-
Notifications
You must be signed in to change notification settings - Fork 957
/
Copy pathkdl_kinematics_plugin.cpp
568 lines (500 loc) · 22.3 KB
/
kdl_kinematics_plugin.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
/*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2012, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
/* Author: Sachin Chitta, David Lu!!, Ugo Cupcic */
#include <moveit/kdl_kinematics_plugin/kdl_kinematics_plugin.h>
#include <moveit/kdl_kinematics_plugin/chainiksolver_vel_mimic_svd.hpp>
#include <tf2_kdl/tf2_kdl.h>
#include <tf2/transform_datatypes.h>
#include <kdl_parser/kdl_parser.hpp>
#include <kdl/chainfksolverpos_recursive.hpp>
#include <kdl/frames_io.hpp>
#include <kdl/kinfam_io.hpp>
// register KDLKinematics as a KinematicsBase implementation
#include <class_loader/class_loader.hpp>
CLASS_LOADER_REGISTER_CLASS(kdl_kinematics_plugin::KDLKinematicsPlugin, kinematics::KinematicsBase)
namespace kdl_kinematics_plugin
{
KDLKinematicsPlugin::KDLKinematicsPlugin() : initialized_(false)
{
}
void KDLKinematicsPlugin::getRandomConfiguration(Eigen::VectorXd& jnt_array) const
{
state_->setToRandomPositions(joint_model_group_);
state_->copyJointGroupPositions(joint_model_group_, &jnt_array[0]);
}
void KDLKinematicsPlugin::getRandomConfiguration(const Eigen::VectorXd& seed_state,
const std::vector<double>& consistency_limits,
Eigen::VectorXd& jnt_array) const
{
joint_model_group_->getVariableRandomPositionsNearBy(state_->getRandomNumberGenerator(), &jnt_array[0],
&seed_state[0], consistency_limits);
}
bool KDLKinematicsPlugin::checkConsistency(const Eigen::VectorXd& seed_state,
const std::vector<double>& consistency_limits,
const Eigen::VectorXd& solution) const
{
for (std::size_t i = 0; i < dimension_; ++i)
if (fabs(seed_state(i) - solution(i)) > consistency_limits[i])
return false;
return true;
}
void KDLKinematicsPlugin::getJointWeights()
{
const std::vector<std::string>& active_names = joint_model_group_->getActiveJointModelNames();
std::vector<std::string> names;
std::vector<double> weights;
if (lookupParam("joint_weights/weights", weights, weights))
{
if (!lookupParam("joint_weights/names", names, names) || names.size() != weights.size())
{
ROS_ERROR_NAMED("kdl", "Expecting list parameter joint_weights/names of same size as list joint_weights/weights");
// fall back to default weights
weights.clear();
}
}
else if (lookupParam("joint_weights", weights, weights)) // try reading weight lists (for all active joints) directly
{
std::size_t num_active = active_names.size();
if (weights.size() == num_active)
{
joint_weights_ = weights;
return;
}
else if (!weights.empty())
{
ROS_ERROR_NAMED("kdl", "Expecting parameter joint_weights to list weights for all active joints (%zu) in order",
num_active);
// fall back to default weights
weights.clear();
}
}
// by default assign weights of 1.0 to all joints
joint_weights_ = std::vector<double>(active_names.size(), 1.0);
if (weights.empty()) // indicates default case
return;
// modify weights of listed joints
assert(names.size() == weights.size());
for (size_t i = 0; i != names.size(); ++i)
{
auto it = std::find(active_names.begin(), active_names.end(), names[i]);
if (it == active_names.cend())
ROS_WARN_NAMED("kdl", "Joint '%s' is not an active joint in group '%s'", names[i].c_str(),
joint_model_group_->getName().c_str());
else if (weights[i] < 0.0)
ROS_WARN_NAMED("kdl", "Negative weight %f for joint '%s' will be ignored", weights[i], names[i].c_str());
else
joint_weights_[it - active_names.begin()] = weights[i];
}
ROS_INFO_STREAM_NAMED("kdl", "Joint weights for group '"
<< getGroupName() << "': \n"
<< Eigen::Map<const Eigen::VectorXd>(joint_weights_.data(), joint_weights_.size())
.transpose());
}
bool KDLKinematicsPlugin::initialize(const moveit::core::RobotModel& robot_model, const std::string& group_name,
const std::string& base_frame, const std::vector<std::string>& tip_frames,
double search_discretization)
{
storeValues(robot_model, group_name, base_frame, tip_frames, search_discretization);
joint_model_group_ = robot_model_->getJointModelGroup(group_name);
if (!joint_model_group_)
return false;
if (!joint_model_group_->isChain())
{
ROS_ERROR_NAMED("kdl", "Group '%s' is not a chain", group_name.c_str());
return false;
}
if (!joint_model_group_->isSingleDOFJoints())
{
ROS_ERROR_NAMED("kdl", "Group '%s' includes joints that have more than 1 DOF", group_name.c_str());
return false;
}
KDL::Tree kdl_tree;
if (!kdl_parser::treeFromUrdfModel(*robot_model.getURDF(), kdl_tree))
{
ROS_ERROR_NAMED("kdl", "Could not initialize tree object");
return false;
}
if (!kdl_tree.getChain(base_frame_, getTipFrame(), kdl_chain_))
{
ROS_ERROR_NAMED("kdl", "Could not initialize chain object");
return false;
}
dimension_ = joint_model_group_->getActiveJointModels().size() + joint_model_group_->getMimicJointModels().size();
for (std::size_t i = 0; i < joint_model_group_->getJointModels().size(); ++i)
{
if (joint_model_group_->getJointModels()[i]->getType() == moveit::core::JointModel::REVOLUTE ||
joint_model_group_->getJointModels()[i]->getType() == moveit::core::JointModel::PRISMATIC)
{
solver_info_.joint_names.push_back(joint_model_group_->getJointModelNames()[i]);
const std::vector<moveit_msgs::JointLimits>& jvec =
joint_model_group_->getJointModels()[i]->getVariableBoundsMsg();
solver_info_.limits.insert(solver_info_.limits.end(), jvec.begin(), jvec.end());
}
}
if (!joint_model_group_->hasLinkModel(getTipFrame()))
{
ROS_ERROR_NAMED("kdl", "Could not find tip name in joint group '%s'", group_name.c_str());
return false;
}
solver_info_.link_names.push_back(getTipFrame());
joint_min_.resize(solver_info_.limits.size());
joint_max_.resize(solver_info_.limits.size());
for (unsigned int i = 0; i < solver_info_.limits.size(); i++)
{
joint_min_(i) = solver_info_.limits[i].min_position;
joint_max_(i) = solver_info_.limits[i].max_position;
}
// Get Solver Parameters
lookupParam("max_solver_iterations", max_solver_iterations_, 500);
lookupParam("epsilon", epsilon_, 1e-5);
lookupParam("orientation_vs_position", orientation_vs_position_weight_, 1.0);
bool position_ik;
lookupParam("position_only_ik", position_ik, false);
if (position_ik) // position_only_ik overrules orientation_vs_position
orientation_vs_position_weight_ = 0.0;
if (orientation_vs_position_weight_ == 0.0)
ROS_INFO_NAMED("kdl", "Using position only ik");
getJointWeights();
// Check for mimic joints
unsigned int joint_counter = 0;
for (std::size_t i = 0; i < kdl_chain_.getNrOfSegments(); ++i)
{
const moveit::core::JointModel* jm = robot_model_->getJointModel(kdl_chain_.segments[i].getJoint().getName());
// first check whether it belongs to the set of active joints in the group
if (jm->getMimic() == nullptr && jm->getVariableCount() > 0)
{
JointMimic mimic_joint;
mimic_joint.reset(joint_counter);
mimic_joint.joint_name = kdl_chain_.segments[i].getJoint().getName();
mimic_joint.active = true;
mimic_joints_.push_back(mimic_joint);
++joint_counter;
continue;
}
if (joint_model_group_->hasJointModel(jm->getName()))
{
if (jm->getMimic() && joint_model_group_->hasJointModel(jm->getMimic()->getName()))
{
JointMimic mimic_joint;
mimic_joint.joint_name = kdl_chain_.segments[i].getJoint().getName();
mimic_joint.offset = jm->getMimicOffset();
mimic_joint.multiplier = jm->getMimicFactor();
mimic_joints_.push_back(mimic_joint);
continue;
}
}
}
for (JointMimic& mimic_joint : mimic_joints_)
{
if (!mimic_joint.active)
{
const moveit::core::JointModel* joint_model =
joint_model_group_->getJointModel(mimic_joint.joint_name)->getMimic();
for (JointMimic& mimic_joint_recal : mimic_joints_)
{
if (mimic_joint_recal.joint_name == joint_model->getName())
{
mimic_joint.map_index = mimic_joint_recal.map_index;
}
}
}
}
// Setup the joint state groups that we need
state_.reset(new moveit::core::RobotState(robot_model_));
fk_solver_.reset(new KDL::ChainFkSolverPos_recursive(kdl_chain_));
initialized_ = true;
ROS_DEBUG_NAMED("kdl", "KDL solver initialized");
return true;
}
bool KDLKinematicsPlugin::timedOut(const ros::WallTime& start_time, double duration) const
{
return ((ros::WallTime::now() - start_time).toSec() >= duration);
}
bool KDLKinematicsPlugin::getPositionIK(const geometry_msgs::Pose& ik_pose, const std::vector<double>& ik_seed_state,
std::vector<double>& solution, moveit_msgs::MoveItErrorCodes& error_code,
const kinematics::KinematicsQueryOptions& options) const
{
std::vector<double> consistency_limits;
// limit search to a single attempt by setting a timeout of zero
return searchPositionIK(ik_pose, ik_seed_state, 0.0, consistency_limits, solution, IKCallbackFn(), error_code,
options);
}
bool KDLKinematicsPlugin::searchPositionIK(const geometry_msgs::Pose& ik_pose, const std::vector<double>& ik_seed_state,
double timeout, std::vector<double>& solution,
moveit_msgs::MoveItErrorCodes& error_code,
const kinematics::KinematicsQueryOptions& options) const
{
std::vector<double> consistency_limits;
return searchPositionIK(ik_pose, ik_seed_state, timeout, consistency_limits, solution, IKCallbackFn(), error_code,
options);
}
bool KDLKinematicsPlugin::searchPositionIK(const geometry_msgs::Pose& ik_pose, const std::vector<double>& ik_seed_state,
double timeout, const std::vector<double>& consistency_limits,
std::vector<double>& solution, moveit_msgs::MoveItErrorCodes& error_code,
const kinematics::KinematicsQueryOptions& options) const
{
return searchPositionIK(ik_pose, ik_seed_state, timeout, consistency_limits, solution, IKCallbackFn(), error_code,
options);
}
bool KDLKinematicsPlugin::searchPositionIK(const geometry_msgs::Pose& ik_pose, const std::vector<double>& ik_seed_state,
double timeout, std::vector<double>& solution,
const IKCallbackFn& solution_callback,
moveit_msgs::MoveItErrorCodes& error_code,
const kinematics::KinematicsQueryOptions& options) const
{
std::vector<double> consistency_limits;
return searchPositionIK(ik_pose, ik_seed_state, timeout, consistency_limits, solution, solution_callback, error_code,
options);
}
bool KDLKinematicsPlugin::searchPositionIK(const geometry_msgs::Pose& ik_pose, const std::vector<double>& ik_seed_state,
double timeout, const std::vector<double>& consistency_limits,
std::vector<double>& solution, const IKCallbackFn& solution_callback,
moveit_msgs::MoveItErrorCodes& error_code,
const kinematics::KinematicsQueryOptions& options) const
{
ros::WallTime start_time = ros::WallTime::now();
if (!initialized_)
{
ROS_ERROR_NAMED("kdl", "kinematics solver not initialized");
error_code.val = error_code.NO_IK_SOLUTION;
return false;
}
if (ik_seed_state.size() != dimension_)
{
ROS_ERROR_STREAM_NAMED("kdl", "Seed state must have size " << dimension_ << " instead of size "
<< ik_seed_state.size());
error_code.val = error_code.NO_IK_SOLUTION;
return false;
}
// Resize consistency limits to remove mimic joints
std::vector<double> consistency_limits_mimic;
if (!consistency_limits.empty())
{
if (consistency_limits.size() != dimension_)
{
ROS_ERROR_STREAM_NAMED("kdl", "Consistency limits must be empty or have size "
<< dimension_ << " instead of size " << consistency_limits.size());
error_code.val = error_code.NO_IK_SOLUTION;
return false;
}
for (std::size_t i = 0; i < dimension_; ++i)
{
if (mimic_joints_[i].active)
consistency_limits_mimic.push_back(consistency_limits[i]);
}
}
Eigen::Matrix<double, 6, 1> cartesian_weights;
cartesian_weights.topRows<3>().setConstant(1.0);
cartesian_weights.bottomRows<3>().setConstant(orientation_vs_position_weight_);
KDL::JntArray jnt_seed_state(dimension_);
KDL::JntArray jnt_pos_in(dimension_);
KDL::JntArray jnt_pos_out(dimension_);
jnt_seed_state.data = Eigen::Map<const Eigen::VectorXd>(ik_seed_state.data(), ik_seed_state.size());
jnt_pos_in = jnt_seed_state;
KDL::ChainIkSolverVelMimicSVD ik_solver_vel(kdl_chain_, mimic_joints_, orientation_vs_position_weight_ == 0.0);
solution.resize(dimension_);
KDL::Frame pose_desired;
tf2::fromMsg(ik_pose, pose_desired);
ROS_DEBUG_STREAM_NAMED("kdl", "searchPositionIK: Position request pose is "
<< ik_pose.position.x << " " << ik_pose.position.y << " " << ik_pose.position.z
<< " " << ik_pose.orientation.x << " " << ik_pose.orientation.y << " "
<< ik_pose.orientation.z << " " << ik_pose.orientation.w);
unsigned int attempt = 0;
do
{
++attempt;
if (attempt > 1) // randomly re-seed after first attempt
{
if (!consistency_limits_mimic.empty())
getRandomConfiguration(jnt_seed_state.data, consistency_limits_mimic, jnt_pos_in.data);
else
getRandomConfiguration(jnt_pos_in.data);
ROS_DEBUG_STREAM_NAMED("kdl", "New random configuration (" << attempt << "): " << jnt_pos_in);
}
int ik_valid =
CartToJnt(ik_solver_vel, jnt_pos_in, pose_desired, jnt_pos_out, max_solver_iterations_,
Eigen::Map<const Eigen::VectorXd>(joint_weights_.data(), joint_weights_.size()), cartesian_weights);
if (ik_valid == 0 || options.return_approximate_solution) // found acceptable solution
{
if (!consistency_limits_mimic.empty() &&
!checkConsistency(jnt_seed_state.data, consistency_limits_mimic, jnt_pos_out.data))
continue;
Eigen::Map<Eigen::VectorXd>(solution.data(), solution.size()) = jnt_pos_out.data;
if (!solution_callback.empty())
{
solution_callback(ik_pose, solution, error_code);
if (error_code.val != error_code.SUCCESS)
continue;
}
// solution passed consistency check and solution callback
error_code.val = error_code.SUCCESS;
ROS_DEBUG_STREAM_NAMED("kdl", "Solved after " << (ros::WallTime::now() - start_time).toSec() << " < " << timeout
<< "s and " << attempt << " attempts");
return true;
}
} while (!timedOut(start_time, timeout));
ROS_DEBUG_STREAM_NAMED("kdl", "IK timed out after " << (ros::WallTime::now() - start_time).toSec() << " > " << timeout
<< "s and " << attempt << " attempts");
error_code.val = error_code.TIMED_OUT;
return false;
}
// NOLINTNEXTLINE(readability-identifier-naming)
int KDLKinematicsPlugin::CartToJnt(KDL::ChainIkSolverVelMimicSVD& ik_solver, const KDL::JntArray& q_init,
const KDL::Frame& p_in, KDL::JntArray& q_out, const unsigned int max_iter,
const Eigen::VectorXd& joint_weights, const Twist& cartesian_weights) const
{
double last_delta_twist_norm = DBL_MAX;
double step_size = 1.0;
KDL::Frame f;
KDL::Twist delta_twist;
KDL::JntArray delta_q(q_out.rows()), q_backup(q_out.rows());
Eigen::ArrayXd extra_joint_weights(joint_weights.rows());
extra_joint_weights.setOnes();
q_out = q_init;
ROS_DEBUG_STREAM_NAMED("kdl", "Input: " << q_init);
unsigned int i;
bool success = false;
for (i = 0; i < max_iter; ++i)
{
fk_solver_->JntToCart(q_out, f);
delta_twist = diff(f, p_in);
ROS_DEBUG_STREAM_NAMED("kdl", "[" << std::setw(3) << i << "] delta_twist: " << delta_twist);
// check norms of position and orientation errors
const double position_error = delta_twist.vel.Norm();
const double orientation_error = ik_solver.isPositionOnly() ? 0 : delta_twist.rot.Norm();
const double delta_twist_norm = std::max(position_error, orientation_error);
if (delta_twist_norm <= epsilon_)
{
success = true;
break;
}
if (delta_twist_norm >= last_delta_twist_norm)
{
// if the error increased, we are close to a singularity -> reduce step size
double old_step_size = step_size;
step_size *= std::min(0.2, last_delta_twist_norm / delta_twist_norm); // reduce scale;
KDL::Multiply(delta_q, step_size / old_step_size, delta_q);
ROS_DEBUG_NAMED("kdl", " error increased: %f -> %f, scale: %f", last_delta_twist_norm, delta_twist_norm,
step_size);
q_out = q_backup; // restore previous unclipped joint values
}
else
{
q_backup = q_out; // remember joint values of last successful step
step_size = 1.0; // reset step size
last_delta_twist_norm = delta_twist_norm;
ik_solver.CartToJnt(q_out, delta_twist, delta_q, extra_joint_weights * joint_weights.array(), cartesian_weights);
}
clipToJointLimits(q_out, delta_q, extra_joint_weights);
const double delta_q_norm = delta_q.data.lpNorm<1>();
ROS_DEBUG_NAMED("kdl", "[%3d] pos err: %f rot err: %f delta_q: %f", i, position_error, orientation_error,
delta_q_norm);
if (delta_q_norm < epsilon_) // stuck in singularity
{
if (step_size < epsilon_) // cannot reach target
break;
// wiggle joints
last_delta_twist_norm = DBL_MAX;
delta_q.data.setRandom();
delta_q.data *= std::min(0.1, delta_twist_norm);
clipToJointLimits(q_out, delta_q, extra_joint_weights);
extra_joint_weights.setOnes();
}
KDL::Add(q_out, delta_q, q_out);
ROS_DEBUG_STREAM_NAMED("kdl", " delta_q: " << delta_q);
ROS_DEBUG_STREAM_NAMED("kdl", " q: " << q_out);
}
int result = (i == max_iter) ? -3 : (success ? 0 : -2);
ROS_DEBUG_STREAM_NAMED("kdl", "Result " << result << " after " << i << " iterations: " << q_out);
return result;
}
void KDLKinematicsPlugin::clipToJointLimits(const KDL::JntArray& q, KDL::JntArray& q_delta,
Eigen::ArrayXd& weighting) const
{
weighting.setOnes();
for (std::size_t i = 0; i < q.rows(); ++i)
{
const double delta_max = joint_max_(i) - q(i);
const double delta_min = joint_min_(i) - q(i);
if (q_delta(i) > delta_max)
q_delta(i) = delta_max;
else if (q_delta(i) < delta_min)
q_delta(i) = delta_min;
else
continue;
weighting[mimic_joints_[i].map_index] = 0.01;
}
}
bool KDLKinematicsPlugin::getPositionFK(const std::vector<std::string>& link_names,
const std::vector<double>& joint_angles,
std::vector<geometry_msgs::Pose>& poses) const
{
if (!initialized_)
{
ROS_ERROR_NAMED("kdl", "kinematics solver not initialized");
return false;
}
poses.resize(link_names.size());
if (joint_angles.size() != dimension_)
{
ROS_ERROR_NAMED("kdl", "Joint angles vector must have size: %d", dimension_);
return false;
}
KDL::Frame p_out;
KDL::JntArray jnt_pos_in(dimension_);
jnt_pos_in.data = Eigen::Map<const Eigen::VectorXd>(joint_angles.data(), joint_angles.size());
bool valid = true;
for (unsigned int i = 0; i < poses.size(); i++)
{
if (fk_solver_->JntToCart(jnt_pos_in, p_out) >= 0)
{
poses[i] = tf2::toMsg(p_out);
}
else
{
ROS_ERROR_NAMED("kdl", "Could not compute FK for %s", link_names[i].c_str());
valid = false;
}
}
return valid;
}
const std::vector<std::string>& KDLKinematicsPlugin::getJointNames() const
{
return solver_info_.joint_names;
}
const std::vector<std::string>& KDLKinematicsPlugin::getLinkNames() const
{
return solver_info_.link_names;
}
} // namespace kdl_kinematics_plugin