-
Notifications
You must be signed in to change notification settings - Fork 16
/
create_my_record.py
150 lines (123 loc) · 5.18 KB
/
create_my_record.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Converts PASCAL VOC 2012 data to TFRecord file format with Example protos.
PASCAL VOC 2012 dataset is expected to have the following directory structure:
+ pascal_voc_seg
- build_data.py
- build_voc2012_data.py (current working directory).
+ VOCdevkit
+ VOC2012
+ JPEGImages
+ SegmentationClass
+ ImageSets
+ Segmentation
+ tfrecord
Image folder:
./VOCdevkit/VOC2012/JPEGImages
Semantic segmentation annotations:
./VOCdevkit/VOC2012/SegmentationClass
list folder:
./VOCdevkit/VOC2012/ImageSets/Segmentation
This script converts data into sharded data files and save at tfrecord folder.
The Example proto contains the following fields:
image/encoded: encoded image content.
image/filename: image filename.
image/format: image file format.
image/height: image height.
image/width: image width.
image/channels: image channels.
image/segmentation/class/encoded: encoded semantic segmentation content.
image/segmentation/class/format: semantic segmentation file format.
"""
import math
import os.path
import sys
import build_data
import tensorflow as tf
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('image_folder',
'./VOCdevkit/VOC2012/JPEGImages',
'Folder containing images.')
tf.app.flags.DEFINE_string('region_folder',
'./VOCdevkit/VOC2012/JPEGImages',
'Folder containing images.')
tf.app.flags.DEFINE_string(
'semantic_segmentation_folder',
'./VOCdevkit/VOC2012/SegmentationClassRaw',
'Folder containing semantic segmentation annotations.')
tf.app.flags.DEFINE_string(
'list_folder',
'./VOCdevkit/VOC2012/ImageSets/Segmentation',
'Folder containing lists for training and validation')
tf.app.flags.DEFINE_string(
'output_dir',
'./tfrecord',
'Path to save converted SSTable of TensorFlow examples.')
_NUM_SHARDS = 4
def _convert_dataset(dataset_split):
"""Converts the specified dataset split to TFRecord format.
Args:
dataset_split: The dataset split (e.g., train, test).
Raises:
RuntimeError: If loaded image and label have different shape.
"""
dataset = os.path.basename(dataset_split)[:-4]
sys.stdout.write('Processing ' + dataset)
filenames = [x.strip('\n') for x in open(dataset_split, 'r')]
num_images = len(filenames)
num_per_shard = int(math.ceil(num_images / float(_NUM_SHARDS)))
image_reader = build_data.ImageReader('png', channels=3)
region_reader = build_data.ImageReader('png', channels=1)
label_reader = build_data.ImageReader('png', channels=1)
for shard_id in range(_NUM_SHARDS):
output_filename = os.path.join(
FLAGS.output_dir,
'%s-%05d-of-%05d.tfrecord' % (dataset, shard_id, _NUM_SHARDS))
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
start_idx = shard_id * num_per_shard
end_idx = min((shard_id + 1) * num_per_shard, num_images)
for i in range(start_idx, end_idx):
sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
i + 1, len(filenames), shard_id))
sys.stdout.flush()
# Read the image.
image_filename = os.path.join(
FLAGS.image_folder, filenames[i] + '.' + FLAGS.image_format)
image_data = tf.gfile.FastGFile(image_filename, 'rb').read()
height, width = image_reader.read_image_dims(image_data)
# Read the region.
region_filename = os.path.join(
FLAGS.region_folder, filenames[i] + '.' + FLAGS.image_format)
region_data = tf.gfile.FastGFile(region_filename, 'rb').read()
# Read the semantic segmentation annotation.
seg_filename = os.path.join(
FLAGS.semantic_segmentation_folder,
filenames[i] + '.' + FLAGS.label_format)
seg_data = tf.gfile.FastGFile(seg_filename, 'rb').read()
seg_height, seg_width = label_reader.read_image_dims(seg_data)
if height != seg_height or width != seg_width:
raise RuntimeError('Shape mismatched between image and label.')
# Convert to tf example.
example = build_data.image_seg_to_tfexample(
image_data, region_data, filenames[i], height, width, seg_data)
tfrecord_writer.write(example.SerializeToString())
sys.stdout.write('\n')
sys.stdout.flush()
def main(unused_argv):
dataset_splits = tf.gfile.Glob(os.path.join(FLAGS.list_folder, '*.txt'))
for dataset_split in dataset_splits:
_convert_dataset(dataset_split)
if __name__ == '__main__':
tf.app.run()