forked from hunkim/DeepLearningZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lab-10-1-mnist_softmax.py
92 lines (73 loc) · 2.49 KB
/
lab-10-1-mnist_softmax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Lab 7 Learning rate and Evaluation
import tensorflow as tf
import matplotlib.pyplot as plt
import random
from tensorflow.examples.tutorials.mnist import input_data
tf.set_random_seed(777) # reproducibility
# Check out https://www.tensorflow.org/get_started/mnist/beginners for
# more information about the mnist dataset
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# input place holders
X = tf.placeholder(tf.float32, [None, 784])
Y = tf.placeholder(tf.float32, [None, 10])
# weights & bias for nn layers
W = tf.Variable(tf.random_normal([784, 10]))
b = tf.Variable(tf.random_normal([10]))
# parameters
learning_rate = 0.001
batch_size = 100
num_epochs = 50
num_iterations = int(mnist.train.num_examples / batch_size)
hypothesis = tf.matmul(X, W) + b
# define cost/loss & optimizer
cost = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits_v2(
logits=hypothesis, labels=tf.stop_gradient(Y)
)
)
train = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
correct_prediction = tf.equal(tf.argmax(hypothesis, axis=1), tf.argmax(Y, axis=1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# train my model
with tf.Session() as sess:
# initialize
sess.run(tf.global_variables_initializer())
for epoch in range(num_epochs):
avg_cost = 0
for iteration in range(num_iterations):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
_, cost_val = sess.run([train, cost], feed_dict={X: batch_xs, Y: batch_ys})
avg_cost += cost_val / num_iterations
print(f"Epoch: {(epoch + 1):04d}, Cost: {avg_cost:.9f}")
print("Learning Finished!")
# Test model and check accuracy
print(
"Accuracy:",
sess.run(accuracy, feed_dict={X: mnist.test.images, Y: mnist.test.labels}),
)
# Get one and predict
r = random.randint(0, mnist.test.num_examples - 1)
print("Label: ", sess.run(tf.argmax(mnist.test.labels[r : r + 1], axis=1)))
print(
"Prediction: ",
sess.run(
tf.argmax(hypothesis, axis=1), feed_dict={X: mnist.test.images[r : r + 1]}
),
)
plt.imshow(
mnist.test.images[r : r + 1].reshape(28, 28),
cmap="Greys",
interpolation="nearest",
)
plt.show()
'''
Epoch: 0001 Cost: 5.745170949
Epoch: 0002 Cost: 1.780056722
Epoch: 0003 Cost: 1.122778654
...
Epoch: 0048 Cost: 0.271918680
Epoch: 0049 Cost: 0.270640434
Epoch: 0050 Cost: 0.269054370
Learning Finished!
Accuracy: 0.9194
'''