-
Notifications
You must be signed in to change notification settings - Fork 4
/
figure-elasticity-1d.py
69 lines (63 loc) · 2.34 KB
/
figure-elasticity-1d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2009 Nicolas Rougier - INRIA - CORTEX Project
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
# License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program. If not, see <http://www.gnu.org/licenses/>.
#
# Contact: CORTEX Project - INRIA
# INRIA Lorraine,
# Campus Scientifique, BP 239
# 54506 VANDOEUVRE-LES-NANCY CEDEX
# FRANCE
if __name__ == '__main__':
import numpy as np
import matplotlib
# matplotlib.use('Agg')
import matplotlib.pyplot as plt
from network import NG,SOM,DSOM
from distribution import uniform, normal, ring
n = 2
epochs = 2500
N = 2
#np.random.seed(123)
samples = uniform(n=N)
samples[:,0] = [0.0,1.0]
samples[:,1] = [0.5,0.5]
fig = plt.figure(figsize=(15,6))
p = 120
X,Y = np.zeros((p,)), np.zeros((p,))
lrate = 0.1
for s in [0.5,0.8,0.85,0.9,0.95]:
for i in range(p):
elasticity = 1.0 +i*(3.0/p)
np.random.seed(123)
dsom = DSOM((n,1,2), elasticity=elasticity, lrate=lrate)
#dsom.codebook[...] = [0.5,0.5]
dsom.codebook[0] = [s,0.5]
dsom.codebook[1] = [1-s,0.5]
dsom.learn(samples,epochs,show_progress=False)
x1,x2 = dsom.codebook[0,0][0], dsom.codebook[-1,0][0]
X[i],Y[i] = elasticity, 1-np.sqrt((x2-x1)**2)
print s, elasticity, Y[i]
plt.plot(X,Y,lw=2)
plt.legend((r'$x_0 = 1-y_0 = 0.50$',
r'$x_0 = 1-y_0 = 0.20$',
r'$x_0 = 1-y_0 = 0.15$',
r'$x_0 = 1-y_0 = 0.10$',
r'$x_0 = 1-y_0 = 0.05$'), 'upper right')
plt.xlabel('Elasticity', fontsize=16)
plt.ylabel('Error', fontsize=16)
plt.title('Error as a function of initial conditions and elasticity', fontsize=20)
plt.show()