forked from webnautes/nudapeu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1378-1
258 lines (165 loc) · 5.44 KB
/
1378-1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import cv2 as cv
import numpy as np
import os
def detect(img, cascade):
rects = cascade.detectMultiScale(img, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30),
flags=cv.CASCADE_SCALE_IMAGE)
if len(rects) == 0:
return []
rects[:,2:] += rects[:,:2]
return rects
def removeFaceAra(img, cascade):
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
gray = cv.equalizeHist(gray)
rect = detect(gray, cascade)
return rect
def findMaxArea(contours):
max_contour = None
max_area = -1
for contour in contours:
area = cv.contourArea(contour)
x,y,w,h = cv.boundingRect(contour)
if (w*h)*0.4 > area:
continue
if w > h:
continue
if area > max_area:
max_area = area
max_contour = contour
if max_area < 10000:
max_area = -1
return max_area, max_contour
def distanceBetweenTwoPoints(start, end):
x1,y1 = start
x2,y2 = end
return int(np.sqrt(pow(x1 - x2, 2) + pow(y1 - y2, 2)))
def calculateAngle(A, B):
A_norm = np.linalg.norm(A)
B_norm = np.linalg.norm(B)
C = np.dot(A,B)
angle = np.arccos(C/(A_norm*B_norm))*180/np.pi
return angle
def getFingerPosition(max_contour, img_result, debug):
points1 = []
# STEP 6-1
M = cv.moments(max_contour)
cx = int(M['m10']/M['m00'])
cy = int(M['m01']/M['m00'])
max_contour = cv.approxPolyDP(max_contour,0.02*cv.arcLength(max_contour,True),True)
hull = cv.convexHull(max_contour)
for point in hull:
if cy > point[0][1]:
points1.append(tuple(point[0]))
if debug:
cv.drawContours(img_result, [hull], 0, (0,255,0), 2)
for point in points1:
cv.circle(img_result, tuple(point), 15, [ 0, 0, 0], -1)
# STEP 6-2
hull = cv.convexHull(max_contour, returnPoints=False)
defects = cv.convexityDefects(max_contour, hull)
if defects is None:
return -1,None
points2=[]
for i in range(defects.shape[0]):
s,e,f,d = defects[i, 0]
start = tuple(max_contour[s][0])
end = tuple(max_contour[e][0])
far = tuple(max_contour[f][0])
angle = calculateAngle( np.array(start) - np.array(far), np.array(end) - np.array(far))
if angle < 90:
if start[1] < cy:
points2.append(start)
if end[1] < cy:
points2.append(end)
if debug:
cv.drawContours(img_result, [max_contour], 0, (255, 0, 255), 2)
for point in points2:
cv.circle(img_result, tuple(point), 20, [ 0, 255, 0], 5)
# STEP 6-3
points = points1 + points2
points = list(set(points))
# STEP 6-4
new_points = []
for p0 in points:
i = -1
for index,c0 in enumerate(max_contour):
c0 = tuple(c0[0])
if p0 == c0 or distanceBetweenTwoPoints(p0,c0)<20:
i = index
break
if i >= 0:
pre = i - 1
if pre < 0:
pre = max_contour[len(max_contour)-1][0]
else:
pre = max_contour[i-1][0]
next = i + 1
if next > len(max_contour)-1:
next = max_contour[0][0]
else:
next = max_contour[i+1][0]
if isinstance(pre, np.ndarray):
pre = tuple(pre.tolist())
if isinstance(next, np.ndarray):
next = tuple(next.tolist())
angle = calculateAngle( np.array(pre) - np.array(p0), np.array(next) - np.array(p0))
if angle < 90:
new_points.append(p0)
return 1,new_points
def process(img_bgr, img_binary, debug):
img_result = img_bgr.copy()
# # STEP 1
# img_bgr = removeFaceAra(img_bgr, cascade)
# # STEP 2
# img_binary = make_mask_image(img_bgr)
# # STEP 3
# kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (5, 5))
# img_binary = cv.morphologyEx(img_binary, cv.MORPH_CLOSE, kernel, 1)
# if debug:
# cv.imshow("Binary", img_binary)
# STEP 4
contours, hierarchy = cv.findContours(img_binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
if debug:
for cnt in contours:
cv.drawContours(img_result, [cnt], 0, (255, 0, 0), 3)
# STEP 5
max_area, max_contour = findMaxArea(contours)
if max_area == -1:
return img_result
if debug:
cv.drawContours(img_result, [max_contour], 0, (0, 0, 255), 3)
# STEP 6
ret,points = getFingerPosition(max_contour, img_result, debug)
# STEP 7
if ret > 0 and len(points) > 0:
for point in points:
cv.circle(img_result, point, 20, [ 255, 0, 255], 5)
return img_result
current_file_path = os.path.dirname(os.path.realpath(__file__))
cascade = cv.CascadeClassifier(cv.samples.findFile(current_file_path + "\haarcascade_frontalface_alt.xml"))
cap = cv.VideoCapture('hand.avi')
# http://layer0.authentise.com/segment-background-using-computer-vision.html
fgbg = cv.createBackgroundSubtractorMOG2(varThreshold=200, detectShadows=0)
index = 0
while(1):
index = index + 1
ret, frame = cap.read()
if ret == False:
break;
frame = cv.flip(frame, 1)
blur = cv.GaussianBlur(frame, (5,5), 0)
rect = removeFaceAra(frame, cascade)
fgmask = fgbg.apply(blur, learningRate=0)
kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (5, 5))
fgmask = cv.morphologyEx(fgmask, cv.MORPH_CLOSE, kernel, 2)
height,width = frame.shape[:2]
for x1, y1, x2, y2 in rect:
cv.rectangle(fgmask, (x1-10, 0), (x2+10, height), (0,0,0), -1)
img_result = process(frame, fgmask, debug=False)
cv.imshow('mask', fgmask)
cv.imshow('result', img_result)
key = cv.waitKey(30) & 0xff
if key == 27:
break
cap.release()
cv.destroyAllWindows()