-
Notifications
You must be signed in to change notification settings - Fork 62
/
train.py
185 lines (158 loc) · 8.44 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import tensorflow as tf
import numpy as np
import os
import datetime
import time
from text_cnn import TextCNN
import data_helpers
import utils
from configure import FLAGS
from sklearn.metrics import f1_score
import warnings
import sklearn.exceptions
warnings.filterwarnings("ignore", category=sklearn.exceptions.UndefinedMetricWarning)
def train():
with tf.device('/cpu:0'):
x_text, y, pos1, pos2 = data_helpers.load_data_and_labels(FLAGS.train_path)
# Build vocabulary
# Example: x_text[3] = "A misty <e1>ridge</e1> uprises from the <e2>surge</e2>."
# ['a misty ridge uprises from the surge <UNK> <UNK> ... <UNK>']
# =>
# [27 39 40 41 42 1 43 0 0 ... 0]
# dimension = FLAGS.max_sentence_length
text_vocab_processor = tf.contrib.learn.preprocessing.VocabularyProcessor(FLAGS.max_sentence_length)
x = np.array(list(text_vocab_processor.fit_transform(x_text)))
print("Text Vocabulary Size: {:d}".format(len(text_vocab_processor.vocabulary_)))
print("x = {0}".format(x.shape))
print("y = {0}".format(y.shape))
print("")
# Example: pos1[3] = [-2 -1 0 1 2 3 4 999 999 999 ... 999]
# [95 96 97 98 99 100 101 999 999 999 ... 999]
# =>
# [11 12 13 14 15 16 21 17 17 17 ... 17]
# dimension = MAX_SENTENCE_LENGTH
pos_vocab_processor = tf.contrib.learn.preprocessing.VocabularyProcessor(FLAGS.max_sentence_length)
pos_vocab_processor.fit(pos1 + pos2)
p1 = np.array(list(pos_vocab_processor.transform(pos1)))
p2 = np.array(list(pos_vocab_processor.transform(pos2)))
print("Position Vocabulary Size: {:d}".format(len(pos_vocab_processor.vocabulary_)))
print("position_1 = {0}".format(p1.shape))
print("position_2 = {0}".format(p2.shape))
print("")
# Randomly shuffle data to split into train and test(dev)
np.random.seed(10)
shuffle_indices = np.random.permutation(np.arange(len(y)))
x_shuffled = x[shuffle_indices]
p1_shuffled = p1[shuffle_indices]
p2_shuffled = p2[shuffle_indices]
y_shuffled = y[shuffle_indices]
# Split train/test set
# TODO: This is very crude, should use cross-validation
dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))
x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]
p1_train, p1_dev = p1_shuffled[:dev_sample_index], p1_shuffled[dev_sample_index:]
p2_train, p2_dev = p2_shuffled[:dev_sample_index], p2_shuffled[dev_sample_index:]
y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]
print("Train/Dev split: {:d}/{:d}\n".format(len(y_train), len(y_dev)))
with tf.Graph().as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=FLAGS.allow_soft_placement,
log_device_placement=FLAGS.log_device_placement)
session_conf.gpu_options.allow_growth = FLAGS.gpu_allow_growth
sess = tf.Session(config=session_conf)
with sess.as_default():
cnn = TextCNN(
sequence_length=x_train.shape[1],
num_classes=y_train.shape[1],
text_vocab_size=len(text_vocab_processor.vocabulary_),
text_embedding_size=FLAGS.text_embedding_dim,
pos_vocab_size=len(pos_vocab_processor.vocabulary_),
pos_embedding_size=FLAGS.pos_embedding_dim,
filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))),
num_filters=FLAGS.num_filters,
l2_reg_lambda=FLAGS.l2_reg_lambda)
# Define Training procedure
global_step = tf.Variable(0, name="global_step", trainable=False)
optimizer = tf.train.AdadeltaOptimizer(FLAGS.learning_rate, FLAGS.decay_rate, 1e-6)
gvs = optimizer.compute_gradients(cnn.loss)
capped_gvs = [(tf.clip_by_value(grad, -1.0, 1.0), var) for grad, var in gvs]
train_op = optimizer.apply_gradients(capped_gvs, global_step=global_step)
# Output directory for models and summaries
timestamp = str(int(time.time()))
out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
print("Writing to {}\n".format(out_dir))
# Summaries for loss and accuracy
loss_summary = tf.summary.scalar("loss", cnn.loss)
acc_summary = tf.summary.scalar("accuracy", cnn.accuracy)
# Train Summaries
train_summary_op = tf.summary.merge([loss_summary, acc_summary])
train_summary_dir = os.path.join(out_dir, "summaries", "train")
train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)
# Dev summaries
dev_summary_op = tf.summary.merge([loss_summary, acc_summary])
dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph)
# Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)
# Write vocabulary
text_vocab_processor.save(os.path.join(out_dir, "text_vocab"))
pos_vocab_processor.save(os.path.join(out_dir, "pos_vocab"))
# Initialize all variables
sess.run(tf.global_variables_initializer())
# Pre-trained word2vec
if FLAGS.embedding_path:
pretrain_W = utils.load_word2vec(FLAGS.embedding_path, FLAGS.text_embedding_dim, text_vocab_processor)
sess.run(cnn.W_text.assign(pretrain_W))
print("Success to load pre-trained word2vec model!\n")
# Generate batches
batches = data_helpers.batch_iter(list(zip(x_train, p1_train, p2_train, y_train)),
FLAGS.batch_size, FLAGS.num_epochs)
# Training loop. For each batch...
best_f1 = 0.0 # For save checkpoint(model)
for batch in batches:
x_batch, p1_batch, p2_batch, y_batch = zip(*batch)
# Train
feed_dict = {
cnn.input_text: x_batch,
cnn.input_p1: p1_batch,
cnn.input_p2: p2_batch,
cnn.input_y: y_batch,
cnn.dropout_keep_prob: FLAGS.dropout_keep_prob
}
_, step, summaries, loss, accuracy = sess.run(
[train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy], feed_dict)
train_summary_writer.add_summary(summaries, step)
# Training log display
if step % FLAGS.display_every == 0:
time_str = datetime.datetime.now().isoformat()
print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
# Evaluation
if step % FLAGS.evaluate_every == 0:
print("\nEvaluation:")
feed_dict = {
cnn.input_text: x_dev,
cnn.input_p1: p1_dev,
cnn.input_p2: p2_dev,
cnn.input_y: y_dev,
cnn.dropout_keep_prob: 1.0
}
summaries, loss, accuracy, predictions = sess.run(
[dev_summary_op, cnn.loss, cnn.accuracy, cnn.predictions], feed_dict)
dev_summary_writer.add_summary(summaries, step)
time_str = datetime.datetime.now().isoformat()
f1 = f1_score(np.argmax(y_dev, axis=1), predictions, labels=np.array(range(1, 19)), average="macro")
print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
print("[UNOFFICIAL] (2*9+1)-Way Macro-Average F1 Score (excluding Other): {:g}\n".format(f1))
# Model checkpoint
if best_f1 < f1:
best_f1 = f1
path = saver.save(sess, checkpoint_prefix + "-{:.3g}".format(best_f1), global_step=step)
print("Saved model checkpoint to {}\n".format(path))
def main(_):
train()
if __name__ == "__main__":
tf.app.run()