random object at ...>>, init=False, kwargs={'a': -1, 'b': 3.141592653589793})
>>> configured["d"]
10.844421851525048
>>> uniform = configured["c"]
>>> uniform()
2.1391383869735945
>>> uniform()
0.7418361694776736
Package imports can be specified in one of three ways:
- Within the config
imports
section, - passing
search_pkgs
toaperol.parse_config
, or - registering imports globally with
aperol.register_imports
In all three cases, each import must either be a string module name "X.Y"
corresponding to import X.Y
, or a tuple ("X.Y", "Z")
corresponding to import X.Y as Z
.
Configuration file locations can be registered using aperol.register_config_path
.
TODO (and TBC).
Aperol is inspired by Gin Config. In comparison to Gin, Aperol allows configuration to be define using YAML (or any format which can be parsed to a nested dict tree). Thus it does not require learning a completely new syntax. Aperol is also simpler and does not provide all of the functionality of Gin; however, it is powerful enough to configure any Python object enabling flexible configuration.