-
Notifications
You must be signed in to change notification settings - Fork 1
/
SC_BathMPO_Ec_t.h
140 lines (110 loc) · 6.4 KB
/
SC_BathMPO_Ec_t.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
inline void Fill_SCBath_MPO_Ec_t(MPO& H, const double Eshift, const std::vector<double>& eps_,
const std::vector<double>& v_, const params &p)
{
//QN objects are necessary to have abelian symmetries in MPS
QN qn0 ( {"Sz", 0},{"Nf", 0} ),
cupC ( {"Sz", +1},{"Nf",+1} ),
cdnC ( {"Sz", -1},{"Nf",+1} ),
cupA ( {"Sz", -1},{"Nf",-1} ),
cdnA ( {"Sz", +1},{"Nf",-1} );
std::vector<Index> links;
links.push_back( Index() );
//first we create the link indices which carry quantum number information
for(auto i : range1(length(H))){
links.push_back(Index( qn0, 2,
cupC, 1,
cdnC, 1,
cupA, 1,
cdnA, 1,
cupC+cdnC, 1,
cupA+cdnA, 1,
qn0, 1,
cupC, 1,
cdnC, 1,
cupA, 1,
cdnA, 1, Out, "Link" ));
}
//then we just fill the MPO tensors which can be viewed
//as matrices (vectors) of operators. if one multiplies
//all matrices togehter one obtains the hamiltonian.
//therefore the tensor on the first and last site must be column/ row vectors
//and all sites between matrices
//first site is a vector:
{
int i = 1;
ITensor& W = H.ref(i);
Index right = links.at(i);
W = ITensor(right, p.sites.si(i), p.sites.siP(i) );
W += p.sites.op("Id",i) * setElt(right(1));
W += p.sites.op("Ntot",i) * setElt(right(2)) * p.qd->eps(); // not eps_[i-1]!
W += p.sites.op("Nup",i) * setElt(right(2)) * p.qd->EZ()/2.0; // impurity Zeeman energy
W += p.sites.op("Ndn",i) * setElt(right(2)) * (-1) * p.qd->EZ()/2.0; // impurity Zeeman energy
W += p.sites.op("Nupdn",i) * setElt(right(2)) * p.qd->U(); // not Ueff!
W += p.sites.op("Id",i) * setElt(right(2)) * Eshift;
W += p.sites.op("Cup*F",i) * setElt(right(3)) * (-1);
W += p.sites.op("Cdn*F",i) * setElt(right(4)) * (-1);
W += p.sites.op("Cdagup*F",i) * setElt(right(5)) * (+1);
W += p.sites.op("Cdagdn*F",i) * setElt(right(6)) * (+1);
}
// sites 2 ... N-1 are matrices
for(auto i : range1(2,length(H)-1)){
ITensor& W = H.ref(i);
Index left = dag( links.at(i-1) );
Index right = links.at(i);
W = ITensor(left, right, p.sites.si(i), p.sites.siP(i) );
W += p.sites.op("Id",i) * setElt(left(1), right(1));
W += p.sites.op("Ntot",i) * setElt(left(1),right(2)) * (eps_[i-1] + p.sc->Ec()*(1.0-2.0*p.sc->n0())); // !
W += p.sites.op("Nup",i) * setElt(left(1),right(2)) * p.sc->EZ()/2.0; // bulk Zeeman energy
W += p.sites.op("Ndn",i) * setElt(left(1),right(2)) * (-1.) * p.sc->EZ()/2.0; // bulk Zeeman energy
W += p.sites.op("Nupdn",i) * setElt(left(1),right(2)) * (p.sc->g() * pow(p.sc->y(i-1), 2) + 2.0*p.sc->Ec()); // !
W += p.sites.op("Cdn*Cup",i) * setElt(left(1),right(7)) * p.sc->g() * p.sc->y(i-1);
W += p.sites.op("Cdagup*Cdagdn",i) * setElt(left(1),right(8)) * p.sc->g() * p.sc->y(i-1);
W += p.sites.op("Ntot", i) * setElt(left(1),right(9)) * 2.0*p.sc->Ec(); // !
W += p.sites.op("Cup*F", i) * setElt(left(1),right(10)) * (-1.) * p.sc->t();
W += p.sites.op("Cdn*F", i) * setElt(left(1),right(11)) * (-1.) * p.sc->t();
W += p.sites.op("Cdagup*F", i) * setElt(left(1),right(12)) * p.sc->t();
W += p.sites.op("Cdagdn*F", i) * setElt(left(1),right(13)) * p.sc->t();
W += p.sites.op("Id",i)*setElt(left(2),right(2));
W += p.sites.op("F" ,i)*setElt(left(3),right(3));
W += p.sites.op("F" ,i)*setElt(left(4),right(4));
W += p.sites.op("F" ,i)*setElt(left(5),right(5));
W += p.sites.op("F" ,i)*setElt(left(6),right(6));
W += p.sites.op("Id",i)*setElt(left(7),right(7));
W += p.sites.op("Id",i)*setElt(left(8),right(8));
W += p.sites.op("Id",i)*setElt(left(9),right(9));
W += p.sites.op("Cdagup",i)*setElt(left(3),right(2))* v_[i-1];
W += p.sites.op("Cdagdn",i)*setElt(left(4),right(2))* v_[i-1];
W += p.sites.op("Cup", i)*setElt(left(5),right(2))* v_[i-1];
W += p.sites.op("Cdn", i)*setElt(left(6),right(2))* v_[i-1];
W += p.sites.op("Cdagup*Cdagdn",i)*setElt(left(7),right(2)) * p.sc->y(i-1);
W += p.sites.op("Cdn*Cup",i) *setElt(left(8),right(2)) * p.sc->y(i-1);
W += p.sites.op("Ntot",i) *setElt(left(9),right(2)); // !
W += p.sites.op("Cdagup",i)*setElt(left(10),right(2));
W += p.sites.op("Cdagdn",i)*setElt(left(11),right(2));
W += p.sites.op("Cup",i)*setElt(left(12),right(2));
W += p.sites.op("Cdn",i)*setElt(left(13),right(2));
}
//site N is a vector again
{
int i = length(H);
ITensor& W = H.ref(i);
Index left = dag( links.at(i-1) );
W = ITensor(left, p.sites.si(i), p.sites.siP(i) );
W += p.sites.op("Ntot", i) * setElt(left(1)) * (eps_[i-1] + p.sc->Ec()*(1.0-2.0*p.sc->n0())); // !
W += p.sites.op("Nup", i) * setElt(left(1)) * p.sc->EZ()/2.0; // bulk Zeeman energy
W += p.sites.op("Ndn", i) * setElt(left(1)) * (-1) * p.sc->EZ()/2.0; // bulk Zeeman energy
W += p.sites.op("Nupdn",i) * setElt(left(1)) * (p.sc->g() * pow(p.sc->y(i-1), 2) + 2.0*p.sc->Ec()); // !
W += p.sites.op("Id", i) * setElt(left(2)) ;
W += p.sites.op("Cdagup",i) * setElt(left(3)) * v_[i-1];
W += p.sites.op("Cdagdn",i) * setElt(left(4)) * v_[i-1];
W += p.sites.op("Cup", i) * setElt(left(5)) * v_[i-1];
W += p.sites.op("Cdn", i) * setElt(left(6)) * v_[i-1];
W += p.sites.op("Cdagup*Cdagdn",i) * setElt(left(7)) * p.sc->y(i-1);
W += p.sites.op("Cdn*Cup", i) * setElt(left(8)) * p.sc->y(i-1);
W += p.sites.op("Ntot", i) * setElt(left(9)); // !
W += p.sites.op("Cdagup",i) * setElt(left(10));
W += p.sites.op("Cdagdn",i) * setElt(left(11));
W += p.sites.op("Cup",i) * setElt(left(12));
W += p.sites.op("Cdn",i) * setElt(left(13));
}
}